

Redundancy Mitigation in Cooperative Perception for Connected and Automated Vehicles

Gokulnath Thandavarayan, Miguel Sepulcre, Javier Gozalvez

gthandavarayan@umh.es, msepulcre@umh.es, j.gozalvez@umh.es

IEEE 91st Vehicular Technology Conference VTC2020-Spring

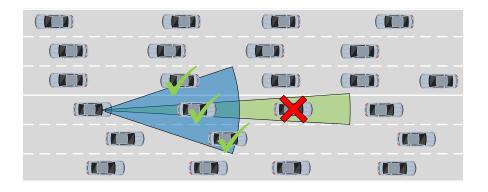
Introduction

- Automated vehicles make use of multiple sensors for perception
 - Sensors limitations degrade perception capabilities
- Collective perception can complement and expand sensing capabilities
 - V2X exchange of sensor information: position, speed and size of detected objects
- Challenge: multiple vehicles can detect and report the same object
 - Reception of redundant information
- Proposal: mechanism to reduce object redundancy
 - Takes into account if nearby vehicles have transmitted each object

Included in ETSI TR 103 562 about Collective Perception

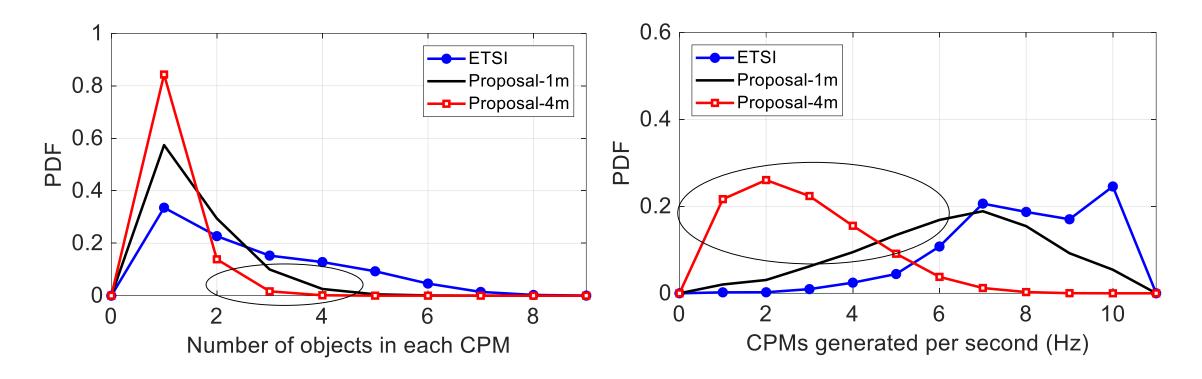
ETSI collective perception

- Based on continuous tx of CPM (Collective Perception Messages)
 - CPMs include information about detected objects and onboard sensors
 - Checks every T which detected object must be included in a new CPM
- Objects are included in a CPM considering the last tx CPM:
 - Included if position changed more than 4m since the last tx CPM
 - Included if speed changed more than 0.5m/s since the last tx CPM
- Does not take into account that multiple vehicles could detect the same object
 - A vehicle receives info about the same object if multiple vehicles detect it
 - Redundant information reduces system's scalability and efficiency


Proposal

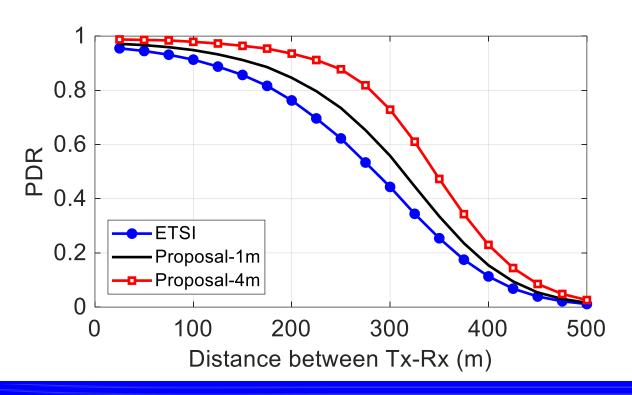
- An object is not included in a CPM if it has been recently tx by neighbour vehicle
 - Takes into account received CPMs to include or not each object in a new CPM
- Objects are included in a CPM considering the last rx CPM:
 - Included if position changed more than Xm since the last rx CPM (max X=4m)
 - Included if speed changed more than Xm/s since the last rx CPM (max X=0.5m/s)
- Reduces redundancy because objects are transmitted less often
 - Objects moving at higher speeds are included more often
 - Objects regularly included in a CPM by any of the vehicles detecting it
- Evaluation: X=1m and X=4m

Simulation set-up

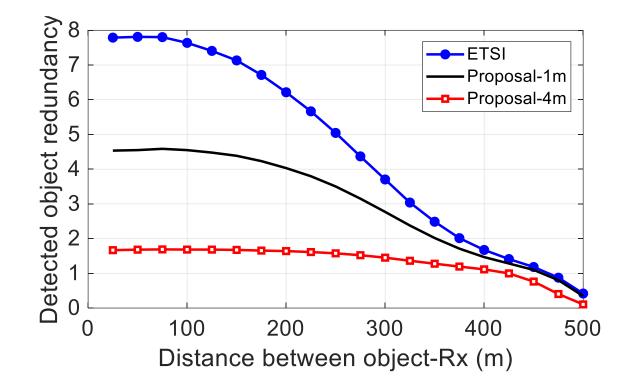

- Simulation tools: ns3 + SUMO
- Traffic parameters:
 - Highway scenario: 6 lanes
 - Traffic density: 120 vehicles/km
 - Speed: 70km/h-59km/h
- Onboard sensors:
 - 65m range and ±40 degrees
 - 150m range and ±5 degrees

Comms. parameter	Values
Transmission power	23dBm
Channel bandwidth/carrier freq.	10MHz / 5.9GHz
Energy detection threshold	-85dBm
Data rate	6Mbps (QPSK 1/2)

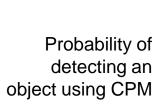
Only vehicles in Line of Sight can be detected

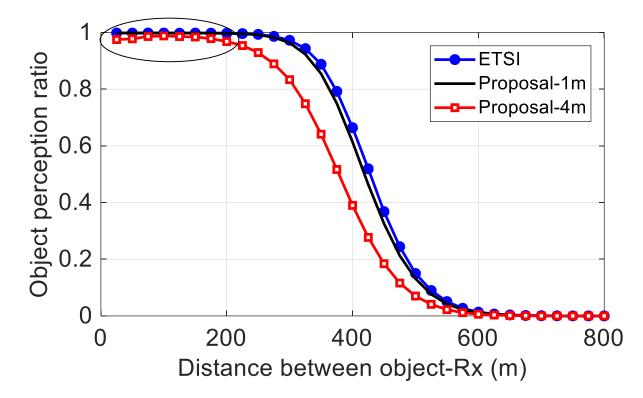

- Reduction of the CPM rate and size
 - Objects included in CPMs only when nearby vehicles have not recently transmitted them
 - Decrease of object transmission rate and message headers

- Improvement of the V2X communications performance
 - Reduction of CBR thanks to the decrease of CPM size and rate
 - Enhancement of Packet Delivery Ratio (PDR) due to lower interference


Policy	CBR
ETSI	31.8 %
Proposal-1m	23.4 %
Proposal-4m	10.1 %

Channel Busy Ratio




- Reduction of the detected object redundancy
 - Proposal effectively reduces the number of object updates
 - Effective control of transmitted redundant information

Number of times same object received

- Object perception ratio: trade-off between perception and channel load
 - Proposal-1m achieves similar perception to ETSI while using 26% lower CBR
 - Proposal-4m achieves lower perception, but with 68% less CBR

Conclusions

- Collective perception designed to share sensor information
 - Improves perception capabilities of connected and automated vehicles
- Multiple vehicles detecting the same object: tx the same information
 - Unnecesary redundancy reduces system's capacity
- Proposal based on objects dynamics and received redundant information
 - Reduces redundancy and channel load (30-70% reduction)
 - Maintains high perception for critical distances

Thank you for your attention

Gokulnath Thandavarayan, Miguel Sepulcre, Javier Gozalvez gthandavarayan@umh.es, msepulcre@umh.es, j.gozalvez@umh.es

