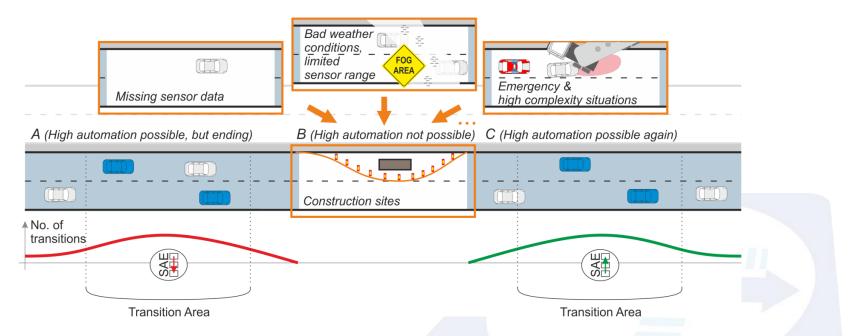


The 23rd IEEE International Conference on Intelligent Transportation Systems

Joint Deployment of Infrastructure-Assisted Traffic Management and Cooperative Driving around Work Zones

September 20 – 23, 2020


Virtual Conference

Evangelos Mintsis¹, Leonhard Lücken², Vasilios Karagounis¹, Kallirroi Porfyri¹, Michele Rondinone³, Alejandro Correa⁴, Julian Schindler⁵, and Evangelos Mitsakis¹

¹Hellenic Institute of Transport (HIT)/Centre for Research and Technology Hellas (CERTH), Greece
²German Aerospace Center (DLR), Institute of Transportation Systems, Germany (on leave)
³Hyundai Motor Europe Technical Center GmbH (HMETC), Germany
⁴Universidad Miguel Hernandez de Elche (UMH), UWICORE Laboratory, Spain
⁵German Aerospace Center (DLR), Institute of Transportation Systems, Germany

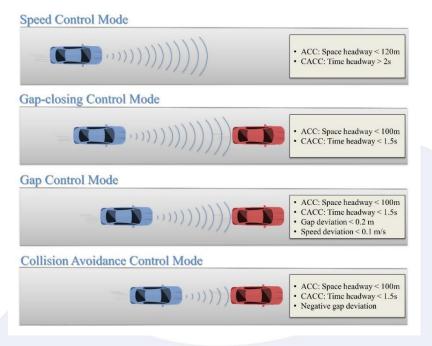
Transition Areas

"Transition Areas" are areas on the road where many highly automated vehicles (blue) are changing their level of automation due to various reasons.

Vehicle/Driver Models for (C)AVs

Car-following

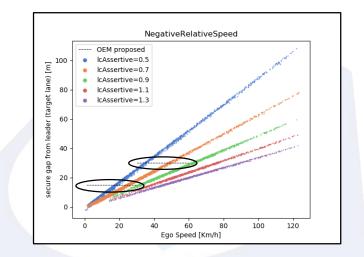
- Adaptive Cruise Control (ACC)
- Cooperative Adaptive Cruise Control (CACC)


• Lane changing

- > Parametrized SUMO lane change model \rightarrow Automated Vehicles (AVs)
- ➤ Cooperative lane changing → Cooperative and Automated Vehicles (CAVs)
- Control Transitions (automated ↔ manual)
 - ➤ Transition of Control (ToC) process → Downward & Upwards transitions
 - ➢ Minimum Risk Maneuver → Unsuccessful ToCs

Car-following

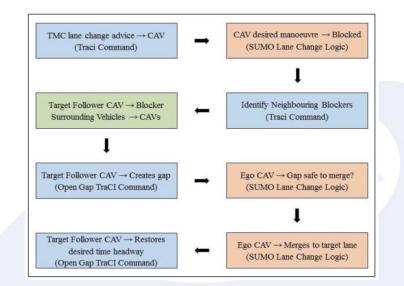
- (Cooperative) Adaptive Cruise Control California PATH
- i. **Speed control mode**: is designed to maintain the desired driver speed,
- **ii. Gap control mode**: aims to maintain a constant space/time gap between the controlled vehicle and its predecessor,
- iii. **Gap-closing control mode**: enables the smooth transition from speed control mode to gap control mode,
- iv. Collision avoidance mode: prevents rear-end collisions.



Lane Changing

- Parametrized SUMO Lane Change Model
- i. Variance based sensitivity analysis \rightarrow Influential lane change calibration parameters
- ii. SUMO lane change output vs HMETC lane change data \rightarrow Reconciliation

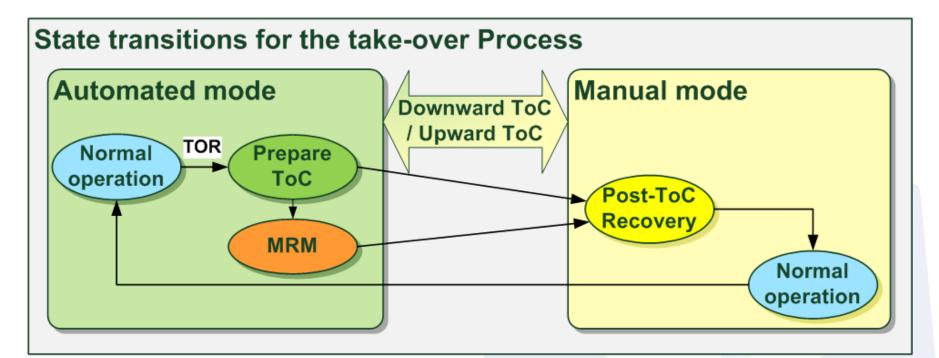
Speed Range [0, 100] (km/h)								
Parameter	Leader gap (ego lane)		Leader gap (target lane)		Follower gap (target lane)			
Sensitivity Index	S _i [%]	<i>ST_i</i> [%]	S _i [%]	<i>ST_i</i> [%]	S _i [%]	<i>ST_i</i> [%]		
lcStrategic	0.39	0.62	0.74	2.62	1.14	0.47		
lcKeepRight	1.08	0.83	3.32	7.57	1.13	2.26		
lcSpeedGain	0.90	8.12	10.92	22.26	0.77	1.37		
lcAssertive	59.15	77.03	61.26	80.17	91.40	95.56		



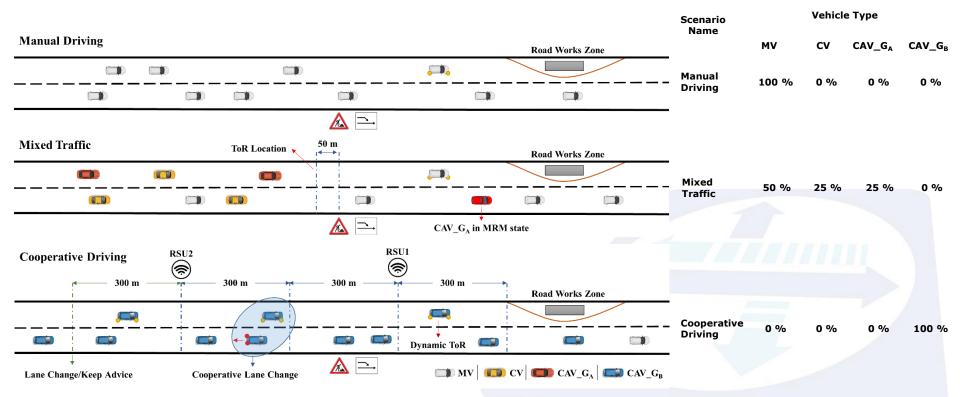
Cooperative Lane Changing

- Decentralized approach
- \succ Cooperation between ego CAV & target follower CAV \rightarrow Gap Creation
- > openGap TraCI function \rightarrow <u>https://sumo.dlr.de/wiki/TraCI/Change Vehicle State#open gap .280x16.29</u>

Parameter Name	Value	Description			
newTimeHeadway	4 s	The vehicle's desired time headway will be changed to the given new value with use of the given change rate.			
newSpaceHeadway	15 s	The vehicle is commanded to keep the increased headway for the given duration once its target value is attained.			
duration	5 s	The time period in which the time and space headways will be changed to the given new values.			
changeRate	0.5	The rate at which the new headways' effectiveness is gradually increased.			
maxDecel	1 m/s ²	The maximal value for the deceleration employed to establish the desired new headways.			
referenceVehicleID	ID #	The ID of the reference vehicle.			

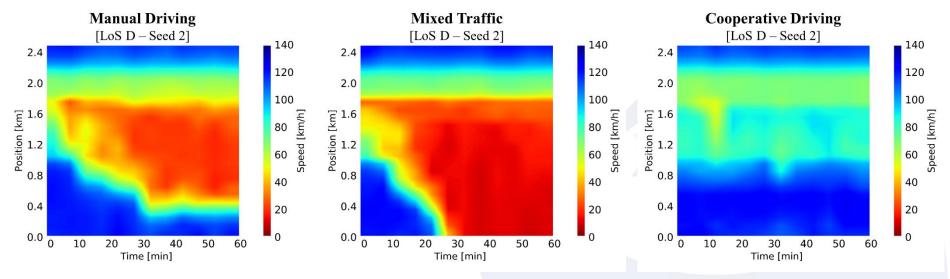

Open Gap Function

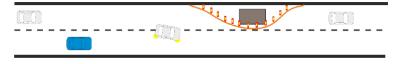
IEEE ITSC 2020



Control Transitions

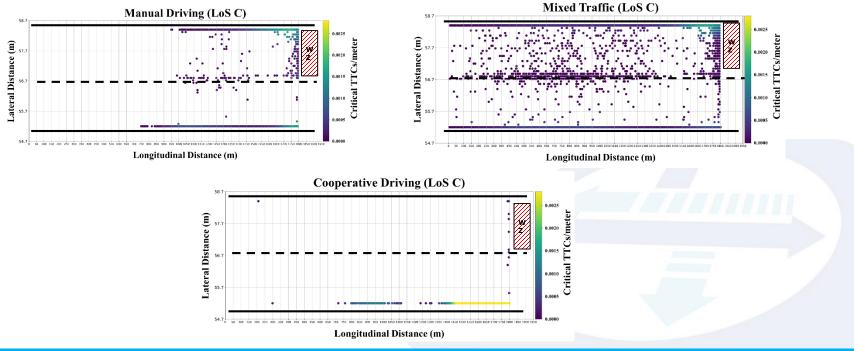
Simulation Scenarios




IEEE ITSC 2020

Results

• Work Zone Use Case → Motorway Network



Results (cont'd)

• **Impacts of vehicle disengagements on Conflict Risk** → Critical Events: Time-to-Collision ≤ 1.5 sec

Conclusions / Research Outlook

- Mixed Traffic Conditions -> Congestion/High Conflict Risk
 - when multiple ToCs/MRMs take place and traffic management measures are not deployed (even for low demand scenarios)
 - higher traffic disruption and conflict risk compared to manual driving
- Cooperative Driving + Infra-assisted Management
 - prevention of traffic breakdown
 - Low Conflict Risk
- Mixed Traffic + Day 1 C-ITS Applications
- Guidance of MRMs to safe spots
- Heavy/Light Goods Vehicles in the fleet mix

Thank you for your kind attention!

Evangelos Mintsis

Hellenic Institute of Transport (HIT) Centre for Research and Technology Hellas (CERTH)

Email: vmintsis@certh.gr

