

XBody Hungary Kft. 1125 Budapest, György Aladár u. 35-39.

EFFECTS OF ELECTRICAL MUSCLE STIMULATION ON LOWER BACK PAIN

Rui Morbey

and

XBody Medical Expert Team

TABLE OF CONTENTS

T/	ABLE	OF CONTENTS	2
1.	Int	troduction	3
2.	Su	bjects	6
3.	Pro	ocedures	7
	3.1.	WB-EMS procedure	7
	3.2.	WB-EMS combined with PNF technique	8
4.	M	easurements	9
	4.1.	Anthropometry measurements	9
	4.2.	Pain test	9
5.	Re	sults1	L O
	5.1.	Results of subject A1	10
	5.2.	Results of subject B1	۱2
	5.3.	Results of subject C1	٤4
	5.4.	Results of subject D 1	16
6.	Di	scussion and conclusion1	L 8
7.	Bil	bliography1	19

1. Introduction

Electrical muscle stimulation (EMS) is the elicitation of muscle contraction using electric impulses. EMS has received an increasing amount of attention in the last few years for many reasons. EMS is capable of increasing muscle mass, strength and muscle power. Beyond that, it helps with the conditioning of healthy muscles. Further beneficial effects of EMS are also known, such as helping in weight control or being a solution for conditions such as cellulite. Also, it can be applied as a rehabilitation tool for balancing muscle imbalances caused by inappropriate muscle usage or restructure muscles damaged during aging or injuries.

The electric impulses are generated by EMS devices (XBody EMS devices) and delivered through cables to the electrodes on the skin surface of the muscles to be stimulated. Due to these impulses, the action potential is triggered in a similar way as in the case of impulses coming from the central nervous system. The resulting muscle contraction is similar to the natural movement and regular contractions of the muscles. Depending on the parameters of the electrical impulses (impulse frequency, impulse width, ramp-up, impulse duration, duration of rest), different types of muscle work can be imposed thus improving and facilitating muscle performance of the stimulated muscles.

EMS has several known beneficial effects in clinical applications. It can be used for preventive and rehabilitation purposes in neurology, orthopedics, rheumatology and many other medical fields.

- omuscle strengthening, conditioning and increasing muscle mass,
- relaxation of muscle spasm,
- increasing local blood circulation,
- 8 muscle re-education,
- prevention or retardation of disuse atrophy,
- or prevention of venous thrombosis of the calf muscles immediately after surgery,
- ²⁰ maintaining or increasing the range of motion.

Lower back pain is one of the most common pain syndromes of the twenty-first century. EMS training can be used to lower pain, and to strengthen weak back muscles, which are one of the most common causes of lower back pain.

Lower back pain is often characterized by pain, muscle tension, or stiffness localized below the costal margin and above the inferior gluteal folds. It can be accompanied with leg pain (sciatica) and is defined as chronic when it persists for 12 weeks or more.

Over 80% of people in developed countries will experience lower back pain at some time in their lives (1) which is the single leading cause of disability worldwide. (2)

Symptoms, pathology, and radiological appearances are various. Pain is non-specific in about 85% of cases. (3)

Men and women are equally affected by lower back pain, which can range in intensity from a dull, constant ache to a sudden, sharp sensation that leaves incapacitates the affected.

The main risk factors include heavy physical work, frequent or repetitive bending, twisting, and lifting; and prolonged static postures. However, the back is a complicated structure of bones, joints ligaments, and muscles and sometimes it only takes a small incident to cause long-lasting lower back pain. In addition, arthritis, poor posture, obesity and psychosocial risk factors such as anxiety, depression, and mental stress at work can all increase the risk of lower back pain as well.

Exercise interventions have been shown in some randomized clinical trials to help prevent lower back pain in at-risk populations. (2) Various published guidelines recommend that patients with lower back pain stay active instead of bed rest as was largely recommended a few decades ago. (3-4) Exercise is recognized to be the only meaningful way to increase functional capacity. (5) Systematic reviews for the management of acute, subacute, and chronic back pain have provided recommendations for more, rather than less, activity in recovery. (6-7)

Not all back pain is the same. Some back pain—identified as a red flag—should not be treated with exercise and requires a much more careful medical workup. Red flag pain may present as unrelenting constant pain that gets worse when the patient lies down, interferes with sleep, and/or accompanies an unanticipated weight loss. Origins of the pain might include a tumor, cauda equina syndrome, infection, or spinal fracture. Although red flag pains require serious consideration, only 1%-4% of patients presenting with back pain have red flag conditions. (8) Patients with red flag pain and those who might present with complicated and/or restrictive comorbidities in addition to back pain are beyond the scope of this education. In case of any medical condition, Patients must first consult with their doctor to ensure proper diagnosis.

Patients with chronic back pain, in general, are less physically active than the majority of the population, meaning most patients with chronic back pain come to therapy with very low physical capacities from a lifestyle that is inhibited by the nature of their pain.

4

The goal of therapeutic intervention is to return patients to the normal activities of daily living—sitting, rising, bending, twisting, lifting, walking, and climbing—by enhancing strength, flexibility, endurance, and balance.

We hypothesized that an EMS-elicited contraction would be helpful in decreasing the effects of lower back pain.

The aims of this study were:

- Reducing lower back pain through simple training methods re-organizing the subject bad postural positions on different exercises, increasing the range of motion.
- ²⁰ Reducing lower back pain through PNF methods.
- 8 Reducing lower back pain utilizing strength training.

2. Subjects

Four subjects participated in the examination. The subject A (male, 50 years old) suffered from lower back pain caused by lumbar hernia L4-L5. The subject B (male, 49 years old) has lumbar hernia L5-S1. The subject C (male, 48 years old) has cervical Hernia C3-C4. Furthermore, one female subject (subject D, 52 years old) participated in the study with scoliosis.

Exclusion criteria included the contraindications that are described in XBody Client's consent.

3. Procedures

3.1. WB-EMS procedure

Whole body-EMS (WB-EMS) device enables to stimulate the main muscle groups simultaneously. These muscle groups are the trapezius, back, lower back, pectoral, abs, glutes, quadriceps, hamstrings, arms, optional (e.g. shoulders, calves).

Five dynamic exercises for large muscle groups were performed without any additional weights and were structured in 2 sets of 15 repetitions, which lasted 20 minutes.

Exercises	The most loaded regions		
Deep Squat	Leg extensor, leg flexor, and gluteal muscles		
Glute Bridge	Gluteal, leg flexor, adductor and core muscles		
Single Leg Raise	lliopsoas and abdominal muscles		
Overhead Squat	Leg extensor, leg flexor, gluteal and core muscles		
T-spine Rotation	Arm, shoulder, core and upper back muscles		

Table 1 Load region of the applied exercises

In the first part of the study, an electric current was applied with an impulse frequency of 9 Hz in continuous mode. In continuous mode, the stimulus is generated continuously, without impulse break periods. The pulse width was 400 µs at the subject's maximum tolerance limit, for the first 16 sessions. In the continuous stimulation mode, the inhale-, exhale period were synchronized to the chosen exercises.

In the second part of the study, 16 sessions at 80 Hz were applied in burst mode. In this mode, active stimulation (impulse length) and break periods (impulse break) follow each other. In this case, both the impulse and the impulse break were set to 3 seconds, and the impulse width was 350 μ s. The performance of the exercises was synchronized with the 3 seconds impulse length and 3 seconds impulse break stimulation cycle.

The subjects were carefully instructed by research assistants on how to perform the exercises. Furthermore, the participants were acoustically and visually guided by XBody EMS Training videos that exactly controlled the 3-second exercise–3-second rest rhythm of the resistance protocol.

3.2. WB-EMS combined with PNF technique

After the previously described WB-EMS training protocol Proprioceptive Neuromuscular Facilitation (PNF) method was combined with WB-EMS technology for stretching and improving flexibility. PNF technique uses autogenic and reciprocal inhibition and it helps the patient gaining an increased range of motion (ROM). From the starting position a 10 seconds long impulse was applied for a sub-maximal isometric contraction of the target muscle. After it, in the resting period (2 seconds impulse break) active stretch was used to achieve an increased ROM. The subjects were carefully instructed and helped with manual resistance by research assistants to perform the following exercises. The performance of the exercises was synchronized with the 10 seconds impulse length and 2-seconds impulse break stimulation cycle at 9 Hz. The following exercises were performed in the final 4 minutes of the training:

- Olutes stretch in laying position
- 8 Hamstring stretch in laying position
- 8 Abductor stretch in laying position
- Pectoral stretch in sitting/ standing position
- Solution: Latissimus dorsi stretch in sitting/ standing position.

4. Measurements

4.1. Anthropometry measurements

Anthropometry measurements were applied. We measured height, weight, and body composition. The body composition was determined by multifrequency, whole-body bioelectrical impedance technique (TANITA - OMRON BF511).

4.2. Pain test

The most important aspect of this test is to identify the severity of the pain. This is a subjective evaluation, which is widely used in clinical practice. The intended use of the pain test is to evaluate the quality of movement patterns for clients during five fundamental exercises according to the following table. Three pain measurements were performed on both sides of the lower back previously the training program, after 16 sessions on 9 Hz and after 16 sessions on 80 Hz.

In this study, six categories of the pain severity were performed according to the followings:

Assessment of pain:

- 🤨 🏼 🛛 🖉 🖸 🖸 🖸 0 No pain
- 🕴 1 Weak pain
- 2 Mild pain
- **3** Moderate pain
- 4 Intense pain
- **3** Unbearable pain

Subject							
Exercise	Side	No XBody	16 sessions 9 Hz	16 sessions 80 Hz			
Squat	Left Side						
Squat	Right Side						
Lungo	Left Side						
Lunge	Right Side						
Overbeed Squet	Left Side						
Overhead Squat	Right Side						
Buch up	Left Side						
Push up	Right Side						
Rotation	Left Side						
RUIALION	Right Side						

Table 2 Sample of pain score measurements

5. Results

5.1. Results of subject A

In the case of subject A, an average pain was described before the WB-EMS training program. After the 32 sessions of WB-EMS training program, the pain score decreased to a weak pain with pain score 1. The anthropometric measurements showed notably but not significant changes also. Furthermore, a decrease was observed in body weight, in BMI (body mass index) and in % Fat (percentage of body fat). Besides this, the % Muscle Mass (percentage of muscle mass) increased from 28.1 % to 33.2 % after the 32 sessions of WB-EMS training program. The results are summarized in the following tables.

	Subject A – 185 cm							
Baseline data								
				Anthropometric Meas	ures (cm)			
E	Before t	he first	session	Arms R/L	33	33		
				Quadriceps R/L 58		58		
Weigh (kg)t	/eigh BMI %Fat %Muscle Chest		10	9				
95.8	20	25.4	28.1	Waist	10)4		
95.8	28	35.4	28.1	Glutes	10)6		
1 st period: Impulse frequency: 9 Hz, Continuous mode, Pulse width: 400 μs								
				Anthropometric Measures (cm)				
	16	session	IS	Arms R/L	34	34		
				Quadriceps R/L	59	59		
Weight (kg)	BMI	%Fat	%Muscle Mass	Chest	105			
93.0	27	33.3	30.1	Waist	102			
95.0	27	55.5	50.1	Glutes	10)3		
2	nd peric	od։ Impւ	ulse frequency: 8	30 Hz, Burst mode, Pulse widt	h 350 µs			
				Anthropometric Meas	ures (cm)			
	16	session	IS	Arms R/L	32	32		
		-		Quadriceps R/L	57	57		
Weight (kg)	BMI	%Fat	%Muscle Mass	Chest	10)3		
90.2	26	30.1	33.2	Waist	9	9		
90.2	20	30.1	1 33.2	Glutes	Glutes 101			

Table 3 Results of subject A

Subject A							
Exercise	Side	No Xbody	16 sessions	16 sessions			
			9 Hz	80 Hz			
Squat	Left Side	3	3	1			
Squat	Right Side	3	2	1			
Lungo	Left Side	3	2	1			
Lunge	Right Side	2	2	1			
Overhead Squat	Left Side	3	2	1			
Overhead Squat	Right Side	2	2	1			
Duch un	Left Side	3	2	1			
Push up	Right Side	3	2	1			
Detation	Left Side	3	2	1			
Rotation	Right Side	2	2	1			

Table 4 Pain scores of subject A

5.2. Results of subject B

In case of subject B, intense pain (pain score 4) was described before the WB-EMS training program, and it decreased to a weak or a mild pain (pain score 1 or 2) after the 32 sessions. The anthropometric measurements showed changes also, such as notable change was described in case of the chest (from 101 cm to 95 cm), waist (from 98 to 90 cm), and glutes (101 cm to 95 cm) circumference. A decrease in body weight was also observed (from 85.4 kg to 81.9 kg). Furthermore, the BMI (body mass index) and in % Fat (percentage of body fat) decreased. Besides this, the %Muscle Mass (percentage of muscle mass) increased from 29.5 % to 34.6 % after the 32 sessions. The results are summarized in the following tables.

	Subject B – 178 cm							
Baseline data								
				Anthropometric Meas	ures (cm)			
E	Before tl	ne first s	session	Arms R/L 30				
				Quadriceps R/L	59	58		
Weight (kg)			,	Chest	10	1		
85.4	27	26.7	29.5	Waist	98	8		
65.4	27	20.7	29.5	Glutes	10)1		
1 st p	eriod: I	mpulse	frequency: 9 Hz	, Continuous mode, Pulse wi	ر 400 dth:	ıs		
				Anthropometric Measures (cm)				
	16	session	S	Arms R/L	31	30		
				Quadriceps R/L	60	59		
Weight (kg)	BMI	%Fat	%Muscle Mass	Chest 100		0		
83.6	26	23.7	32.4	Waist	96			
83.0	20	23.7	32.4	Glutes	100			
2'	nd period	d: Impul	se frequency: 8	0 Hz, Burst mode, Pulse widt	h 350 µs			
				Anthropometric Meas	ures (cm)			
	16	session	S	Arms R/L	32	32		
				Quadriceps R/L	57	57		
Weight (kg)	BMI	%Fat	%Muscle Mass	Chest 95		5		
81.9	26	21 5	34.6	Waist	9	0		
01.5	26 21.5		54.0	Glutes	9	5		

Table 5 Results of subject B

Subject B							
Exercise	Side	No Xbody	16 sessions	16 sessions			
			9hz	80Hz			
Squat	Left Side	4	3	1			
Squat	Right Side	4	3	1			
Lungo	Left Side	4	3	2			
Lunge	Right Side	4	3	2			
Overhead Squat	Left Side	4	3	2			
Overneau Squar	Right Side	4	3	2			
Duch up	Left Side	4	2	1			
Push up	Right Side	4	2	1			
Rotation	Left Side	4	2	1			
RUIALION	Right Side	4	2	1			

Table 6 Pain scores of subject B

5.3. Results of subject C

In the case of Subject C, the pain scores decreased from a weak pain (pain score 2) to 0 (no pain) after the 32 sessions WB-EMS training program. The anthropometric measures showed a decrease also. The arm circumference decreased from 33 cm to 31 cm. The quadriceps circumference decreased from 63 cm to 55 cm. The chest circumference decreased from 120 cm to 104 cm after the WB-EMS training program. The circumference of the waist (from 112 cm to 95 cm) and the glutes (from 108 cm to 103 cm) showed a notable decrease also. A decrease in body weight was also observed (from 112 kg to 104 kg). Furthermore, the BMI (body mass index) and in % Fat (percentage of body fat) decreased. Besides this, the % Muscle Mass (percentage of muscle mass) increased from 27.5 % to 32.7 % after the 32 sessions. The results are summarized in the following tables.

	Subject C – 180 cm							
	Baseline data							
				Anthropometric Meas	ures (cm)			
E	lefore th	ne first s	session	Arms R/L 33				
				Quadriceps R/L	63	63		
Weight (kg)	- I BIVILI %Fat I			Chest	12	0		
112	25	40.2	27 5	Waist	11	.2		
112	35	40.2	27.5	Glutes	10	8		
				Anthropometric Meas	ures (cm))		
	16	session	S	Arms R/L	31	31		
				Quadriceps R/L	54	55		
Weight (kg)	BMI	%Fat	%Muscle Mass	Chest	106			
108	34	38.2	29.5	Waist	98			
108	54	50.2	29.5	Glutes	10)4		
2 ^r	nd period	d: Impul	se frequency: 8	0 Hz, Burst mode, Pulse widtl	n 350 μs			
				Anthropometric Meas	ures (cm)			
	16	session	S	Arms R/L	31	31		
				Quadriceps R/L	55	55		
Weight (kg)	BMI	%Fat	%Muscle Mass	Chest 104)4		
104	32	35.0) 32.7	Waist	9	5		
104	52	55.0	52.7	Glutes	103			

Table 7 Results of subject C

Subject C							
Exercise	Side	No Xbody	16 sessions 9hz	16 sessions 80Hz			
Squat	Left Side	2	1	0			
Squat	Right Side	2	1	0			
Lungo	Left Side	2	1	0			
Lunge -	Right Side	2	1	0			
Overhead Squat	Left Side	2	1	0			
Overneau Squar	Right Side	2	1	0			
Duchun	Left Side	2	1	0			
Push up	Right Side	2	1	0			
Rotation	Left Side	2	1	0			
RULALION	Right Side	2	1	0			

Table 8 Pain scores of subject C

5.4. Results of subject D

In the case of subject D, the pain score decreased to 0 (no pain) or 1 (weak pain) after the 32 sessions of WB-EMS training program. The anthropometric measures showed a decrease also. The arm circumferences decreased from 30 cm (right) and 29 cm (left) to 26 cm. The quadriceps circumferences decrease from 58 cm (right) and 59 cm (left) to 53 cm. The chest circumference decreased from 88 cm to 80 cm during the WB-EMS training. The circumference of waist (from 95 cm to 82 cm) and glutes (from 103 cm to 95 cm) showed a decrease also. The body weight decreased from 74.5 kg to 68.7 kg. Furthermore, the BMI (body mass index) and in % Fat (percentage of body fat) decreased. Besides this, the % Muscle Mass (percentage of muscle mass) increased from 23.9 % to 28.1 % after the 32 sessions. The results are summarized in the following tables.

	Subject D – 170cm								
	Baseline data								
				Anthropometric Meas	ures (cm)				
E	Before th	ne first s	session	Arms R/L	29				
				Quadriceps R/L	58	59			
Weight (kg)				Chest	8	8			
74.5	26	20	22.0	Waist	9	5			
74.5	20	39	23.9	Glutes	10	3			
1^{st} period: Impulse frequency: 9 Hz, Continuous mode, Pulse width: 400 μs									
				Anthropometric Meas	ures (cm)				
	16	session	S	Arms R/L	28	28			
				Quadriceps R/L	56	56			
Weight (kg)	BMI	%Fat	%Muscle Mass	Chest	83				
71.8	25	36.9	26.0	Waist	87				
/1.8	25	30.9	20.0	Glutes	98	3			
2 ^r	nd period	d: Impul	se frequency: 8	0 Hz, Burst mode, Pulse widt	h 350 µs				
				Anthropometric Meas	ures (cm)				
	16	session	S	Arms R/L	26	26			
				Quadriceps R/L	53	53			
Weight (kg)	BMI	%Fat	%Muscle Mass	Chest 80		0			
68.7	24	24 24 9	28.1	Waist	82				
00.7	24 34.8 28.2	20.1	Glutes	9	5				

Table 9 Results of subject D

Subject D							
Exercise	Side	No Xbody	16 sessions 9hz	16 sessions 80Hz			
Squat	Left Side	3	2	0			
Squat	Right Side	3	1	0			
Lungo	Left Side	3	2	1			
Lunge	Right Side	3	1	1			
Overhead Squat	Left Side	4	2	1			
Overhead Squat	Right Side	4	2	1			
Duch un	Left Side	3	2	0			
Push up	Right Side	3	1	0			
Detation	Left Side	2	2	0			
Rotation	Right Side	2	1	0			

Table 10 Pain scores of subject D

6. Discussion and conclusion

The lumbar spine, or low back, is a remarkably well-engineered structure of interconnecting bones, joints, nerves, ligaments, and muscles. All working together to provide support, strength, and flexibility. The purpose of this study was to determine the effect of WB-EMS training method with XBody EMS device on lower back pain.

From the four described cases, it can be concluded that WB-EMS can be a great help to people with lower back pain. The measurement showed a reduction in weight with positive body composition changes, namely the % Fat decreased, and the % Muscle Mass increased in case of every subject. A decrease was observed in the case of anthropometric measurements also. In addition, pain test was applied to identify the severity of the lower back pain of the subjects. In all cases, pain test showed positive effect of WB-EMS training program on lower back pain by minimizing or eliminating their symptoms.

7. Bibliography

- (1) Rubin DI Epidemiology and Risk Factors for Spine Pain. Neurol Clin. 2007; May 25 353-71.
- (2) Global Burden of Disease (GBD), 2010
- (3) Chou R. Low back pain (chronic). BMJ Clin Evid. 2010; 2010: 1116.
- (4) Linton SJ, van Tulder MW. Preventive interventions for back and neck problems: what is the evidence? Spine. 2001;26:778–787.
- (5) Bigos S, Bowyer O, Braen G, et al. Acute Low Back Problems in Adults. Rockville, Md: Agency for Health Care Policy and Research; 1994. Clinical Practice Guideline No. 14; AHCPR publication 95-0642.
- (6) Waddell G, Feder G, McIntosh A, et al. *Low Back Pain Evidence Review*. London, England: Royal College of General Practitioners; 1996.
- (7) Bortz WM 2nd. Redefining human aging. JAm Geriatr Soc. 1989 Nov;37(11):1092–1096.
- (8) Hayden JA, van Tulder MW, Tomlinson G. Systematic review: strategies for using exercise therapy to improve outcomes in chronic low back pain. *Ann Intern Med.* 2005 May 3;142(9):776–785.
- (9) Koes BW, van Tulder M, Lin CW, Macedo LG, McAuley J, Maher C. An updated overview of clinical guidelines for the management of non-specific low back pain in primary care. *Eur Spine* J. 2010 Dec;19(12):2075–2094. Epub 2010 Jul 3.
- (10)Downie A, Williams CM, Henschke N, et al. Red flags to screen for malignancy and fracture in patients with low back pain: a systematic review. *BMJ*. 2013. Dec 11;347:f7095.
- (11)Graves JE, Franklin BD. *Resistance Training for Health and Rehabilitation*. Champaign, IL: Human Kinetics; 2001.
- (12)Yamamoto LM, Lopez RM, Klau JF, Casa DJ, Kraemer WJ, Maresh CM. The effects of resistance training on endurance distance running performance among highly trained runners: a systematic review. *Strength Cond Res.* 2008 Nov;22(6):2036–2044.
- (13)Morton SK, Whitehead JR, Brinkert RH, Caine DJ. Resistance training vs. static stretching: effects on flexibility and strength. *Strength Cond Res.* 2011 Dec;25(12):3391–3398.