O ROKOKO I

Introduction:

1.0 Setting up:
1.1 Choosing the right version of Unity:
1.2 Choosing a directory that make sense:
1.3 Choosing the right pipeline:
1.4 Changing the dang light-bulb:
1.6 Organizing your layout:
1.5 Setting up your scenes and folders:

2.0 Importing:
2.1 Identify dependencies:
2.2 Separate material from fbx:
2.3 Create appropriate folders (again):
2.3 Create and save character as prefab:
2.4 Bonus practice:
2.5 Useful links (optional):

3.0 Retargeting:
3.1 Process summary:
3.2 Import fbx with animation:
3.3 Converting animation to humanoid:
3.4 Renaming and sorting your animation clips:
3.4.1 (OPTIONAL) Duplicating the animation clip:
3.5 Convert character rig to humanoid avatar
3.5.1 Bonus practice (hand surgery):

4.0 Animation basics:
4.1 Testing and modifying animation clips
4.1.1 The settings:
4.1.2 Making modifications
4.1.3 Modifying animation rest poses:

4.1.4 (BONUS) Making multiple clips from one FBXfile:

4.2 The Animator Component (and Animation Controller)
4.2.1 The Animator Component
4.2.2 The Animation Controller

4.2.2.1 Layers (basics):
4.2.2.2 Parameters:
4.2.2.3 Layer Editor:

4.3 Building the state machine:
4.3.1 State transition setup:
4.3.2 Writing the basic logic:

Declarations:
Start function:
Update function:

o o0 OO OO0 Ok WW N

-
o NN~ ©

WNNN = & A A
AN 0o NN

O OO oo agag bbb DDA OWW®
O © © 0O Hh WO OO WO O AN OO WwNiN

Unity Animation Basics - David E. Lindberg | Rokoko

4.4 Blend trees:
4.4.1 Driving blend trees:
4.4.2 (BONUS) Root transform corrections:
4.5 Face Capture - Implementing blendshape animations:
4.5.1 Renaming the mesh
4.6 Playing multiple skeletal animations simultaneously:
4.7 Mocap cleanup (Blender, mostly):
4.7.1 Removing jitter:
4.7.2 Doing pose corrections:

5.0 Rounding off:

6.0 Where to go next:
6.1 Rokoko Discord Community
6.2 Online tutorials
6.3 Asset resources

Introduction:

60
70
74
76
81
91
95
95
102

104

105
105
105
106

Hello! My name is David Lindberg, | work for Rokoko as a Technical Community Manager.

While | have a lot of prior experience in Unity, | had done very little with their animation
systems until now. This document chronicles my learning process, to create what is

hopefully a good introduction for anyone who is also just beginning to learn about animations

in Unity.

This document aims to introduce the many tools and techniques that are available in Unity

for animating characters with exported animations. This article does not cover

livestreaming from Rokoko Studio into Unity, as | believe that deserves its own article,

addressing different challenges and workarounds in that space.
There are a few layers of stuff to go through. The most basic outline is as follows:

Content:
- The animation clip itself (mocap or hand animated)
- The character model (w. Skeleton, mesh, materials, textures)

Tools:
- The avatar system (retargeting between humanoid rigs)
- The animation timeline (preview/edit/add logic)
- The animation controller (state machine)

Knowing how to use these tools to manipulate the content is a really good starting point,
from which we can expand into more complex systems and scenarios.

Join us at https://discord.qqg/rokoko

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

There’s of course an endless assortment of other plugins and cool third-party stuff that we
can implement in Unity, but for this article we will cover what has been developed by Unity
themselves. As an aside, while we will be going through the basics, | recommend people
who have never used Unity before to go check out their learning path for beginners first. It
isn’t mandatory, but | reckon it will help, especially for navigating the interface:

- https://learn.unity.com/pathway/unity-essentials
Or alternatively, this awesome crash course by Imphenzia:

- O LEARN UNITY - The Most BASIC TUTORIAL I'll Ever Make

Finally, please be aware that this is not a one-stop-solution for every humanoid animation
onto any humanoid character. A lot of the time you’ll go through these steps and get great
results - yet oftentimes you’ll also have to make iterations, corrections to ensure that

everything lines up properly. But regardless of the challenges you face, the first step is to
know what tools you have at hand and how they work, which is the point of these tutorials.

1.0 Setting up:

I am writing this introduction with the assumption that you have little to no experience with
Unity, prior to this point. If you already have some experience with Unity, just skip ahead to
section 2.0. When creating your Unity project, there’s a few steps that can be handy to
follow:

1.1 Choosing the right version of Unity:

In order to use Unity, we’ll have to install Unity - And before we can install Unity, we need to
install the Unity Hub, which helps us manage our installation process. This hub is useful due
to Unity always getting updated with new features, meaning there are a bunch of versions to
choose from. When you open the Hub;

1. Click on ‘Installs’ to the left

2. Click the blue ‘Add’ button at the top right:

Join us at https://discord.qqg/rokoko

https://www.youtube.com/watch?v=pwZpJzpE2lQ&ab_channel=Imphenzia
https://learn.unity.com/pathway/unity-essentials
https://unity3d.com/get-unity/download
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Q Unity Hub 2.4.4 - o X
&} unity & oe
9 Projects Installs LOCATE
® Learn . . .

&% Community Q . Q . Q .
2020.3.13f1 s ® 2020.3.11f1 s ® 2020.2.2f1

Iii

Installs

) < q < |

2020.1.15f1 2020.1.11f1 2020.1.3f1

My recommendation is to choose the most recent “Long Term Support (LTS)” version.
Unity is usually showing this as the Recommended version:

@ Unity Hub 244 - O X

Add Unity Version

o Select a version of Unity o

Can't find the version you're looking for? Visit our download archive for access to long-term
support and patch releases, or join our Open Beta program releases.

Recommended Release

(® Uunity 2020.3.14f1 (LTS) @

Official Releases
QO unity 2021.1.151

QO unity 2019.4.281 (LTS)

QO unity 2018.4.36f1 (LTS)

Pre-Releases

CANCEL

1.2 Choosing a directory that make sense:

This step is often a bit overlooked when making your first projects, but it's nice to have it
managed from day one, once you start piling on more projects over time. You don’t want to

Join us at https.//discord.qg/rokoko 4

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

start moving your directories around later. Just agree with yourself on where you want to
store your files, preferably a location with space for lots of projects and assets.

1.3 Choosing the right pipeline:

A great thing about Unity is its flexibility. At its core it is very simple, with the idea being that
you build or add your own modules (referred to as “packages”) to solve the problems that
need to be solved. However, while this is great for people who know what they’re doing, it
can be a little overwhelming for newcomers. Thankfully, to address this problem, Unity has
some nice presets to choose from in the form of sample projects with preconfigured
packages. These are visible when creating a new project, so go back to the ‘Projects’ tab
on the left and click the blue ‘NEW’ button that has an arrow next to it (arrow is for selecting
engine version to make the project in. Then you'll be greeted by this view:

@ Create a new project with Unity 2020.3.13f1 - a X

[object Object]

- Y

Universal Render
Pipeline

CANCEL REATE

There’s a few game examples and stuff for VR and AR if you scroll down, but the most
useful ones for the majority of cases, are the rendering pipelines:

Universal Render Pipeline (URP):
Used for projects where performance, wide platform support, and ease of customising
graphics are the primary considerations.

High Definition RP (HDRP):
A good starting point for people focused on high-end graphics that want to develop games
for platforms that support Shader Model 5.0 (DX11 and above).

For this tutorial I'd recommend URP, simply because it is more performant and you will likely
use it in your own projects. Especially for anything stylized (eg. Inside, Valheim, Ori), the
Universal Render Pipeline is your best bet.

Join us at https://discord.qqg/rokoko 5

https://www.youtube.com/watch?v=yDm6PAgNohU&ab_channel=IGN
https://www.youtube.com/watch?v=liQLtCLq3tc&ab_channel=IGN
https://www.youtube.com/watch?v=EexSqzA5mXY&ab_channel=IGN
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

1.4 Changing the dang light-bulb:

This is a bit of a pet-peeve of mine, but the default way that color is being calculated in Unity
is a bit too shiny and plasticky, and not even more performant than its better looking
counterpart. | always change this as the very first thing in a new project. From the top of the
Unity editor, go to Edit -> Project Settings. This will open a new window:

1. Click ‘Player’

2. Expand the ‘Other Settings’ tab

3. Change the color space from ‘Linear’ to ‘Gamma’.

Unity will now ask you if you wish to change the color space to which you say yes please
and thank you. And of course; a more technical comparison of the two models, for those who
are interested.

1.6 Organizing your layout:

How you set up the layout of your Unity editor is generally a question of personal preference.
However, if there is one thing | can generally recommend that you do, then it is to move the
console window so that it is always visible. Even if you are not considering yourself a
programmer - if something goes wrong in Unity, that’'s where the information goes. | like to
do this:

That'll give your console some free real-estate next to the project window, instead of
disappearing behind it.

1.5 Setting up your scenes and folders:

You may have noticed that there are a lot of folders in your Unity project already. All of this
comes from the URP package that was included when we made the project. The great thing
about this, is that it demonstrates some general folder naming and sorting practices, which
we should always strive to maintain, to prevent our projects from becoming unwieldy:

Join us at https://discord.qg/rokoko 6

https://docs.unity3d.com/Manual/LinearRendering-LinearOrGammaWorkflow.html
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

I Project
+ -

* Favorites Assets

All

2, All Prefabs
e Assets
I Packages
Exan ts Materials Presets Scenes

Scripts Settings

You can zoom in and out with the slider in the bottom right corner. Unfortunately the text is a
bit smudgy on this picture, but if you look in your own project there’s names like ‘Materials’,
‘Scenes’ and ‘Scripts’, which all indicate a specific type of content. Whenever you add
something to your project, think about what you’re adding and how you are going to easily
find it if (when) you forget where you put it. As for the existing folders, just leave them be for
now.

We're going to create a new scene for this tutorial anyway, so you might as well go into the
existing ‘Scenes’ folder and create a new scene by right-clicking in the Project window and
selecting Create -> Scene. | made one and named it ‘AnimationTutorials’ but you can call it
whatever you want. Make sure you double-click it afterwards to open it up, which should
leave you with an empty scene view like this:

a
File Edi

Join us at https://discord.qg/rokoko 7

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

2.0 Importing:

The first thing you want to do is to get the characters into your game. If you don’t know
where to start | will be using our Bruno character:

- https://cdn.rokoko.com/assets/unity/bruno.zip
And the viking Rgmer:

- https://cdn.rokoko.com/assets/unity/romer.zip

You can use your own characters for this tutorial, but the great thing about starting with these
two characters, is that each of them has some different limitations you’ll likely run into now
and again, so I'll be able to demonstrate how you can overcome these issues with each of
them respectively. We won’t cover the creation of the models themselves however, as that is
for a different type of tutorial (and done in modelling software outside of Unity).

2.1 Identify dependencies:

If we start by unzipping the Rgmer character folder, you'll notice that there are actually three
files. One of them is the ‘fbx’ (skeleton, mesh, materials and animation if any), the other two
are textures:

Warrior.fbx Warrior_Diffuse.p Warrior_Normal.
ng png

The two textures here are:
- Diffuse map: The actual colours being displayed on the character.
- Normal map: Information describing how the surface is lit, allowing for additional
surface detail without adding to the geometry.

Inside of this fbx-file, there’s actually a material which makes use of these textures, so it is

important that you drag all three files into Unity’s project window at the same time, or poor
Rgmer will come out without any textures inside of Unity:

Join us at https://discord.qqg/rokoko 8

https://cdn.rokoko.com/assets/unity/bruno.zip
https://cdn.rokoko.com/assets/unity/romer.zip
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Scriots Settings

ExampleAssets Materials Presets Scenes

Tutorialinfo

In this picture we see the fbx in a more ‘unfolded’ format inside of Unity, alongside the two
textures. | won’t go into too much detail about each of these components, other than the
sphere you see here, which is the aforementioned material.

While it’s nice to have the material contained inside of the fbx-file itself, it sometimes makes
more sense to recreate it outside of the fbx, both for the sake of organizing your files but also
to minimize situations where the read-only nature of the fbx might cause any problems,
should you want to update the material at a later stage. This step is not mandatory, but might
be helpful - especially if the original material was not saved correctly, as we will see below.

2.2 Separate material from fbx:

The easiest way to recreate the material outside of the fbx, is to select the material in the
FBX and press CTRL+D to duplicate it:

Warrior_Diffuse...

Let’s take this opportunity to examine the material and see what it looks like, before we start
using it. Click on the new material and check out the Inspector window to see the details.
You'll see a lot of properties there, but we are only really concerned about the properties

Join us at https://discord.qqg/rokoko 9

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

called ‘Base Map’ (the diffuse texture) and the ‘Normal map’ (the normal texture), both
found under ‘Surface Inputs’ if not currently visible:

© Inspector
Warrior_Diffuse_1 Material (Material)

Shader Universal Render Pipeline/Lit

Surface Options
Metallic
Opaque
Render Face Front
Alpha Clipping

Receive Shac

Surface Inputs

©Base Map - i

O Metallic Map

Metallic Alpha

@ Normal Map

A keen eye might realize at this point, that something is not quite right! Whoever saved the
fbx-file originally forgot to actually apply the normal map, so it is not currently being used.
Whoopsies! In order to apply it, click the little circle-icon left of the ‘Normal Map’ and it’ll
open a file browser. Since we’re using the basic URP project, it might be a little hard to spot
the texture, as there’s already a selection of them in the project. Since we know the name of
the texture is “Warrior_Normal”, we can simply find it by typing it into the search bar of the
file browser, which will change the window from a tile view to a list view:

Join us at https.//discord.qgg/rokoko 10

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

a Warrior
Assets

None

Narrior_Diffuse

'--'f;’.‘ Warrior_Normal k‘

sed DXT1 UNorr

After you’ve selected the normal map, there’s one last technical hiccup that should be
addressed from the inspector when viewing the material. For the sake of handling everything
correctly, Unity likes to know if a texture should be treated as a normal map (link for the
curious ones). Since we've just thrown the texture into Unity without doing anything else, this
warning will pop up in the Inspector, when applying it on our material:

|c -
B ©Normal Map

S not marked as a normal map

Fix Now

Just click the button!

Now you have an updated material that will not lose track of your textures, regardless of
where you put them inside of your project.

2.3 Create appropriate folders (again):

| recommend making a Textures folder and dumping the textures in there. If you want to,
you can create additional folders like Characters and then even one called Romer (not
using the g-letter as that can break stuff, but you can call it whatever you want).

An easy way to move stuff around in multiple layers of folders, is to use the asset browser on

the right side of the Project window. Here I've made the folders | suggested and can now just
drag and drop the textures via the browser:

Join us at https://discord.qg/rokoko 11

https://docs.unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html
https://docs.unity3d.com/Manual/StandardShaderMaterialParameterNormalMap.html
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

I Project
+ v
% Favorites Assets
Q, All Materials
O, All Models

Q, All Prefabs
@@ Assets
Im ExampleAssets

e Materials
(s ExampleAs S Mate

[} Rm er . .

(@@ Tutoriallnfo
! =P es torialinfo Readme

e Packages

CTRL-click or SHIFT-click to select multiple files

I'd similarly make the folders Models -> Characters and move the FBX-file for the character
in there (no reason to give the model its own folder when there’s only one Remer model).
Then I'd create a Characters folder inside of the existing Materials folder and put the
material there. Complex models often have multiple materials, but in this case we’ll be just
fine with this folder structure.

It is also common for people to make an “Art” folder and put all of your art-related folders
inside of that one, as it is a nice way to separate everything into art and logic, for example. |
have not done this here as this is a very simple project and | am a bit lazy.

2.3 Create and save character as prefab:

The last thing we need to do is to reassociate the material we made with the character
model, then save the result as a prefab. Prefabs are really just blueprints for objects, in this
case the character model with the new material, which we can easily reuse in our scenes
without having to find and reapply the material every time we use the character.

Start by dragging the FBX into either the Scene window or Hierarchy window (contains a list
of all objects in the scene):

Join us at https.//discord.qgg/rokoko 12

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

‘= Hierarchy
+v o
< AnimationTutorials*
9 Main Camera

A
ectional Light %

I Project
+ -

W ravories
Characters

Q, All Pr

@ Assets
B ExampleAssets
1

As you can see, our mighty viking warrior is also mighty pale, as the material in the fbx-file
only looks in its immediate directory for the textures it needs. This sometimes happens when
importing fbx files without dropping the textures into the project as well. Don’t panic if it
happens to you - that’s why | am showing it here. To fix this we’ll feed the mesh renderer the
material we made ourselves. This can be done in two ways:

1. The easiest way to do this is to just drop the material onto the character in the scene,
as Unity can identify the surface and find the mesh renderer automatically this way.
I'll show how to do this below.

2. A more manual approach is to find the mesh renderer on the character, by selecting
the character and assigning the texture via the Inspector instead. In most cases for
characters like this, the mesh renderer is found just below the upper hierarchy object.

Join us at https.//discord.qgg/rokoko 13

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

‘= Hierarchy

+v

€ AnimationTutorials*

2 Main Camera

W

I Project
+ -

W ravories
Romer

Alternatively, select the object with the mesh renderer and drop material into Inspector window

Next we’ll be able to take the character object with the material and save that as a prefab.
Just drag the Warrior object from the Hierarchy window into the Project browser, then Unity
will ask if you want to save it as an Original Prefab or a Prefab Variant. For the purpose of
this guide we’ll choose Original Prefab:

Join us at https.//discord.qgg/rokoko 14

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Create Prefab

Would you like to create a new original Prefab or a
variant of this Prefab?

Orjginal Prefab | | Prefab Variant Cancel
N>

ef bs > Characters

[3 Characters

If you wonder why there are two options, 'll refer to this guide for anyone curious about the

difference between them, as prefab variants are a powerful tool.

2.4 Bonus practice:

Now that you’ve mastered the art of splitting your fbx-files apart and putting the files in the
right places, try importing the Bruno model and its textures in the same way. You'll notice
that this time it has three materials instead of one. There’s a few additional types of textures
to be assigned as well:

- The MaskMap texture goes into the ‘Mask Map’ property
- The Scattering texture goes into the ‘Occlusion Map’

And finally some tips:

Join us at https.//discord.qgg/rokoko 15

https://www.visualdesigncafe.com/guides/ultimate-guide-on-nested-prefab-workflows-in-unity/prefab-variants/
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

- If named properly, textures should share names with the materials they go onto, so
try searching for the name of the material you are editing, in the texture browser, to
get all of the relevant textures to show.

- When applying materials to a character with multiple materials, the easiest thing to
do is to drop them onto the character in the scene view, on the part of the character
they are supposed to be applied to (eg. ‘eyes’ material on eyes, ‘hair’ material on the
hair etc.).

The final result should look something like this:

And with that we have covered the basics!

2.5 Useful links (optional):

From Unity docs:
- General texture documentation in Unity

- Texture import info

- Materials introduction

3.0 Retargeting:

Source: @ How to Animate Characters in Unity 3D | Animator Explained

Join us at https.//discord.qgg/rokoko 16

https://www.youtube.com/watch?v=vApG8aYD5aI
https://docs.unity3d.com/Manual/Textures.html
https://docs.unity3d.com/Manual/ImportingTextures.html
https://docs.unity3d.com/Manual/materials-introduction.html
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Retargeting animation in Unity is inherently supported by the engine, using the Humanoid
rigging system.

3.1 Process summary:

When importing animations into Unity, both the animation and the characters we wish to use
it on, can be transformed into a “humanoid” avatar. This essentially standardizes the
animation clip, so that it can easily be applied to all characters who also have their rigs
converted to Unity’s humanoid avatar system. The process for the animation clip can be
summarized as this:

N

Import animation fbx (eg. a mocap recording)

2. Convert animation fbx to humanoid avatar

3. Duplicate animation clip from animation fbx (to detach from its read-only state in the
fbx)

When you have the animation clip ready, import the character you want to animate and do
the following:

1. Convert character rig to humanoid avatar
2. Create and attach animation controller to character
3. Load animation clip into animation controller

With both the clip and the character using the humanoid avatar, the character should play
the animation as the animation controller tells it to. We'll get into multiple animations and
blending between them in a later chapter.

The animation clips I'll be using for this section are all free in the MotionLibrary. Their names
are:
By Sawmill Studios:

- ‘Simple Walk 1’

- ‘Regular Run’

By SuperAlloy Interactive:
- ‘ldle Combat Relaxed’

If you are having trouble finding these, make sure that you are searching by ‘price
ascending’ as that will list the free assets first.

3.2 Import fbx with animation:

You've already done your mocap in Rokoko Studio and the potential animation cleanup
cleanup at this stage (in Blender or Maya or whatever you prefer). To import the resulting
animation, just drop the animation fbx into Unity. It should show up in the project window
looking like this:

Join us at https://discord.qqg/rokoko 17

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

If you expand the details by clicking the arrow, you'll see that there is nothing here except
the skeleton and the animation clip describing how the skeleton should move:

That means if you drop this fbx into the Unity scene, you won’t actually see anything
because there is no mesh associated with this file, only invisible bones and their transforms.

If you do want to see how this looks on the Newton character in Unity, you can export the
animations with the Newton mesh like this:

Join us at https.//discord.qgg/rokoko 18

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Export options

+ \scene-I\TwoPunch

Trackers

¥ Body Mesh

Binary FBX201600 v

Maya HumanlK

100

+ Mimic File Hierarchy

..udioProjects\Test\Export

| also recommend using the Maya HumanlK skeleton - it is just a naming convention, it
works perfectly for Unity as well.

3.3 Converting animation to humanoid:

Now for a great magic trick, Unity lets us use the fbx containing the animation clip, to create

a version of the animation that works with all humanoid characters. To do this, click the fbx
file to view it in the inspector then:

1. Select the ‘Rig’ tab

2. Click the ‘Animation Type’ drop-down
3. Change it to ‘Humanoid’

Join us at https.//discord.qqg/rokoko

19

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

. Sawmill_Studios
L]

Mode Rig .Animation Materials

Animation Type Generic

tar Definition None

Legacy
Generic

Humanoid

Imported Object
-

@,

Transform

This will change the view a little bit as you will now have to confirm how the avatar should be
defined:

1. Set Avatar Definition as ‘Create From This Model’
2. Hit Apply.

3. The previously greyed-out ‘Configure’ button should now be clickable:
© Inspector
- Sawmill_Studio:

“/’ tudios_Inc.-Simple_walk_1

Model Rig Animation Materials
Animation Type Humanoid

Avatar Definition Create From This Model

settings have been applied

Standard (4 Bones)

Join us at https.//discord.qgg/rokoko 20

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

. Sawmill_Studios_Inc
L]

Model Rig Animation Materials

Animation Type Humanoid

Avatar Definition Create From This Model v

Configure...

Standard (4 Bones) -

This will give you a window looking like this (depending on your layout of windows in Unity,
of course):

To give an overview of what's happening in this tiny picture:

- On the left side in the Hierarchy view, we now see all of the bones from the
skeleton in the FBXfile.

- On the right side in the Inspector view we see the simplified humanoid rig and the
names of the bones that were chosen when remapping.

- In the middle in the scene view, there’s a visual representation of the skeleton of
the humanoid rig.

- In the bottom left in the project view, notice how there is now a little character icon
in the FBX-file. This is how Unity shows that there is now a new rig associated with it
(it is not actually in the FBX-file, since that remains read-only, but Unity shows it like it
is, because it is easier to understand the relationship between them this way).

Join us at https.//discord.qgg/rokoko 21

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

If we zoom in on the Inspector view, we can check if the bones from the original skeleton
have been mapped correctly to the humanoid rig:

0 Inspector

Simple_walk_1-ea 03f Oc

Mapping Muscles & Settings

Body
Head
Left Hand
Right Hand
Optional Bone
Body
3 (Transform)
e (Transform)
pinel (Transform)
Upper Chest Spine2 (Transform)
Left Arm
L oulder (Transform)
LeftArm (Transform)
LeftForeArm (Transform)
Hand LeftHand (Transfo
Right Arm
oulder RightShoulder (Transform)
Upper Arm RightArm (Transfo
RightForeArm (Transfo
Hand RightHand (Transform)
LeftLeg
Upper Leg

erlLeg

Right Leg
Upper Leg RightUpLeg (Transform)

RightLeg (Transform)
RightF ransfc
RightToeBase (Transform)

Mapping ¥ Pose ¥

Join us at https.//discord.qgg/rokoko

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

The names of the bones that were chosen for each part of the body, are shown to the right of
the body part names. By clicking the green dots on either the character at the top, or to the
right of the body part names, the bone chosen for that body part will be highlighted in both
the scene view and in the hierarchy view. This is a great way to verify if the correct bone has
been chosen.

Also notice how there are four buttons next to the green character:

Body
Head
Left Hand
Right Hand

Clicking through these will make it possible to cycle through the layouts for those parts of the
character as well, to see if all body parts have been named. In some cases, the original
skeleton may not have all of the bones that are possible to map to the humanoid rig - but
that’s okay. As long as you are able to map to the body parts that have a solid green circle,
then the parts with the dotted circles can be omitted, as they are not critical for baseline
functionality of the rig to be working. For example, here is what the head of the humanoid rig
looks like, when retargeting with the Simple Walk animation mentioned above:

Join us at https.//discord.qgg/rokoko 23

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

spector

Sawmill_Studios_Inc.-Simple_walk_1-ea 03f Oc 8 Avatar (Avata

Mapping Muscles & Settings

Body
Head
Left Hand
Right Hand

Optional Bone
Head
Neck A Neck (Transform)
Head A Head (Transform)
Left Eye A None (Transform)

Right Eye A None (Transform)

Jaw 2. None (Transform)

Several of the bones are not present in the skeleton for this animation, but seeing as they
are all shown with dotted circles, it is okay that we omit them. And that’s all it takes to get the
animation clip ready to be copied from the FBX and used on other humanoid rigs. Please
note if you are using the SuperAlloy Interactive file: The rig is a little bit different from
what we commonly use when exporting from Rokoko Studio - but it still works perfectly fine
with this method, so don’t worry if stuff like the hands are greyed out, it just means the clip
doesn’t have hand animation in it.

When you are done with this and want to return to the scene view, look at the top left of the

Hierarchy view, where all of the bones are displayed, there’s a little ‘<’ arrow you can click to
exit the Avatar Configuration view:

Join us at https.//discord.qgg/rokoko 24

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

+ 7 - B oy % P . -z
W T (? | & A [7]Pivot (PLocal
= Hierarchy = # Scene
+v a Shaded

‘,i“Avatar Configuration

A Walk(Clone)

Ve

) LeftShoulder

3.4 Renaming and sorting your animation clips:

a® Game
v 20 @

“&* Avatar Config

Here’s a look at the project folder where | put the animation clips from Motion Library. I've set
all three of them up with the humanoid rigs and renamed them from their original names to

‘Walk’, ‘Jog’ and ‘Run’ which is infinitely easier to read at a glance:

+~

* Favorites Assets > Animations

Im Packages

Note from this picture:

1. The Humanoid rigs (avatars) are inheriting the names from the FBX, so it is important

to keep them simple.

2. The actual animation clips inside the FBX files are sometimes called some
completely random nonsense. To address this, you will need to select the FBX file

Join us at https.//discord.qgg/rokoko

25

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

itself (rather than the clip directly), go to the Animation tab and change the name
there instead:

© Inspector

‘/’ Walk Import Settings

Model Rig Animation Materials

Import Constraints

Import Animation

Compression Optimal
Error 0.5

n Error 0.5

le Error 0.5
nea as maximum aistance/a
Animated Custo
Clips
ea03f0c8-fcf1-40a3-b451-6f8a30adbc1d

8-fcf1-40a3-b451-6f8a30adbc1d

Here you can change the name to whatever you want - in this case ‘Walk’ is the most
appropriate. These are the names that show up when searching for animation clips, so make
sure to use something that describes the animation well.

3.4.1 (OPTIONAL) Duplicating the animation clip:

This is NOT standard practice, but there are some cases where you might want to edit
the keyframes directly within Unity. This is not possible when looking at the clips
while they are contained in the FBX file, but you can duplicate the animation clip to
overcome this, at the expense of not having access to some of the tools that Unity
has when working with the FBX directly. If you do not know if you will need this or not,
you probably do not need it, but it is good to know that it can be done.

To duplicate a clip, make sure you are looking at the expanded FBX file in the Project
window, select the clip and press CTRL+D to create a duplicate outside of the FBX file. Then
make sure you store them somewhere that makes sense, so you do not have to deal with
anim-files and FBX-files cluttering up the same directory:

Join us at https.//discord.qgg/rokoko 26

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

I Project
+ -

* Favorites Assets > Animations > FBX

@ Assets
(@ Anir

m Tutorialinfo
| “EELES

Walk

A Assets/Animations/FBX/ldle.anim

3.5 Convert character rig to humanoid avatar

With the animations named, we need to set up our characters with humanoid rigs as well.
The procedure for this is actually identical to when we configured the humanoid avatars on
the animation clips, so | am not going to go too much into detail with this, just a summary:

1. Select the original FBX from when you imported the model (like the untextured
mime):

Join us at https.//discord.qgg/rokoko 27

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

I Project
+ -

4« Assets > Models > Characters
@ Assets
(@ Animations
@@ Clips
e Humanoid °
@@ FBX
e Humanoid
e ExampleAssets k
@@ Materials Mime
(=@ Characters
im Bruno
e Romer
(s Models
e Characters
[a@ Prefabs
e Characters
e Presets

e Scenes

v P Assets/Models/Characters/Mime.fbx

2. Gointo the ‘Rig’ tab in the inspector
- Set ‘Animation Type’ to ‘Humanoid’
- Make sure the ‘Avatar Definition’ is ‘Create From This Model’
- Hit ‘Apply’
- Go to ‘Configure’ to double-check that the bones are mapped correctly (for
example, the Mime model will likely have one of the ‘Hair’ bones mapped for
the neck bone, that should be unassigned:

Join us at https.//discord.qgg/rokoko 28

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Body
Head
Left Hand
Right Hand

Optional Bone
Head
Neck A Neck (Transform)

Head

A Hair01 (Transform)

Click the grey circle on the right -> Select ‘None’ to deselect bone

Remember to go through the bones like this, if you ever have any problems with your
characters posing weirdly. For example, the Mime character did not have its finger bones
mapped correctly by the automatic mapping process, so if you play any animations that
affect the hands, you will find that it is looking more like a bow! of spaghetti than actual
fingers:

The easiest way to double-check your mappings, is to open up the Humanoid rig
configuration tool again, focus on the hand and click on the bone directly in the preview, to
see if it matches the location of the visual aid in the Mapping overview:

Join us at https.//discord.qgg/rokoko 29

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Body
Head
Left Hand
Right Hand

If we for a moment ignore that the T-pose is weird, | have outlined three things which

indicate that something is wrong:

1. The tip of the middle finger is not mapped, even though all the other fingers are
(mapped bones are highlighted in green).

2. The middle bone is mapped, even though the humanoid rig (on the right) does not
have a marker for this bone in the visual.

3. Selecting the middle bone confirms that - by looking at the visual - the automatic
mapping has mistaken it for the first digit of the middle finger (hence the missing tip
from point 1.).

To fix this, click on the bone that you wish to map, to find its name. Then go into the bone
map and find it, so that it gets mapped to the right place:

J RightFinger2Medial

G RightFinger2Dis

0 RightFinger2Tig

7 RightFinger3M rpal
7 RightFinger3Proxir

G RightFinger3Medi

G RightFinger3Distal
G RightFinger3Tiy
7 RightFinger4dMe rf
) RightFinger4Proximal

To put it shortly - if in doubt; click through the bones on the visual, and check that each of
them are mapped correctly on the actual skeleton.

Join us at https.//discord.qgg/rokoko 30

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Body
Head
Left Hand
Right Hand

Optional Bone
Right Fingers
Thumb Proximal

rmediate

Inde
Middle Proximal

jle Intermediate

RightFinger2Proximal (Transform)
RightFinger2Medial (Transform)
RightFinger2Distal (Transf
RightFingeriMetacarpal (Transform)
RightFinger1Proximal (Transform)
(Transform)
tacarpal (Transform)

sform)

2 Distal

RightFinger4Proximal (Transform)

RightFinger4Medial (Tran

RightFinger4Distal (Transform)

3.5.1 Bonus practice (hand surgery):

On the Mime model, if you click through the bones on the list or on the hand, you will notice
that there are several problems with the mapping - likely from the T-pose and bone layout
being a bit different. As a practice, | recommend that you try to click around and try to
identify where these problems have occurred (though on the hands only) to familiarize
yourself with the process.

Please note; you will see errors on the bone list when you start remapping, as some
of the bones will temporarily have the same names when you swap them around. Just keep
remapping and the errors will disappear when all of the bones are mapped correctly.

After you are done, it will likely complain that the character is not in T-pose. If you look below

the bone list, you will notice that there is a button that says ‘Pose’. If you click this, there is
an option to enforce the T-pose, which will reset the pose of the character to the T-pose:

Join us at https.//discord.qgg/rokoko 31

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

ightFing
ightFinge
ightFing

Little Intermediate A RightFing

Little Distal A RightFing

Mapping ¥ Pose ¥
Reset
Sample Bind-Pose

Enforce T-Pose

And voila, hand surgery complete:

4.0 Animation basics:

Now that we have characters and animations available, it is finally time to go through the
animation systems which Unity provides us with! There are several tools and logic flows that
we must familiarise ourselves with, to really get the most out of everything. The short
summary of the tools that we’ll explore are as follows:

1. The Animation Controller (and Animator component)

Join us at https.//discord.qgg/rokoko 32

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Dictates how and when what clips are played on a character. These are coupled with
an ‘Animator’ component that sits on the character, which is what actually animates the
character, as dictated by the Animation Controller.

2. The Animation Timeline
This is where all the keyframes for the bones are listed. It is very similar to the same
feature in other software such as Blender, which it is common to do cleanup and edits in,
instead of doing this in Unity, if direct changes to keyframes need to be made.

3. The Animation Rig
This is a feature that lets us set up constraints and override parts of the existing animation,
which is amazing for dynamic interactions in a live environment, such as having to react to
input from a player in a game.

4.1 Testing and modifying animation clips

Before we get too deeply into the logic of the animation systems, we first need to make sure
that our animations work as intended. This is especially important for looping animations that
were done by mocap and not by hand, if you have not already edited this to loop perfectly
elsewhere like in Blender.

Unity actually has some awesome tools for modifying your animations without messing with
the keyframes, to generally getting some really good results, so long as your mocap has a
similar pose at least two places in your animations.

Let’s start by looking at the run animation, by selecting the FBX that contains this animation,

and going to the Animation tab to preview it in the inspector. It will show the animation view
at the bottom of the inspector window, where you can press the play button to preview it:

Join us at https://discord.qqg/rokoko 33

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

N
0o A2 @0

1gs for more details.

-

3:31 (055:2%) Frame 391

AssetBundle None

If the preview window is too small, you can drag the bar that you see above the preview to
make it bigger. If you can’t see it at all, you may have clicked the bar and it has moved to the
bottom of the inspector view - just click it again to restore the preview.

Here’s what the run animation I've chosen looks like:

Join us at https.//discord.qgg/rokoko 34

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

0:14 (012.0%) Frame 14

AssetBundle None ¥ None

(PLAY GIF)

There’s a few problems with this aside from the fact that it changes direction when it loops.
Let’'s check out the settings that are available in the inspector window, to see what we can
do about that:

4.1.1 The settings:

If we scroll past the initial settings (which are mostly related to import), we are greeted with a
view that looks like this:

Join us at https.//discord.qgg/rokoko 35

https://drive.google.com/file/d/1JAS_kyjjCKSL2-0nifHpUIKE1TAxy89L/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

oop match &

Root Transform Rotation
Bake Int ; v oop match &
Body Orientation

0

v

Original
0

Center of Mass

Curves
Events
Mask

Motion

Import Messages

Your view might look a little bit different, but the options are the same. Here’s a short
summary before we get into using them:

Looping options:

- The Length Slider is the bar right below the section where we previously changed
the name of the animation clip. Note how there is a value for Start and End with a
number - this represents the start and end frames of the animation, which you can
type in manually as well.

- Loop Time lets us loop the animation. While it does look like it is looping in the
preview, it actually does not do this when using the animation in practice.

- Loop Pose tries to match the pose of the first frame in the animation, towards the

end of the animation. This is amazing for walk or run cycles where you need the
looping to be seamless.

Join us at https.//discord.qgg/rokoko 36

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

- Cycle Offset lets us determine what frame the animation starts at, but doesn’t omit
the frames before it (so it's no good for cutting away a T-pose at frame zero, for
example, but great if you need to start a loop at a specific pose).

Root Transform Rotation:

Before | explain the root transform rotation, we need to understand what the root transform
is. The simple answer is this: The ‘root’ is the one part of the skeleton that has a global
coordinate set and rotation - aka coordinates relative to the world. For human skeletons, this
is commonly the hip bone or similar, meaning that moving this bone will move the rest of the
character as well.

All other bones have their coordinates and rotations set relative to the root bone, rather than
world space, so that moving a character around by the root, will not mess up the animation.
If you want a deeper explanation, | recommend checking out Unity’s official documentation.

With that out of the way, here are the options for root transform rotation and their
explanations:

- Bake into Pose means that the root rotation is constant, disallowing the animation
clip from modifying the rotation. You can of course still have rotations in your
animation, but they will not rotate the actual character object.

- Based Upon lets you choose how the rotation is then determined:

- Body Orientation uses the forward vector of the body as the direction.

- Original will use the direction that was originally set in the animation clip,
which can be useful if there is a scene setup where the direction has already
been planned and implemented into the animation.

- Offset is for adding an offset to the direction that the character is moving. This is
particularly relevant when using the body orientation option for direction, but the
animation clip is the character strafing sideways rather than running forwards, for
example.

Root Transform Position (Y):
This setting lets us modify the elevation of the clip, in relation to the root transform. It applies
an offset to the Y-axis, with a few presets that lets us modify how those are calculated:

- Bake into Pose is the same as with the rotation - we toggle whether we allow the
animation clip to make any changes to the Y-coordinate of the root transform. You
want this to be off for most of the time, except for animation clips that are supposed
to lift the character, like when performing a jump.

- Based Upon lets us make changes to the offset, based on three different
parameters:

- Original uses the same height offset as the original clip.

- Center of Mass uses the middle of the character, calculated from what |
believe are the edge vertices, as this can shift throughout the clip.

- Feet uses the contact point for the feet on the ground, to determine the
height. This is useful for something like a run animation, but only if you are
not baking the height into the pose.

Join us at https://discord.qqg/rokoko 37

https://docs.unity3d.com/Manual/RootMotion.html
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Root Transform Position (XZ):

Similar to the previous feature, this one works on the horizontal plane. It can be useful for
preventing issues like positional drifting over time, if a character is performing a repeated idle
animation that doesn’t return to the exact same position. | won't really go into details as it is
mostly a repeat of the same feature as above.

4.1.2 Making modifications

Now that we know the basic tools that we have available, let's get around to using them on
our animation clips to get the best results.

The first thing that you’ll notice when messing around with loops, is that there’s a T-pose in
frame O (the first frame of the animation). So if we turn on the options ‘loop time’ and ‘loop

pose’, the animation will actually try to match the T-pose towards the end, which results in

this contortionist masterpiece:

0:14 (012.7%) Frame 14

(PLAY GIF)

If we start messing around with the Length Slider for the animation, notice how the view
changes below:

Join us at https.//discord.qgg/rokoko 38

https://drive.google.com/file/d/1eWDhAzPAI3ypTPhSf_8_ky1EiPpl1ZYa/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Root Transf

Bake Into Pose

Root Transform Positio

Bake Into

Mirror

Additive Reference Pos

These coloured curves show how well each frame of the animation would line up with the
end frame, for looping with any of the given settings. Red is a bad match, yellow is okay and
green is good. The compatibility is measured by how close the two poses match, based on
the transforms of the character. Let’s take a few steps and see how the resulting animation
changes:
- Turn on ‘Loop Time’ and ‘Loop Pose’
- Under Root Transform Rotation, toggle on ‘Bake Into Pose’ (stops the character from
spinning)
- Right under the Length slider, set the value of ‘Start’ to 1. This skips frame 0, which is
where the T-pose is.
The result is now this:

Join us at https.//discord.qgg/rokoko 39

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

0:38 (033.2%) Frame 39

(PLAY GIF)

Still terrible, but slightly less so! The reason for this is as the curves in the previous picture
suggests - the start and ending frames for this animation are not lining up well with each
other, which is why the curves are red. Optimally, we can shorten the animation by moving
the slider up to where the best quality match is on the curve, to reduce this problem:

Join us at https.//discord.qgg/rokoko

40

https://drive.google.com/file/d/1bKEpQe1LM4P9TykLgEVs6GJP0ICeg4r9/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Root Transform Rotation

Bake Into Pose

Root Transform Position (Y)

CELCARG

Root Transform Position (XZ)
Bake Into Pose

Additive Reference Pose

What’s great about this is if we look at the other curves, most of it matches well within the
green even. All except for the horizontal (XZ) root transform position option, so we won’t be
baking that into pose for this animation. Additionally, as the length slider indicates, the
animation is significantly shorter. Here is the result (just ignore the little loop hiccup,
capturing perfect gifs is very “gifficult”):

0:51 (075.1%) Frame 99

(PLAY GIF)

Join us at https.//discord.qgg/rokoko 41

https://drive.google.com/file/d/1fcNiSwOJdZdZOn2WnwjjoRTbRHA316Kr/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

If you are in the camp that went with the ‘duplicate animation from FBX’ solution,
you’ll have to duplicate it again after making changes like this. Simply duplicate the
animation from the FBX-file again, then replace the file we duplicated earlier with this new
version. Rinse and repeat for all of the animation clips, until all of them look good and loop
without imploding into humanoid spaghettis.

Protip: Try to keep looping animations such as walking and running, fairly short. This makes
it much easier to implement logic on top of them later, such as dynamically correcting foot
placement with Inverse Kinematics - which is something we’'ll be doing later as well.

4.1.3 Modifying animation rest poses:

Sometimes the animation clips themselves have alignment issues, even when we’ve gone
through all the steps above. This doesn’t happen with the samples we’ve been using so far,
but just to illustrate the process in case it happens to you, I've grabbed a walking animation
from Mixamo where this is a problem. As before, make sure your animation is retargeted to
the Humanoid Avatar system for this:

O Inspector Collaborate

Gr

Walking Import Settings

Model Rig Animation Materials

Animation Type Humanoid

Avatar Definition None odel v
Legacy Conf

Generic onfigure...

Skin Weights Z Humanoid v
Optimize Game Obje:

Revert Apply

Next, go to the Animation tab and check the preview. If it looks off like in the gif below, it is
due to the retargeting sometimes being a bit quirky, as the resulting rest pose can be
something that isn’t actually in a T-pose:

Join us at https.//discord.qgg/rokoko 42

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

IK walktest
||

0:24 (080.6%) Frame 24

(PLAY GIF)
Got some swing in the step!

To fix this problem, we’ll have to modify the rest pose of the avatar that was generated for
this animation. Go back to the Rig tab and click the Configure button to open the avatar
settings for this animation. Here is a side-view of the skeleton, which illustrates the problem:

Whoopsies

To get this view, make sure you are looking along the X-axis in the isometric perspective:

Join us at https.//discord.qgg/rokoko 43

https://drive.google.com/file/d/1OZmgOQ3sg-bwkagrhXG-VmNrvTBSA9Rz/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

1. Click the white box in the middle to go to an isometric view.
2. Click on either of the X-axis arrows to the left or right on the box, to rotate to the left
or right side-view.

Next you can - from the topmost bone of the leg and downwards - make rotation adjustments
until both of the legs are in the same pose. You should of course rotate the leg that is
causing the issues for this case and not the other way around. It doesn’t have to be pixel
perfect to look good, just get it to align up somewhat, like this:

Now if we look at the animation clip again, the foot looks much more normail:

Join us at https.//discord.qgg/rokoko 44

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

0:18 (059.7%) Erame 18

(PLAY GIF)

You can make further adjustments if needed, if you want things to line up differently
(avoiding toes from clipping into the ground, for example), but this is good enough for most
cases. This can be a slightly finicky process as it depends on the individual animation, but
minor alignment issues are often fixable with inverse kinematics. | recommend that you
pause the animation and look at it at a slower playback speed (or use the scrubber at the top
to scroll through the frames), to get a better idea of how the misalignment issues are
affecting the movement and what you might want to move to fix it. It could even be
something like the legs being rotated differently when viewed from the front, for this
particular case, so keep the different perspectives in mind when troubleshooting this
process.

4.1.4 (BONUS) Making multiple clips from one FBX-file:

While we skimmed over the import settings in the Animation tab earlier, one of those settings
might be pretty interesting if you have complicated and longer clips, but want to extract
multiple, smaller animations from it. Instead of importing the same FBX multiple times, it is
possible to just create multiple clips - even without duplicating the clips out of it. If we look
right above the point where we changed the name of the clip earlier, we’ll see this:

If you click the +-symbol, a new clip will appear in the list. If you click it, you can define its
own properties (such as different start- and end-frames) and give it a different name. And
that’s all there is to it!

Join us at https.//discord.qgg/rokoko 45

https://drive.google.com/file/d/1nXb992egQzlE1K828cdTCHUE9opWTvnV/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

4.2 The Animator Component (and Animation Controller)

With the animations ready, we finally get to the implementation and logic that dictates when
and how they are being played! This is done by adding an Animator component to the
character, which in turn uses an Animation Controller, which is where we dictate what
animations should play and set up transitions and logic to make sure they are contextually
appropriate.

4.2.1 The Animator Component

Let’s begin by adding the Animator component to the character we wish to animate. This is
done by selecting the character - preferably the prefab version in the Project view (so that
the changes apply to all instances of the character, not just the one in the scene). Please
note that this is added to the topmost object of the hierarchy in the Mime object - the one
that contains all of the other objects defining the Mime character:

Join us at https.//discord.qgg/rokoko 46

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

© Inspector

/, -
H" v Mime

Tag Untagged v Layer Default
Model Open Select Overrides

A Transform

Position X 1.93
Rotation X0

Scale X1

Add Component

Search
() Animation
>+ Animator
n TMP_Sprite Animator k‘

New s

The animator component has a few different properties to go through once added:

™ v Animator
Controller None (Runtime Animator Controller)

Avatar None (Avatar)

Normal

Always Animate

Going through the properties from the top, we’ve got:
- The Animator Controller which I'll go into detail with in a moment
- The Avatar being used - which will show the avatars that we made previously when
retargeting to Humanoid. Just pick the Mime one that you made (or whatever your

character name is).

Join us at https.//discord.qgg/rokoko 47

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

- Apply Root Motion dictates whether or not the animation is allowed to displace the
character in general. Setting it to off can be great for providing movement control via
a script instead, but setting it on allows the animations to drive the motion instead - in
which case the player controls the character by controlling what animations are
played, essentially. Choosing one thing over the other depends on how your different
systems are supposed to work. For tight controls, favoring animation driven
movement systems can be difficult to justify, unless the animations and the feedback
from the controls are precise and responsive enough to make up for it.

- Update Mode is used to determine when the animation should update, as well as
what timescale should be used. Note that ‘timescale’ mentioned here means 1 =
100% speed, 0.5 = 50% speed, 0 = 0% speed.

Normal runs in sync in the Update call each frame - the speed of the
Animator matches that of the current value of timescale. Use this if you don’t
need the character to interact with physics (eg. pushing boxes).

Animate Physics runs in sync with the FixedUpdate, which is used for
physics simulations, making sure that the physical interactions are taking the
movement into consideration and vice versa when applicable. The speed of
the animation still scales with timescale. Use this whenever you want to
interact with physics in your animation.

Unscaled time does not care about timescale, it will always update at full
speed. This is useful for stuff like Ul elements, as you don’t want your button
animations to go in slow motion when the game does, for example.

- Culling mode is used to determine when the animation no longer plays; how it
should stop and how it should resume.

Always Animate means the animation never stops, even when the character
is not in camera. This provides good continuity but costs whatever processing
power the animation clip requires to continue playing and updating the
transforms of the character.

Cull Update Transforms stops any active retargeting, inverse kinematics
and updating of transforms from happening, while the character is outside of
the camera. The animation clip will continue ‘rolling’ in the background
however, meaning once the character reenters view it will play as though it
had kept playing.

Cull Completely simply means that everything stops while outside of view,
meaning the animation will resume from the frame it had reached, when it
reenters view. Eg. if a character jumps and you look away while it is in mid-air,
it will remain in mid-air until it is being observed by the camera again.

4.2.2 The Animation Controller

Before we can choose what Animation Controller we want to use in the Animator
component, we will have to create one first. If the Animation Controller that you make is only
meant to be used for one character, | prefer naming it something like ‘<character name>
Controller , but otherwise | would be more generic with the naming - say if you want the
same animations to apply to an assortment of characters, I'd rather write ‘<character role>
Controller . It should always be possible to deduce what the Animation Controller is being
used for in your systems, by just looking at the name. So for this case I'd either make a

Join us at https://discord.qqg/rokoko 48

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

generic ‘HumanoidController for animating both characters, or a specific ‘MimeController
and ‘VikingController for implementing different logic in each of them. Either solution works
for this tutorial as we will only be setting up one controller anyway, but it is important to be
aware of when these distinctions should be made in your projects. | just went with the
Humanoid solution this time:

I Project

+~

* Favorites Assets > Animations > Controllers
Q, All Materials

O, All Models

Q, All Prefabs

(@ Assets
[@@ Animations

im Clips
im Controllers HumanoidControl...
e FBX

m ExampleAssets

e Materials

= Models

e Prefabs

m Presets

m Scenes

m Scripts

I Settings

Il Textures

m Tutoriallnfo

e Packages

If we double-click on this Animation Controller, we’'ll be greeted with the Animator window,
which should look something like this (though probably less compressed, I've zoomed in to
make it readable):

Scene a® Game ASS to > Animator

s Parameters ® Base Layer

-

Base Layer o

Any State

For now, let’s just acknowledge that there are two tabs in the upper left corner, one for
Layers and one for Parameters, as well as a view on the right side showing the currently
selected layer. The available layers can be seen on the left side, provided that the Layers tab
has been selected.

Join us at https.//discord.qgg/rokoko 49

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

4.2.2.1 Layers (basics):

For now, let’s just acknowledge that layers are a way for us to have several animations
running simultaneously, with some logic to which one takes precedence over the other -
great for characters having to do multiple animations at once (like running and shooting at
the same time). But we’'ll start with just one layer, then get into more complicated interactions
later.

4.2.2.2 Parameters:

Parameters are variables that we can easily modify from elsewhere. If we click on the
Parameters tab, we’ll be greeted with an empty list. Click on the little +-icon with the arrow
next to it, to see what options are available for variable types to be made:

Scene a®w Game @ Asset Store > Animator

Layers Parameters & Base Layer
Qr + v
Listis Empty Float

Int
Bool

Trigger

If you have a bit of familiarity with programming, you’ll know what the first three options are
(if not, | recommend you go check out the crash course | linked at the beginning of the
article). Selecting either of these will create them in the list, allowing us to name them, like
this:

Scene @ Game Asset Store > Anim

Layers Parameters

Q-
Test Float

-
Festint

Test Bool

The last type called Trigger is a lot like a bool in that it can either be true or false. However,
it automatically reverts back to false after reading true once, which makes it useful for
creating transitions between your animations, without having to think about resetting the
logic that you used to trigger the transition.

4.2.2.3 Layer Editor:

The Layer editor is the view on the right side of the Animator window, where the three
coloured blocks saying ‘Any State’, ‘Entry’ and ‘Exit’ can be found. These blocks represent
states that the controller (and by extension, the character it controls) can be in. By creating
new states, each of which dictates what animations are played when those states are active,
we build the logic for our animation system.

Join us at https.//discord.qgg/rokoko 50

https://www.youtube.com/watch?v=pwZpJzpE2lQ&ab_channel=Imphenzia
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Creating a new state is easily done by either right-clicking in the layer editor and selecting
Create State -> Empty or as | recommend that you do for this tutorial, simply drag your FBX
file into the layer editor like this:

@ Game W / ore > Animator

Parameters ® Base Layer

+~

Any State

isRunning

Note that if you have multiple animation clips in your FBX files, this will result in an individual
state being created for each clip.

Or alternatively if you duplicated the animation clips, you can just drag those in directly as
well:

Join us at https.//discord.qgg/rokoko 51

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Layers Parameters & Base Layer

+ -

Any State

Assets > Animations

Notice how there’s an orange arrow from the Entry state to the Idle state? This is due to
the Idle clip being the first one that | dropped in there, but what this shows is that the
Animation Controller always starts at the Entry state, then moves on from there. That
means when this animation controller is activated (eg. loaded into a scene), the Idle
animation will be the one that plays.

If the Idle state is not the one that your Entry state is pointing to, just right-click the Idle state
block and select Set As Layer Default State.

Before we move on to how we can construct and play around with these logic systems, go

back into the scene, select your character and add the newly created Animation Controller to
its Animator component like this:

Join us at https.//discord.qgg/rokoko 52

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

© Inspector

X B~ Gizmos ¥ «

N~ A/ =
." v Warrior

ag Untagged v Layer Default
Open Select Overrides
Transform
Position X -0.781
Rotation X0
Scale
M v Animator

Controller

Normal

Always Animate

Add Component

With this set up, pressing the play button will show the idle animation playing, looking
something like this:

(PLAY GIF)

With the basics out of the way, let’'s move on to constructing the logic for animation
transitions and the different ways we can do this.

4.3 Building the state machine:

While this chapter continues to explain how the Layer Editor in the Animation Controller
works, setting up the logic that dictates how the character should be animated, branches out
into a few other systems (most notably the one we’ll write ourselves in code).

Join us at https.//discord.qgg/rokoko 53

https://drive.google.com/file/d/1-5IEJyqBLmKq_m49g9FKuwo_-T1nSdo7/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

But before we do any of that, | recommend that you familiarize yourself a bit with the way
these logic systems are designed at the conceptual level, as shown here in Unity’s
documentation: https://docs.unity3d.com/Manual/StateMachineBasics.html

4.3.1 State transition setup:

The idea is to start simple, on paper even, trying to outline what your character is supposed
to be doing and how they might logically go from one state to another. As illustrated in the
article I've linked, it boils down to preventing actions from occurring, in contexts where we do
not expect them to. To illustrate the concept, here’s a simple overview of what | will be

building for this tutorial:
[Idle }

=
=

The idea is that the character will never be able to transition directly from Idle to Run or vice
versa, without blending through the Walk animation first. This gives a more natural transition
between the states. We can still speed up the transitions to make it almost instantaneous,
which is necessary for very responsive controls, but figuring out what makes the most sense
for your characters and animations is an iterative process: It all boils down to testing and
making modifications until it looks and feels right.

To add new transitions (arrows) to your animations, right-click the animation state and select
Make Transition. This will show an arrow from the animation state to your mouse, which
you can snhap to the state you want to make the transition to, like this:

Join us at https://discord.qqg/rokoko 54

https://docs.unity3d.com/Manual/StateMachineBasics.html
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

The arrow will snap to the other animation state like this:

Keep repeating this process of adding transitions until it matches the initial drawing:

With the transitions set up, we need to think about what we might use to indicate when the
transitions occur. Thankfully, for this setup it is quite easy - just make two Bools to indicate if
the character is walking and if the character is running. We’ll make one called isWalking and

Join us at https.//discord.qgg/rokoko 55

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

one called isRunning. Go back to the Animation Controller in the Parameters tab and add
them:
Scene @ Game @ Asset Store > Animator
Layers Parameters & Base Layer
+ -
isWalking Float

isRunning Int

Bool h

Trigger Any State

Here is an illustration to showcase why these two checks make sense:

isWalking

fal isRunning
- e = false
D — I
R —
isWalking isRunning
= true

= true

Remember that a bool is either true or false - either the character is walking or not - either
the character is running or not. That means we don’t need a third bool to indicate if the
character is standing still, because we can assume that if they are neither walking or running
- (both of the bools are false) then they must be standing still.

We'll be exploring this logic a bit more when we write some simple code later (for example -
if the run button is held but no direction is given, then the character should still be standing
still). For now, it is enough to determine what indicators are required to move the animation
state around, then the time they are triggered from the player input, is determined by the
programmer (or you, doing the programming, which also makes you a programmer!).

The next step is making use of these bools in the transitions between animation clips. The
transitions can be accessed by clicking on them (the white arrows between the states)
directly. The view for a transition with default settings will look something like this (minus the
red text):

Join us at https.//discord.qgg/rokoko 56

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

3 i @ Inspector

AutoLive Link g—m |dle -> Walk

=& 1 AnimatorTransitionBase

Transitions

Idle -> Walk

e
ta
Idle -> Walk
Has Exit Time

Settings

()

Conditions

List is Empty

I've added numbers to explain each part that you are seeing here. We won’t be using all of it,
but you should have an overview of the tools available:

1. Transitions indicate if it should be possible to transfer from one state to multiple
other states. We won’t be using this for now, but if set to solo, only that state should
be an option, or if mute this state is not an option and the transition to it won’t
happen. This is useful if some states are only available/unavailable during specific
points in the character logic (so your character doesn’t play dead by accident or
randomly climbs an invisible tree where there is none). Here is the official
documentation for it.

2. This field lets us name the transition, making it easier to identify in other contexts. |
recommend calling it something like ‘Idle to Walk.’

3. Has Exit Time is a setting used for timed transitions. You should toggle this off for
now, as it is a timer for animations which transition to the next state after the timer
ends. There is an expandable assortment of settings that you can view here, related
to the exit time functionality, but I'll refer to the official documentation for a deeper
explanation of these.

4. This is the timeline that shows how the animations are blended together. The blue
Idle and Walk bars indicate the animations and their lengths. The two blue arrows
pointing at each other indicate the beginning and end of the transition - if these are
close then the transition is short and vice versa if the distance is long.

5. Conditions are where we can use our bools to trigger transitions, instead of relying
on time.

For this setup, we will mostly be using the timeline and conditions sections. Let’s start by
setting up the conditions. Clicking on the transition from the /dle to the Walk state, then
clicking on the little ‘+’ icon in that section, we’ll add a condition to the transition.

Join us at https.//discord.qgg/rokoko 57

https://docs.unity3d.com/Manual/AnimationSoloMute.html
https://docs.unity3d.com/Manual/AnimationSoloMute.html
https://docs.unity3d.com/Manual/class-Transition.html
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Conditions

isWalking

a

isWalking

v isWalking
isRunning

Once we've set up all four transitions as illustrated with the pictures of the Viking character
above, we need to move on to our first basic code, to control what animations should be
played.

4.3.2 Writing the basic logic:

As a heads up, this chapter is written with the assumption that you have a bit of familiarity
with Unity and C# already. | will only be explaining the parts which relate to the animation
controller, so | recommend checking out the introductory Unity video at the start of this
document, if you are completely new to either Unity or C#. You can also use it as-is without
knowing exactly what the code does, but it’s nice to grasp the basics of it.

| am going to start by just pasting the functional code and then go through it:

using UnityEngine;

public class AnimationStateController : MonoBehaviour

{

Animator animator;
int isWalkingHash, isRunningHash;

void Start()
{

animator = GetComponent<Animator>();

isWalkingHash = Animator.StringToHash("isWalking");
isRunningHash = Animator.StringToHash("isRunning");

Join us at https.//discord.qgg/rokoko 58

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

void Update()
{

bool isRunning = animator.GetBool(isRunningHash);
bool isWalking = animator.GetBool(isWalkingHash);
bool forwardPressed = Input.GetKey("w");

bool runPressed = Input.GetKey("left shift");

if(!isWalking && forwardPressed)
{

animator.SetBool("isWalking", true);

if(isWalking && !forwardPressed)
{

animator.SetBool("isWalking", false);

if(!isRunning && (forwardPressed && runPressed))

{

animator.SetBool("isRunning", true);

if(isRunning && (!forwardPressed || !runPressed))

{

animator.SetBool("isRunning", false);

Declarations:

I've declared an Animator which is the script component that sits on the character object.
Through this, we can access the booleans that we made in the Animation Controller, as the
Animator is using this as a parameter.

I've also declared two Ints, which we'll just use to store some data. I'll explain these in the
Start function where we use them.

Start function:

| begin by fetching a reference to the Animator component so that we can use it.

Join us at https.//discord.qgg/rokoko 59

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Next, | initialise the two weird integers that we saw above. This means turning the names
into numbers, which can be used to identify the booleans that we made, without having to
enter the name as a string. Why? It just runs faster, which is great because we’ll be using
them up constantly.

Update function:

Here we simply get the status of the booleans, as well as check if the user is pressing the
‘W’ key or ‘Left Shift’ which are commonly used in games for walking forward and running.
The rest is just a few if-statements to determine the results:

- Ifwe aren’'t walking and W is pressed, isWalking becomes true.

- If we are walking and W is let go, isWalking becomes false.

- If we aren’t running, but W and Left Shift are held down, isRunning becomes true.

- If we are running and either W or Left Shift are let go, isRunning becomes false.

The idea is simply that we can’t run if we aren’t already walking, so if we stop pressing
forward while holding the run button down, the character should still stop running. You
should of course write your own logic states for whatever makes sense for your game, this is
simply to illustrate how you can access and change the values of your Animation Controller
variables, from a script.

4 4 Blend trees:

With all of these different states and variables, it is easy to lose track of where we are in the
state machine and where we can go. For simple characters and interactions, the above
method is quick and easy to read, but for more complex systems - such as characters that
are able to move in eight directions at different speeds, you can imagine how the state
machines quickly turn into something you normally would be served at an ltalian restaurant
with meatballs and tomato sauce:

GunRemoveCheckAir -
s — <l

GunRemoveCheck ee/ A»

.
\
\Fm_ V 3

-

BlockRemoveCheck

N

Picture from Unreal Engine when searching for “State machine spaghetti”

Join us at https.//discord.qgg/rokoko 60

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Thankfully, there are more than one way to perform these transitions - most notably the
Blend Tree system (which you can read the official documentation on here, if curious).

To begin working with Blend Trees, we have to create it directly in our Animator Controller
window, by right-clicking in an empty space and selecting Create State -> From New Blend
Tree:

Create State Empty

Create Sub-State Machine From Selected Clip
Paste From New Blend Tree

Copy current StateMachine

When the new State has been created, we can access the Blend Tree by double-clicking on
the State itself, which brings us to a look like this:

@ Game > Animator
Parameters ® Base Layer Blend Tree

0

Blend Tree
Blend @

Notice in the upper right corner where the tab for this window is, that it now says Base Layer
> Blend Tree. This shows us where we currently are within the hierarchy, as well as allows
us to navigate back up through the previous layers, just as we would do with folders.

If we click the Blend Tree in the middle, we’ll be able to view its properties in the Inspector
window, looking like this by default (plus the animation preview that | have cropped out, as
we already know this from earlier):

Join us at https.//discord.qgg/rokoko 61

https://docs.unity3d.com/Manual/class-BlendTree.html
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

© Inspector

- : Blend Tree

. Blend Type 1D

Parameter Blend
Motion

Listis Empty

The only things that we should consider ourselves with right now, is the Blend Type and the
Motion list. To elaborate on what the blend type is first, let’s take a look at the options that
are available to it:

© Inspector

3 Blend Tree
» b|r_:l|1_3 V { 1D
1D
2D Simple Directional

Paramete

Listis 2D Freeform Directional
- 2D Freeform Cartesian

Direct

- 1D: Meaning 1-directional, is just using a single value to blend between animations.
For example: This is useful an object that animates differently at different speeds, but
with no consideration for direction, only how fast it is going.

- 2D (all options): There are multiple options in 2D, but I'll summarize them for
movement on a plane - forwards/backwards/left/right, represented by two axes
(usually X and Z, or X and Y, depending on the direction of the plane). If you want
explanations for all of these, | recommend checking out the official documentation,
but we will be using 2D Freeform Directional for this, as it works well with both
joystick and keyboard input. You may want any of the others if your inputs need to be
interpreted in ways that work well with those options.

- Direct: As the name suggests, this allows for direct control over the blending values,
which you can access and modify manually. Unity suggests using this for things like
blendshapes (distorting meshes, most commonly faces but really any part of a mesh)
and random idle animation blending.

As mentioned, start by selecting 2D Freeform Directional, then add two float variables to

the animation controller, which will represent the movement of the joystick on the X- and
Y-axis, as shown here:

Join us at https.//discord.qgg/rokoko 62

https://docs.unity3d.com/Manual/BlendTree-2DBlending.html
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

I'll explain more in detail when we make use of it - for now just acknowledge that the Y-axis
is forwards/backwards and the X-axis is left/right.

I'll just name the two float parameters velX and velY to represent the velocity of the
character in either direction:

Scene | Game Asset Store > Animator
Layers Parameters ® Base Layer Movement
+-

Blend

Blend Tree

Ignore the ‘Blend’ variable for now. This is just a default float that Unity generates, we will not
be using it, but we can’t delete it until we’'ve made sure that nothing in the Blend Tree is
using it. To to this, click on the Blend Tree node to view it in the inspector, then change the
parameters to use velX and velY instead, like this:

O Inspector

«<» Blend Tree

" Blend Type 2D Freeform Directional
Parameters

Motion

Listis Empty

Now we can delete the Blend variable by right clicking on it and selecting Delete, as we no
longer use it.

Join us at https.//discord.qgg/rokoko 63

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Next we’ll want to populate our Motion list with different types of animations. It is common for
characters to be able to run in eight different directions with a setup like this, so keep clicking
the little +-icon and select “Add motion field” until you have nine motion fields (the ninth one
is for the character standing still):

© Inspector

® Blend Type 2D Freeform Directional

Blend Tree

Parameters
Motion

Listis Empty

Add Motion Field
New Blend Tree

After you've added at least two, there’s a new part of the Ul that shows up, but keep adding
new ones until you end up with a screen that looks like this:

Join us at https.//discord.qgg/rokoko 64

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

© Inspector

» B 4
> Blend Tree

® Blend Type 2D Freeform Directional

Parameters

Motion
None (Motion)
None (Motion)
None (Motion)
None (Motion)
None (Motion)
None (Motion)
None (Motion)
None (Motion)

None (Motion)

Compute Po

Before we get into what’s going on here, we’re going to need animation clips for all eight
directions. The easiest place to find this for learning purposes, is to go to Mixamo and
download this bundle of animations:

49

Rifle 8-Way

Just search for ‘8-way’

With these settings (the default settings):

Join us at https.//discord.qgg/rokoko 65

https://www.mixamo.com/
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

DOWNLOAD SETTINGS
Format Pose
FBX Binary(.fbx) v T-pose v
Frames per Second Keyframe Reduction
v none v
CANCEL

The animations | recommend using here are (you can use either the walk or run variants):
Walk right

Walk left

Walk forward

Walk forward right

Walk forward left

Walk backward

Walk backward right

Walk backward left

N ORWN =

You can use any kind of idle motion, but the easy solution is to just grab the one called “idle”
from the same bundle as well. Import each of these into the solution and make sure that you
have retargeted them properly and that they loop. Here’s how I've set up the clips:

Join us at https.//discord.qgg/rokoko 66

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

© Inspector

B Rlend T
I Blend Tree

* Blend Type 2D Freeform Directional

Parameters

Select

Select

They don’t have to be in this exact order, but that is just how I've set them up for now. To
elaborate on what’s happening in that box above the list of clips though, let’s bring back the
illustration of the thumbstick from before as an overlay, to understand what’s going on:

Join us at https.//discord.qgg/rokoko 67

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

The blue box with the dots is just a 2-dimensional coordinate system with an X- and a Y-axis,
both spanning from 1 to -1. Each of the blue dots represent one of the animation clips. The
red dot indicates what is currently considered ‘active’, so by moving this dot around we’ll
blend between the animations, as it moves closer or further away from the blue dots. By
overlaying the thumbstick from earlier, it is easy to see how the position of the red dot can be
fetched from where the thumbstick is moving.

By clicking on either each of the blue dots in the visual overview, or on the animation in the

list, you’ll get a better idea of how this type of blending works, as the blue haze that you see
in that window, will move around to show you what region the red dot would have to occupy
to play that animation, with the strength of the blue color showing what degree the blending
would be applied in:

(BLAY GIF)

What's useful about this visual representation of blending, becomes evident as we begin to
position the dots corresponding to the animation clips. So ‘idle’ is right in the middle,
‘forward’ is above, ‘backward’ is below etc. For reference, this is a good way to set it up, but
you can adjust the numbers or move the dots by dragging them with the mouse, if you want
to change how each animation is blended in when moving:

Join us at https.//discord.qgg/rokoko 68

https://drive.google.com/file/d/1GmAphMLYQVWx7tqDQbCrPbnsq3pfW3gz/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

A backward left

A backward right

Notice how the shape of the blue haze has changed in response to the distribution of the
dots:

(PLAY GIF)

Join us at https.//discord.qgg/rokoko

69

https://drive.google.com/file/d/1W3CMgj4AK8C77qAVdvnYAvBipexja4a4/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

4.4 .1 Driving blend trees:

Now that there’s a blend tree with animations for multiple directions set up, we have to start

moving the red dot around and actually play and blend between the animations. As

mentioned earlier, we can easily do this by taking input from a thumbstick or a keyboard, but

it requires a little bit of programming to access and combine these two things together.

Let’s start by making a script called “AnimationDriver”. | recommend that you normally
choose something that is more appropriate for the context you are deploying it in (such as
“PlayerMovement”), but | picked this one because it fits with the educational context that |
am using it in. Just don’t name anything in your native language, like how Ton
Roosendall wrote his code in Dutch when he started making Blender.

<

‘Laughs in open-Sourca’

Since we’re going to be controlling the Animator component of the character, it’s fitting that
we put this script on the object that has this component:

Join us at https.//discord.qqg/rokoko

70

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

© Inspector Collaborate

@ v Warrior

E Tag Untagged

- Transform

Position

Scale

> v Animator
Controller % BlendTreeController
Avatar & WarriorAvatar
v
Updat Normal
Culling Always Animate

v Motion Driver (Script)

I'll paste the script here and explain each part, as it is very simple. Be aware that more
tweaking and additional logic is required to make it look and feel good, this tutorial just
focuses on basic implementation logic.

using UnityEngine;

public class MotionDriver : MonoBehaviour

{

Animator animator;

void Start()
{

animator = GetComponent<Animator>();

void Update()
{

animator.SetFloat("velX",Input.GetAxis("Horizontal"),
Time.deltaTime);

animator.SetFloat("velY",Input.GetAxis("Vertical"),
Time.deltaTime);

}

Join us at https.//discord.qgg/rokoko 71

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

After we’ve initialized the animator variable, the Update function is where the logic happens.
Here the animator variable has the .SetFloat member function. This is used to control the
blend tree parameters that we declared earlier - velX and velY. Here’s how this logic works:

animator.SetFloat("velY",Input.GetAxis("Vertical™), 0.1f, Time.deltaTime);

Name - Must be identical to the names we’ve used in the Animator:

Layers Parameters ®

Value - Since we’re using the velX and velY parameters to move the red dot around on the
blend tree, we're just getting the location of the thumbstick (or equivalent from keyboard) to
determine the coordinates. Unity has predefined definitions for “Vertical” and “Horizontal”
when using Input.GetAxis, but | recommend playing around with Unity’s Input system if you
want to do stuff like letting players rebind keys.

Damper - This determines how long it takes to blend between animations.
Damper delta time - This parameter simply considers how much time has passed in the
system and acts as a multiplier for the Damper value. So if any lag occurs, it will not affect

the speed at which the animations are blended.

If we now run the game and try moving the character with either WASD, the arrow keys or a
controller, you'll get something like this:

Join us at https.//discord.qgg/rokoko 72

https://docs.unity3d.com/ScriptReference/Animator.SetFloat.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/manual/QuickStartGuide.html
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

(PLAY GIF)

If your character doesn’t move, select your character and make sure that Apply Root

Motion is set to true on the Animator component:

© Inspector Collaborate

Ea v Warrior

ag Untagged v Layer Default

- Transform
Position
Rotation

Scale

> v Animator
Controller % BlendTreeCont
Avatar -WarriorAvatar
Apply Root Motion v

Update Mode Normal

Culling Mode Always Animate

@

ﬂ v Motion Driver (Script)

Join us at https.//discord.qgg/rokoko

https://drive.google.com/file/d/1NbXUz4TQRlR0TJrHmJAK397B6HIjyNco/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

4.4.2 (BONUS) Root transform corrections:

As you may have noticed from the gif above, the directions are kind of weird. Odds are if
you’re doing mocap, the resulting animations don’t have pixel perfect directional movements,
which you'll have to make adjustments to. And since we’ve already touched down on root
transform corrections when we were importing our fbx-files, we might as well round this
chapter off by making use of that.

If we look at the Animation preview in an fbx file, you’ll notice that there’s a blue and red
arrow (make sure “Display avatar’s pivot and mass center” is toggled on):

The blue arrow represents the root rotation, whereas the red arrow is an estimated guess by
the animation system, as to where your character is facing (not sure exactly how this is
calculated, maybe based on the head bone rotation). But if you are using the Mixamo walk
animations that | previously suggested, you’ll notice that the root “forward” is not actually the
direction that the character is moving when pressing forward, but rather in the direction that
they are aiming their invisible gun:

Join us at https.//discord.qgg/rokoko 74

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

forward

3

0:05 (019.7%) Frame 5

(PLAY GIF)

That means when | am pressing forward in the game with our current setup, the viking
character actually walks sideways. In order to fix this issue, go to the Root Transform
Rotation setting above the preview, then change the value. | recommend just hovering with
the mouse, the click and drag right/left to increase/decrease the value, until you find a good
rotation:

v

Body Orientation

Use the grid on the ground to determine the direction of the character’s motion. As you may
notice when doing this, the blue arrow will still be pointing forward, because the object itself
is not rotated by this approach - so a script referring to the forward direction would get
something pointing in that direction still. But the red arrow will change as the animation is
rotated. It can be a little finicky to get it to walk straight, but your character does not have to
walk in a perfect line, as long as it feels good. Mine ended up looking like this:

Join us at https.//discord.qgg/rokoko 75

https://drive.google.com/file/d/1k7-Yt3k22P5h1qrSaHyQWQTn4-EtkbN5/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

forward

0:04 (015.6%) Frame 4

(PLAY GIF)

If anything looks or feels off in terms of direction, | recommend that you preview your
animations like this and make adjustments. It works for both when baking rotations and not
baking, so regardless of whether you are driving your motion with scripts or animations, this
process is applicable.

4.5 Face Capture - Implementing blendshape animations:

When working with blendshape animations such as Face Capture clips from Rokoko Studio,
there’s a few things we have to consider, which may involve using Blender (or whichever
program you prefer) to change a name or two, so Unity is able to couple things together. Be
aware that this process only works for characters that share the same blendshapes

and blendshape names as those that are defined in Apple’s ARKit, as this is the basis
for our Face Capture app.

I am going to do an example case using a Newton face capture export, which | will be putting
onto the viking character. There are two things that we need to address with our character in
Unity before the blendshape animations will play:

1. Mesh name

2. Object hierarchy

To illustrate the problem in general, I'll begin by importing a face capture recording from
Rokoko Studio and take a look at the resulting fbx file:

Join us at https.//discord.qgg/rokoko 76

https://drive.google.com/file/d/1DWBsp6Yb9uP7x17JKE_P2x7Nh-DfLLsB/view?usp=sharing
https://developer.apple.com/documentation/arkit/arfaceanchor/blendshapelocation
https://developer.apple.com/documentation/arkit/arfaceanchor/blendshapelocation
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

In the Project view:

@

FaceTest RokokoFaceRoot clipFace

This view shows three things - the object (upside-down face), the mesh (untextured
wireframe face) and the animation clip.

In the scene view:

This is what the face capture fbx file looks like when you open it up in the scene view. | have
added the red text to illustrate where in the object hierarchy the mesh is actually sitting, as
this is very important. In order to get the clip to actually play on on this object, you will have
to put your Animator component here:

For a quick test that this works as intended, | recommend creating a new animation
controller and just having it play the face capture by default. 've made one called
FaceTestController and just dropped the FaceControllerTest fbx in to be the first thing that

plays:

Join us at https.//discord.qgg/rokoko 77

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Scene o®Game @ Asset Store > Animator & Package Manager
Layers Parameters ® Base Layer

-+~

Base Layer o

Any State

clipFace

Animations/Controllers/FaceCol
o i B Console
#15 Clear v Collapse

ssets » Animations » FBX » Face capture FBX

o

FaceTest RokokoFaceRoot clipFace

Go back to the FaceTest object in the scene and select this controller to be used for the
Animator that sits on the root of that object:

i | @Inspector Collaborate
v FaceTest
ag Untagged * Layer Default
Open Select Overrides
Transform
Position X 0
Rotation X0
Scale

¥ v Animator

Always Animate

M Project @ Animation

i

And you should get see it moving like this:

Join us at https.//discord.qgg/rokoko 78

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

(PLAY GIF)

Okay - so we talked about object hierarchy and mesh name and confirmed that the
animation clip works if we just slap it on the default Newton face. But we have yet to explore
why these things are important and how we can make use of that knowledge to make the
clips work on our own characters.

The key to understanding this lies in the animation clip itself.
So let’s open that up and look at what’s actually happening. Double click on the animation

clip in the fbx file and it'll show you a window with all of the keyframes like this (if it doesn’t
show anything, you can ask it to show read-only data on the left side of the window):

Join us at https.//discord.qgg/rokoko 79

https://drive.google.com/file/d/14YmjEp1NQaTy4esh5gP-jRr6FMc3IQvZ/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

© Animation
M4 |4 P> Pl MM

clipFace2 (Read-Only) M

Skinne
SKinne
sKint
Skinne
SKinr
Skinned lact
SKinne
sKinne
SKinne
sKinne
Skinne
SkKinne
Skinne
SKinr
Kinne
SKinne
Kinne
SKinne
sKinne
Skinne
SKinr
Skinned Me
SKinr
sKinne
SKinne
sKinne
SKinne
sKinne
Skinne
SKinr
Kinne
SKinne

Kinne

ANNANANNANANINNAANINNAANINNAANINNANINNANINNANN A

SKinne

What you see on the left side are each of the blendshapes that this clip is animating - an on
the right side is the timeline and keyframes for each of these blendshapes. Let’s take a
closer look at just one of the shapes:

Notice how there’s a little blue icon to the left? If you click that, you'll see something really
interesting - the hierarchy which this animation clip is using:

%, RokokoFaceRoot/face

skinned Mesh

What this means is that the animation clip, playing from the location of the Animator
component, is looking through the child objects for this hierarchy. This matches the
hierarchy that we see in the face capture fbx files when we look at them in the scene view
and it is the reason why we have to use the same names in our objects.

Join us at https.//discord.qgg/rokoko 80

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

In other words - if you have a character and you put an animator on it and expect it to be
working, you will have to match this ‘environment’ of naming and hierarchies in your object.

4.5.1 Renaming the mesh

Unfortunately, Unity does not have an easy way to do this in-engine (though plugins like
Skinn Pro could be used - I'd rather show you how to do it for free).

Fortunately, Blender is super easy to use for this exact purpose and it is free forever, so |
recommend that you go and grab it here:

- https://www.blender.org/

You can of course do this in whatever program you prefer, as long as it is able to unpack,
edit and export fbx files, but I'll do this walkthrough in Blender because | think it is an
awesome program.

Once you open up Blender and click past the splash screen, you'll be greeted with a scene
looking like this, with the (in)famous default cube in all its glory:

. Mo d P ro

Before we start importing anything to be edited, look at the upper left where you'll see
something resembling the Hierarchy view from Unity, listing a Camera, Cube and Light
object. All three of these should be deleted, because anything we export will contain every
element in the scene, and we don’t want to glue any lights or cameras to our characters, we
just want to rename the meshes:

Join us at https.//discord.qgg/rokoko 81

https://assetstore.unity.com/packages/tools/modeling/skinn-pro-86532
https://www.blender.org/
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

| — .
B Scene Collection

| -
v |l Collection

Object

M Copy
\, Paste

X Delete

— . e 1

Delete selected objects and collections.

' Dl A STL L

Select Hierarchy

Now with an empty scene, we can import the Viking character. The easiest way to do this is
to find the fbx asset in Unity -> Right click -> Show in Explorer, then copy the folder location:

v s | Models
Home Share View
T C:\Users\rokoko\Documents\Unity\Animation A to Z\Assets\Models v () £ Search Models
Name Date modified Type Size
s Quick access
ime. 9/16/2020 11:36 PM 3D Object 8,925 KB
i Desktop Mime.fbx /16/ jec ,
Mime.fbx.meta 9/10/2021 2:03 PM META File 35 KB
4 Downloads N X)
Warrior.fbx 9/24/2020 8:06 PM 3D Object 2,668 KB
+ Documents | Warrior.fbx.meta 9/2/2021 4:31 PM META File 3KB
= Pictures
2021-09

Go back to Blender and select File -> Import -> FBX from the upper left corner:

Join us at https.//discord.qgg/rokoko 82

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

) Blender

(o)

File. Edit Render Window Help Modeling Sculpting U

(? New 12 Gl
|

mm Open...
Open Recent

.reé'

e |

Recover

”~ ~
_I_a

Save

1

Save As...

A
i
e -n

Save Copy...

N

|
A

Link...
Append...

(

[

Data Previews

N

Import Collada (Default) (.dae)

s

12
a

Export Alembic (.abc)

N

Motion Capture (.bvh)
External Data B

Scalable Vector Graphics (.svg)
Clean Up

e

Stanford (.ply)
Defaults Stl (.stl)
FBX (.fbx)
gITF 2.0 (.glb/.gltf)
Wavefront (.obj) Load a FBX file.
X3D Extensible 3D (.x3d/.wrl)

Quit

This will show you Blender’s file browser, where you can paste the folder location and select
the fbx-file that you wish to modify. Here’s all the clicks you have to do:

Join us at https.//discord.qgg/rokoko 83

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

A9 Blender File View

¥ \blumes

5 Windows (C:)

S

Name

@ Warriorfbx

¥ System

ﬁ Home
Desktop
gj Documents

9 Mime.fbx

2/, Downloads
D Music

E Fictures
u Videos

F Fonts

[S

¥ Rvorites
r Add Bookmark

¥ Recent

B Models

@J Documents

\, Downloads

B MotionLibrary
mm MotionLibrary
B For ROKOKO

B Rifle 8Way Locomotion Pa.
S w

Viarriorfbx

A o

Click Import FBX

If everything went well, your imported character should look something like this:

Join us at https.//discord.qgg/rokoko

s\rokoko\Docum...on A to

Date Modified
24 Sep 2020 20:06

16 Sep 2020 23:36

Paste the folder location and press enter
Select the fbx file you wish to modify
Expand the Armature import options
Select Automatic Bone Orientation

v

Size Operator
2.6 MiB

8.7 MiB ¥ Include

¥ Tansform

Scale

Decal Offset

» Custom Normals
Subdivision Data

» Custom Properties

» Import Enums As Stri...

+ Image Search

1.00
0.00
Apply Tansform £

« Use Pre/Post Rotation

v Manual Orientation

» & Animation

¥ Armature

Import FBX

Ignore Leaf Bones
Force Connect Children

« Automatic Bone Orie...

Cancel

84

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

If we look at the scene collection in the upper right corner again we’'ll see that the character
is now showing as an expandable object. If you click the arrow to expand the view, keep an
eye out for an orange triangle-symbol, which is where the mesh is located. On the Viking
character, it is located here:

= J@ o

E Scene Collection
\ = Collection
v Reference
Pose

> Reference

v v Warrior
> Mesh

> Modifiers

> 2825 Vertex Groups

To change the name of the mesh, we will have to change the name in two different places,
before finally exporting the character again. If we click this object and look below the
collection view, there’s an assortment of tabs to choose from. We’re looking for the ones
called Object Properties and Object Data Properties, each of which has a place where the
name can be changed:

Join us at https.//discord.qgg/rokoko 85

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

jodta lererence
S] > z

R = v V Warrnor
v V Warrio

(=)
e

‘W Warrior Mesh
[o | M= .
W, Warrior

7

W v Mesh

Warrn -
., v gwarriof ¥ Vertex Groups

¥ Transform R _
RightFingerlDistal

Location X 0Om | o 255 RightThigh
Y 0m ; 8 RightShin
Z 0m) RightFoot

RightToe
Rotation X 0.000009°

Y 0°
z 0°

¥ Shape Keys
Mode XYZ Euler (® Basis
Scale) 1.000 tongueOut 0.000
1.000) O noses : 0.000
noseSneerlLeft 0.000
cheekSquintR 0.000

*» Delta Transform

=t ~o n
» Relations ¥ Relative P

Change these names to “face”

It may be enough to just change the name in the Object Data Properties, but it is good
practice to match the names and | am not 100% sure which of these that Unity uses as a
reference for naming, so | recommend always changing both. In this case | am changing
the name to “face”, as that is the same mesh name that the Face Capture export uses. If
you are working with face animation from a different source and you aren’t sure what the
name is, the easiest way to see the mesh name is just to expand the fbx file inside of Unity
and look for it there (it'll always show as untextured in wireframe):

Once you have changed the names, export the character from Blender again by going to File
-> Export -> FBX:

Join us at https.//discord.qgg/rokoko 86

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

A% Blender

R | File| Edit Render Window Help Layout

o i s
12 New L Global
B Open...

Open Recent

Add Object

Recover

Append...

Data Previews

Import
Export Collada (Default) (.dae)
Alembic (.abc)
External Data) R
Universal Scene Description (.usd, .usdc, .usda)
Clean Up
Defaults Stanford (.ply)
Stl (.stl)
FBX (.fbx)
ngF 2.0 |:>q|h' Al

() Quit

Wavefront (Write a FBX file.

X3D Extensible 3L (.x3d)

If you paste in the folder directory from before, you can overwrite the existing character file
with the new naming. | recommend that you save the changed version of the model with a
different name, but just in case you don’t, you might want to recreate your character prefab
(you’ll see what happens, lol). Also - please keep in mind that when you export, Blender likes
adding leaf bones to your skeleton by default. If you don’t know what this does, | recommend
turning the setting off:

Join us at https.//discord.qgg/rokoko 87

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

¥ Volumes

EEE v BN - =

M windows (C:) . - =
> : k = Limit to Selected Objects

Active Collection
¥ System
Object Types | Empty
Camera
Lamp
Armature
Mesh
Other

Custom Properties
¥ Transform

Scale
¥ Favorites Apply Scalings
Add Bookmark Forward

1
¥ Recent Up

« Apply Unit
romer
Apply Transform
Face capture FBX
Models » Geometry

¥ Armature

otionLibrary Armature FBX.. Null
Only De
MimeCharacter
g Add Leaf Bones

» ¥ Bake Animation

WarriorFacemesh.fbx Export FBX Cancel

If you forget to do this, you can ignore leaf bones when importing in Blender, to remove them again.

If you save the file to your Unity directory, it'll automatically re-import the fbx file when you
click into Unity. Now don’t be scared, but if you saved directly on top of the existing fbx, you'll
very likely be greeted with this something looking like this monstrosity:

Join us at https.//discord.qgg/rokoko 88

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

| am not exactly sure what happens, but going outside of Unity and messing around with the
fbx file directly, has likely moved some data into the wrong places. My suggestion to fix this
is simply to:
1. Recreate the humanoid rig for that fbx file, which you can do by setting it back to
Generic, hitting Apply and then setting it to humanoid and hitting Apply again.
2. Recreate the character prefab by dragging the fbx file back into the scene and
reapplying the scripts, then save it again as a new prefab by dragging the fbx into
the.

The resemblance is uncanny.

The reason | am not renaming the Face Capture fbx instead of the character fbx, is simply
because that means | would have to rename each of these clips with the character name,
instead of just renaming one character to the face name.

But now that the mesh names match, the last step is to modify the prefab where we have
reorganized the objects to match the expected hierarchy. To do this, open the prefab by
double-clicking on it in the project view, or through the hierarchy or inspector by clicking
either the little arrow next to the prefab, or the “Open” button:

= Hierarchy =)L S e ® Game B A 20 i @ Inspector Collaborate
D v
ar .” v WarriorFacemesh
<& FaceTestScene* H i
1 era B] Tag Untagged v

Prefab Open Select
A Transform

Position X0

Rotation X0

Add Component

Join us at https.//discord.qgg/rokoko 89

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Again, here is what my character looks like in the hierarchy view at the moment:
= Hierarchy

+ -

- ”
gp WarriorFacemesh

) Reference

We know that the animation clip looks for the hierarchy “RokokoFaceRoot/face”, so | am
going to create an object with that name in the prefab, childed to the object that has the
animator component on it, then child the “face” object to that, so we’ll end up with a prefab
that looks like this:

= Hierarchy

- -
g WarriorFacemesh

Finally, we can expand our animation controller to include a layer that plays the face
animations, on top of the animations that control the body:

Scene a® Game W Asset Store > Animator = Package Manager
Layers Parameters & Face Layer

+

Base Layer o

Face Layer ARE Weight @ 1

Mask “&None (Avatar Mask)
Blending Additive

Sync

IK Pass

Open up your animation controller and:

Add the new layer

Open layer settings

Make sure that weight is set to 1 (plays blendshapes to their full weight)
Set the blending mode to Additive

AWON =

Join us at https.//discord.qgg/rokoko 90

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

| renamed the layer to Face Layer as well, just to keep things tidy. Now if you've done
everything correctly, adding animation clips to this layer should animate the face of your
character like this (Newton side-by-side for comparison):

4.6 Playing multiple skeletal animations simultaneously:

We've briefly touched on this with the blendshape animations, but it is possible to create
animation layers that exclusively target certain bones of a character as well. A classic
example is running and swinging a weapon at the same time. While we’ve been animating
the entire body of the character with one animation so far, we want to selectively take control
over the upper body with another animation, when the related action is carried out.

The setup for this is fairly simple - it requires us to create a separate animation layer, just as
we did for the face capture, but this time creating a “mask” that specifies what bones the
animation is allowed to effect. In the project, right-click -> Create -> Avatar Mask.

When you select the avatar mask and view it in the inspector, you'll see that there are two
sections:

- Humanoid

- Transform

If we expand the first section, you'll see a view like this:

Join us at https.//discord.qgg/rokoko 91

https://drive.google.com/file/d/10y_BtWTUWbdtvpgA29qT6jLr-xb-X12J/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

© Inspector Collaborate

‘i~ Upperbody Mask (Avatar Mas
”n

Humanoid

Transform

This is a clickable overview - anything shown in green will be affected by an animation that
uses this mask. For this example, I've grabbed a punching animation off of Mixamo where
the character swings their arms for a punch, while standing still. We do not want this to affect
the legs or the root motion, so we deselect those parts and end up with a view that looks like
this instead:

Join us at https.//discord.qgg/rokoko 92

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

Humanoid

Transform

Note that I've also deselected the IK targets (the red dots saying “IK”) even though we aren’t
using them at the moment. This is good practice, just in case you do decide to do anything
with them later, which is very often the case when working with game logic.

Now to test that this works, I've simply set the punching animation to loop and created a new

animation layer. I've given it a weight of 1, set it to override and made sure to select the
mask that we just made:

Join us at https.//discord.qgg/rokoko 93

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

ore > Animator & Pac

> Upper body

Base Layer

Face Layer

viask

Upper body t ! Select AvatarMask n
Vas & Uppert sk (

a

Override
15

one

“& UpperbodyMask S

Entry

punching

UpperbodyMask
Avatar Mask
nimations/Masks/UpperbodyM

While we do see a small problem in the final result, caused by the weird “aim walking” and
the punching animations wanting to go in different directions, it is still quite evident that this
works:

(BLAY GIF)
He’s a little shy, but he’ll punch your lights out.

Join us at https.//discord.qgg/rokoko 94

https://drive.google.com/file/d/1JbTRGEYz2DLnbRD3LrwIkBjsSzpQZtMb/view?usp=sharing
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

4.7 Mocap cleanup (Blender, mostly):

When working with mocap, you may have to do some cleanup to get your desired results. A
common problem is having jitter in your motions, which Unity can compensate for to some
degree, but you may want to do a more thorough cleanup of in Blender.

4.7.1 Removing jitter:

Unity’s fbx tools do not have a dedicated “remove jitter” feature, but it does have animation
compression, which inadvertently does reduce jitter to some degree. The way this works is
that Unity averages keyframes that are close to each other and reduces the ones that are
considered “redundant” and can practically be replaced with an interpolated curve instead.
You can find this if you select an fbx file that has animations on it, go to the “Animation” tab
and set Anim. Compression to ‘Keyframe Reduction’:

O Inspector Collaborate

‘,’ Backward left Import Settings

Model Rig Animation Materials

Import Constraints

Import Animation

Anim. Compression |Keyframe Reduction
Rotation Error Off

Position Error V Keyframe Reduction
Scale Error Optimal

Rotation error is defined as maximum angle deviation
allowed in degrees, for others it is defined as maximum
distance/delta deviation allowed in percents

Animated Custom Pr
Clips Start End

backward left 0.0 30.0
+ f—

This is not what the feature is actually supposed to do - the removed keyframes are a way to
reduce the filesize, but it helps us regardless! If we increase or decrease the parameters for
Rotation Error, Position Error and Scale Error, we’ll change to what degree these
corrections are applied:

Join us at https.//discord.qgg/rokoko 95

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

© Inspector Collaborate

ackward left Import Settings

Model Rig Animation Materials
Import Animation

>ompression Optimal
n Error

tion Error

ed as maxmum a

viation allowed in percents
Animated Custom Properties
Clips

backward left

The values that are entered here are essentially the “delta” by which the evaluation is made -
and if the rotation, position and scale differ less than this between each keyframe, then the
keyframe is removed.

Though for some cases we’ll need to go further and apply our own keyframe reduction to a
higher degree, or be more precise and increase reduction on specific bones, rather than the
whole clip. Or if we are working with blendshape animations where we are just dealing with
blend weights and not rotation, position or scale, we’ll have to move outside of Unity.

For such cases | recommend going to Blender and using a feature with a very dramatic
name - keyframe decimation! Which is really just keyframe reduction.

Begin by opening Blender and removing the default cube, camera and light again, then
import the fbx file. Next you will have to take a few steps to smoothen out your process, as |
recommend not doing keyframe reduction on the entire animation at once - especially not if
you have it exported with a very high number of frames per second. Here’s the first steps to
get to the Animation view:

Join us at https.//discord.qgg/rokoko 96

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

D File Edit Render Window Help Layout 85~ Scene 1] W+ View Layer
o 1, Global vi| P~ 0 Options @ o
Select Add Object 000 - & Scene Collection
v (@ Collection IR
User Perspective -
> (&) choracter] Reference @
(1) Collection | Character]_Reference

=o
W, Character]l_Reference
Wv Characterl Reference
¥ Transform

Location X
Y
z

Rotation X
4 f
Z
Mode XYZ Euler
Scale X 0010
Y, 0,010
z 0010
* Delta Transform
> Relations
> Collections
» Instancing
> Motion Paths
» Visibility
¥ Rokoko Studio Live Setup
ack v Keying v View Marker . e d P rol 1 @ st 1 End 250
0 Attach to Prop or Tracker
B R R AR BRI R A IRIIR ALRIKIRIL R RLLLRIIIIR IRRIRILIL IR REILIILIR SRILILIIL RILILLIL RILILILIRIL RILL LI RRIRLIR IR R] 3 o prop or tracker data available.
Attach to Actor
¥ No actor data available.
Display

n Properties

Once here, you should see the keyframe view at the bottom change, to show expanded
information about each frame:

CRLE

Join us at https.//discord.qgg/rokoko

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

This is usually showing only a fraction of the keyframes in your animation, as it defaults to
only showing 250 frames. You can scroll out to see everything and get an idea for where the
last frame is, but | recommend pressing CTRL+TAB when in this keyframe view, to change
to animation curves. Here is what the animation curves view looks like for a clip | have
chosen, zoomed all the way out:

2

Apologies for the micro-text, it says “Start- and end-frames”.

As highlighted, in the lower right corner is where you can change the start and end frames
for the animation. If you hover over the last keyframes and scroll you can zoom in to find the
last frame that you can write as the end-frame, just to make sure the whole animation plays.

To preview the animation itself, there’s a few buttons in the middle of the animation view,
down at the bottom, which are fairly self-explanatory:

You can basically play, skip to start/end, jump forwards/backwards between frames and (for
some reason) play backwards. We won’t be using the two buttons on the left side, as they
involve recording - we're just here to clean up the mocap.

Before we get into reducing keyframes, it's important to think about what we should reduce.
While we could theoretically just select every single frame in the animation and reduce
everything, most computers will have a very hard time doing this. Reducing keyframes
across the board also gives the mocap more of a hand-animated feel - which can be great
for stylized characters, but is more noticeable if you are going for a realistic feel.

As for making the evaluation of what you should target, consider the fact that all motion
propagates from the root and outwards, starting from the hip bone. So if your entire

Join us at https.//discord.qgg/rokoko 98

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

character is experiencing jitter and you see that the hip bone is doing this motion as well, |
would start with the hip bone and see how that affects the rest.

A more particular example would be - | see my hands doing a bit of a jittery motion, but the
head of the character is not. That means this jitter is occurring somewhere along the arm
and not in a bone that both the hand and head are sharing. To illustrate this, here’s a
comparative view of the character’s skeleton, up to the point where the hands and head no
longer share a parent bone:

14 Global v P+

The red highlight is the last shared bone between the head and hands, meaning the purple
bones are the first bones that could potentially be causing the jitter on the hands.

Before you can select what bones you want to target for keyframe reduction, make sure you
are in “pose mode”. It will say so in the upper left corner of the model view, just select it if
something else is shown there:

re——

2v xR0 15 Global

aad

.A.- Pose Mode v View Select Pose

M, Object Mode
% Edit Mode 2 : Characterl Spine2

*1 Pose Mode

Sets the object interaction mode

Join us at https.//discord.qgg/rokoko 99

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

With this enabled, you can click directly on the bones to select them (shift-click for multiple).
This will change what keyframes are visible in the animation view, to only display the data
from the bone(s) selected. If you are zoomed all the way out, you might see the keyframes
as an orange “smudge bar” rather than intelligible values. This does not mean something is
wrong, it is simply due to how propagated motion (forward kinematics) works - the shoulder
should not have large animation curves, as its movements are described relative to its
parent bone, not in global space:

Marker Chamel Key

You may also notice that | have a list of all of the information that this bone’s keyframes
contain. If you don’t see this list, make sure to click the little drop-down arrow on the green
bar:

View Select Marker Channel Key \q Normalize >

ion (Characterl Left
ation (Characterl LeftS

le (Characterl LeftShoulder)

Join us at https://discord.qg/rokoko 100

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

We can select/deselect which elements we are working with here if we want to be even more
specific. If you click on each of these, it will highlight which one of the curves that represent
this data:

00000000000000000060

I S I S S N S S S S e

What’s interesting to note here, is that we are only actually animating the rotational values -
as every property aside from Quaternion Rotations are showing as flat curves. Once again,
that is due to how forward kinematics works, but it means that we can ignore everything
else, because doing keyframe reduction to a flat curve isn’t going to make it any smoother.
The one exception is of course the hip bone, which can freely move however it likes, to
move the rest of the skeleton.

Now for the actual keyframe reduction process! When you have selected which curves
you want to reduce, press F3 and search for “Decimate”. You'll notice that there are two
options, but | prefer the one using Ratio, as that is super easy to adjust, by moving the
mouse right/left to increase/decrease the amount of reduction we are applying to the curves:

,O decimate

Decimate (Allowed Change)

Key » Decimate (Ratio) '|'

Decimate Keyframes.
Decimate F-Curves by removing keyframes that influence the curve shape the least.

Join us at https://discord.qg/rokoko 101

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

From here, it can be a little bit of a trial and error approach, so my advice is to iterate fast. In
other words, try applying a /ot of reduction to a bone to see if that did any changes further
down the line. If no visible changes occurred, you can undo the reduction and move up to
the next bone, until you find the one that is causing the jitter. However, be aware that it may
be an accumulative behaviour - as in all of the bones in that chain may each be contributing
a little bit. If that is the case, try marking several bones in a chain and apply a little bit of
reduction, to see if that has a bigger impact on the end result. Just be very selective with
what you are reducing if you work with multiple bones - simply mark the rotations for
reduction, if you do not have a super powerful computer to do this kind of work on.

4.7.2 Doing pose corrections:

Just to clarify before | go into this - this section does not cover dynamic animation correction
(like IK overrides) but rather how to modify the base animation files to make things line up in
the animation clip itself. While | do want to dive into Unity’s Animation Rigging package at
some point, | think it is more important to ensure that your base clips are workable, before
you attempt to do any kind of dynamic adjustment to them.

For once, | will actually refer most of this section to one of Sam’s videos, which explains this
process super well, as it is a topic that can be very difficult to communicate if not seen live:
O Easiest workflow for editing mocap in Blender - Rokoko Guide

To use this with a Unity-targeted workflow however, we’ll need to get this work back out of
Blender in a workable format. You should still import your animation file and character model,
retarget to the character model (so that you have a proper reference on how this would play
back on your character). However, when you are done with this process and want to put your
animation back into Unity, you should only export the animation.

There are two steps that you should consider when doing this:
1. Make sure that the framerate still matches what you exported with Rokoko Studio.
2. Only export the skeleton (Blender calls this an armature).

Matching the framerate is very straightforward, but really important. If you look in the lower
right region of your screen in Blender, there is a tab called “Output Properties”. You want to
click here and then set your framerate to the one you used in Rokoko Studio when you
exported the animation, either from one of the values in the dropdown menu or by writing a
custom value and pressing enter (which updates the animation, it doesn’t happen by just
typing the value):

Join us at https://discord.qqg/rokoko 102

https://www.youtube.com/watch?v=nB5qhTItryU
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

(=)
e Y

Y '6 Scene

¥ Dimensions

B

"
N

Resolution X
Y

o/
/0

lf Aspect X
Y

Render Region

Custom (100 fps)

¥ Time Remapping

Exporting the skeleton only is also pretty easy. All you have to do is the usual File >
Export > FBX (.fbx), but then in the export settings window, do the following:

1. Deselect all Object Types except “Armature”
2. Make sure you aren’t adding any leaf bones:

Join us at https.//discord.qg/rokoko 103

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

je= 58 -

Operator Presets

Path Mode Auto

Batch Mode Off

¥ Include

Limit to Selected Objects
Active Collection
Object Types Empty
Camera
I amn
Armature
Mesh
Other

4.7 MiB Custom Properties

956 KiB

956 KiB
82 KiB Scale 1.00

¥ Transform

987 KiB Apply Scalings All Local
21.2 MiB
4.0 MiB
4.0 MiB
152 KiB Apply Unit

Forward Z Forward

Up YUp

32 KiB Apply Transform
174 KiB

-
151 KiB Satita)

¥ Armature
Primary Bone .. Y Axis
Secondary Bon.. X Axis
Armature FBX.. Null
Only Deform Bones

Add Leaf Bones

» & Bake Animation

Export FBX

And finally, when you add the animation in Unity again, make sure you go through the
process of adding this animation to a humanoid avatar, via Unity’s fbx settings, as we
previously went through.

5.0 Rounding off:

This covers the base fundamentals of getting your animations onto your character in Unity
and playing them back. However, | can already hear you thinking; “but Dave, | have gone

Join us at https://discord.qg/rokoko 104

https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

through these instructions and all | have now is a wobbly viking that can circle around in front
of a static camera, this looked much cooler on the article front-page!”

To which | say - great!

You now know enough to not just load and play Unity’s starter assets bundle, but to modify it
to your needs! | did not want to throw it at you right away because working with polished
assets and complex animation systems is not representative of where you will start and what
you can expect to run into. But now that you have graduated from beginner status, | highly
recommend that you jump into it and start picking apart the third-person character controller.
It has some great running animations and even jumping logic that you can easily
reapply to your custom characters with the Humanoid Avatar system!

- Starter Assets - Third Person Character Controller | Essentials | Unity Asset Store

Here’s how to get started with it (you can skip the first-person controller part):
- Starter Assets overview | Unity

6.0 Where to go next:

Now that you have a basic understanding of how to use these systems, you can begin to
explore how they are used for different types of game mechanics. | have made a list of
resources that | recommend you check out, which build upon what we have gone through
here. I've also listed a few places that you can explore for additional resources, like
animation clips, 3D assets etc.

6.1 Rokoko Discord Community

You've seen it linked in the footer on each page - a great place to start is to check out our
Discord community! We have users from all kinds of places and that’'s where you'll find me
hanging out as well - every weekday from 9am to 5pm (GMT+1) so please drop in and say
hi! I'm always happy to help with Unity questions as well as general thoughts on game
design, Al programming, audio design and most other areas of game dev - just ping
Dave_Rokoko in the appropriate channels!

You can find me and the rest of the team at: https://discord.qaa/rokoko

6.2 Online tutorials

With one of the best communities out there, Unity has an incredible amount of user made
tutorials on just about anything you can think of. I've listed a few playlists and channels here
to get you started:

- Jason Weiman: Animations with Layers in Unity3D - Unity Devs WATCH THIS
A great breakdown of animation layers in a more complex scenario.

Join us at https://discord.qqg/rokoko 105

https://assetstore.unity.com/packages/essentials/starter-assets-third-person-character-controller-196526
https://www.youtube.com/watch?v=4QuPlKzdq14&ab_channel=Unity
https://discord.gg/rokoko
https://www.youtube.com/watch?v=Qwy3rEDXqxA
https://discord.gg/rokoko

Unity Animation Basics - David E. Lindberg | Rokoko

- iHeartGameDev: Unity's Animation System - YouTube
An awesome walkthrough of Unity’s animation systems in general, which covers some of the
same ground as we have here, but gets into a few more examples and scenarios.

- Unity Learn: Unity Learn
The official Unity educational resource, covering all kinds of areas and skill sets. A great
place to dive into other areas of expertise, outside of animation.

6.3 Asset resources

Need more animation clips, character models, sound effects etc.? Here’s a few good
suggestions:

- Motion Library in Rokoko Studio: Rokoko Motion Library
Has a bunch of neat animations. If you sort by price ascending, the first 100 assets on the
list are free!

- Our Thursday stream at 19:00 GMT+1: Rokoko - YouTube
This is where Sam hangs out and does mocap requests. If you have something very specific
in mind but do not have access to the hardware, this is the place to be. Subscribe to the
channel to get notified, or keep an eye on Discord as we’re hanging out before the stream
starts as well.

- Many other places: Top 9 Game Asset Sites | Free 2D & 3D Game Assets
We wrote an article about good places to go for free game assets of all kinds, which you can
find on our Insights blog!

Join us at https://discord.qqg/rokoko 106

https://www.youtube.com/playlist?list=PLwyUzJb_FNeTQwyGujWRLqnfKpV-cj-eO
https://learn.unity.com/
https://www.rokoko.com/motion-library
https://www.youtube.com/c/RokokoMotion
https://www.rokoko.com/insights/top-9-game-asset-sites-free-2d-3d-game-assets
https://discord.gg/rokoko

	Unity-Animation-Controller-ForntPage.pdf
	Unity animation basics.pdf

