

Infrastructure-Assisted Management for Mixed Traffic at Transition Areas

Jaap Vreeswijk - Traffic Architect CAD

TRAFFIC MANAGEMENT

www.transaid.eu

@transaid_h2020

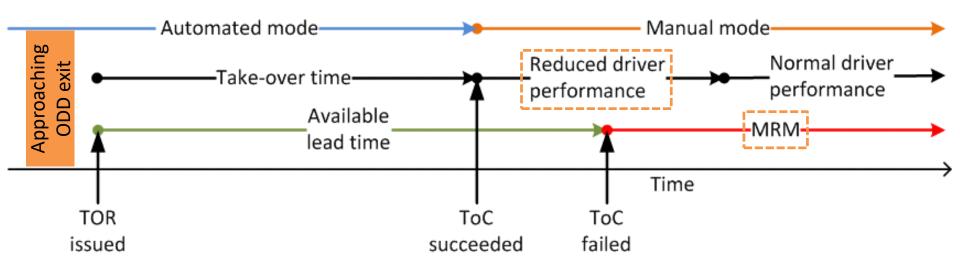
www.linkedin.com/groups/13562830/

www.facebook.com/transaidh2020/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723390

When, where, why?

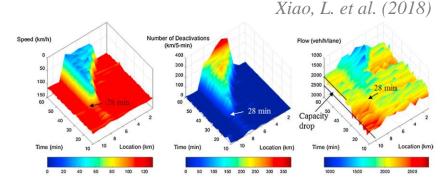
permanent - transient static/dynamic - highly dynamic



Transition of control and ODD

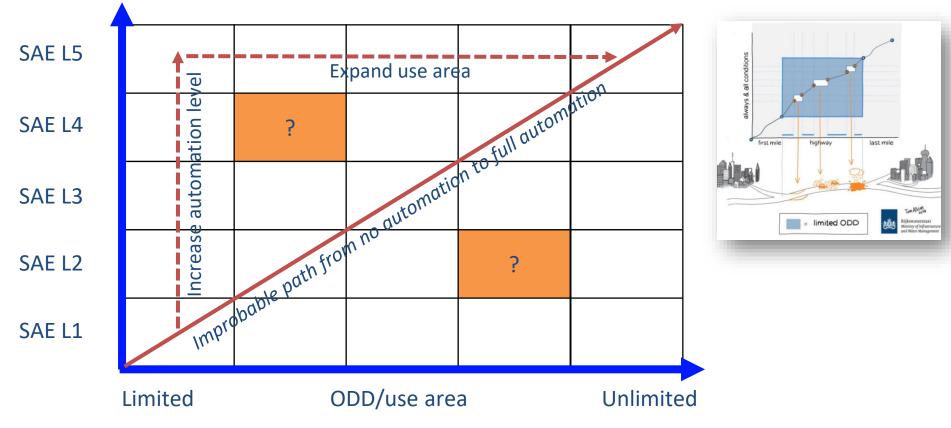
MRM minimum risk condition = stop or park safely.

Why transition areas?

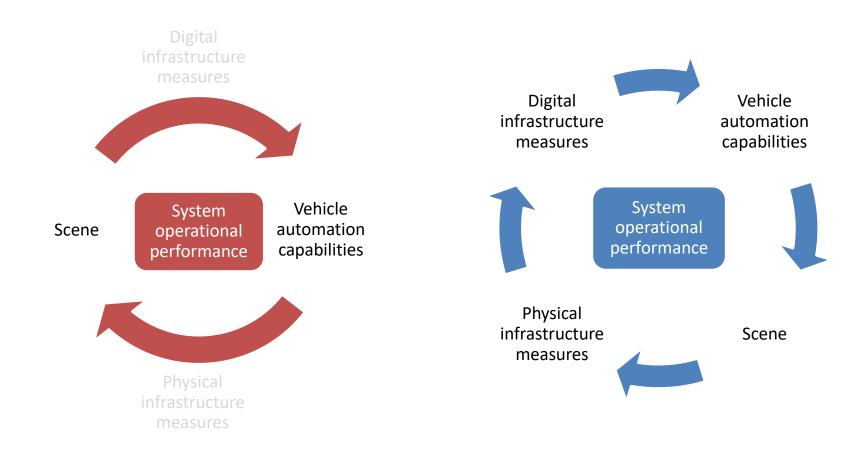

Transition areas mark the boundaries of the ODD.

□ What if an automated vehicle is unable to solve the situation ahead?

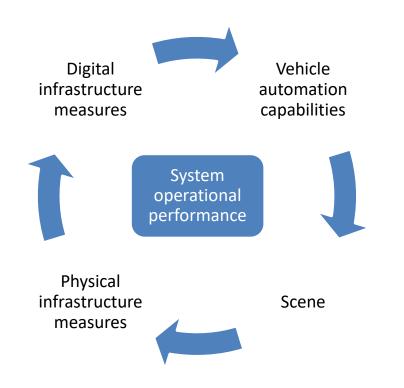
- \checkmark ...what if, this happens not to single vehicles only, but to several?
- ...what if, it always happens on the same spot?
- ...what if, this interrupts traffic flow, traffic safety, etc.


□ TransAID aims to:

- ✓ Identify potential risks
- ✓ Recommend solutions
- Coordinate movements



A geographical representation of ODD



ODD as a holistic concept

- Vehicle automation capability SAE 1-5
 - No automation (0), driver assistance (1) partial automation (2), conditional automation (3), high automation (4), full automation (5)

Scene

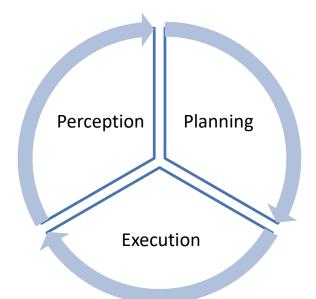
 Intersections (cross traffic yes or no), access (restricted, shared, open), behaviour (homogeneous or heterogenous, thereby predictable)

Physical infrastructure measures

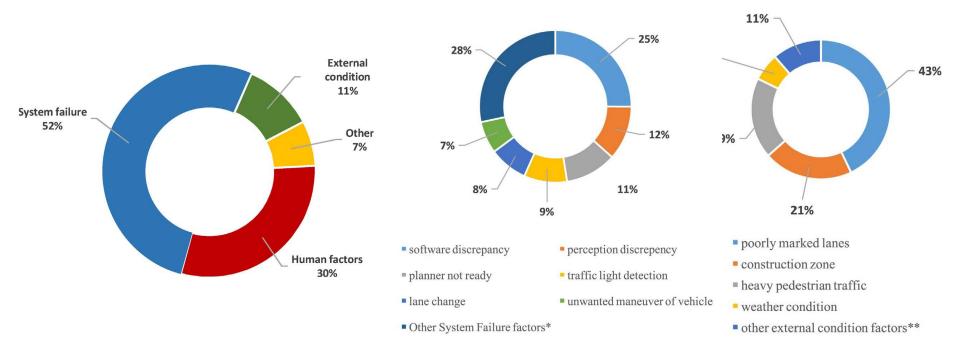
- Road surface, shoulder or kerb, road markings, traffic signs, road furniture
- Digital infrastructure support levels E-A
 - Conventional (E), static digital information (D), dynamic digital information (C), cooperative perception (B), cooperative driving (A)
- System operational performance
 - Vehicle safety, travelling comfort, driving speed, stops, number of handovers of control and minimum risk manoeuvre

The TransAID reasoning for I2V support

Vehicle automation capabilities (A) Χ Scene (B) Х Traffic dynamics & situational variables (C) ODD


B + C = AODD: OK $B + C \neq A$ ODD: NOKB + C = A + ?ODD: OK?

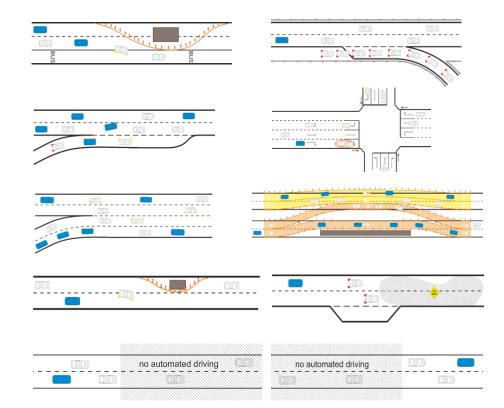
? = digital infra measures


Identifying I2V / TM support measures

- Vehicle automation systems:
 - Sense and build environmental awareness
 - Situational support: provide relevant information
 - Ability to determine action(s)
 - Operational support: provide an (alternative) action
 - Ability to perform action(s)
 - Tactical support: arrange favourable conditions

Report from the field

Favaro et al. (2017), Autonomous vehicles' disengagements: Trends, triggers, and regulatory limitations, Accident Analysis & Prevention, Vol. 110, pp. 136-148


EU EIP ODD Workshop | 1st October 2019, Turin

11

TransAID services and use cases

- 1. Provide vehicle path information
- 2. Provide speed, headway and/or lane advice
- 3. Traffic separation
- 4. Guidance to safe spot
- 5. Orchestration, distribution and scheduling

TransAID areas of recommendation

- Information services for automated vehicles.
- Traffic control measures for automated driving.
- Traffic regulations for automated driving.
- Spatial planning for automated driving, MRM-havens specifically.
- Application of **V2X message sets** and proposed extensions.
- Requirements for roadside equipment and signalling, for all vehicle modes.
- Urgency of interventions based on market penetration (mixed traffic) forecasts.
- **Priority** of interventions based on situational characteristics.
- Actor roles and interaction models for automated driving and traffic management.

Questions

- What are typical **causes** of unplanned handovers when considering initial Level 3/4 AVs?
- Are the TransAID services **meaningful** services? And how will the compliance to such services be, e.g. considering **trust** issues?
- Should the ODD and/or disengagements of AVs be **reported** by OEMs?
- What will be the **lead-time** for taking over vehicle control for different levels of automation?
- Is **connectivity** a (regulated) pre-requisite for some levels of automation?
- Would automated driving require the support of some sort of **remote support** / back-end?
- Who should decide whether a specific **road section** is within the ODD of an AV?
- Will AVs be more **conservative** in terms of headway and lane change behaviour?

And many more related to expected, assumed and revealed vehicle behaviour and capabilities.

Thank you for listening!

Jaap Vreeswijk MAP traffic management jaap.vreeswijk@maptm.nl Evangelos Mintsis CERTH vmintsis@certh.gr Sven Maerivoet Transport & Mobility Leuven sven.maerivoet@tmleuven.be

www.transaid.eu

- @transaid_h2020
- www.linkedin.com/groups/13562830/
- www.facebook.com/transaidh2020/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723390

