

Traffic Management and Automated Driving

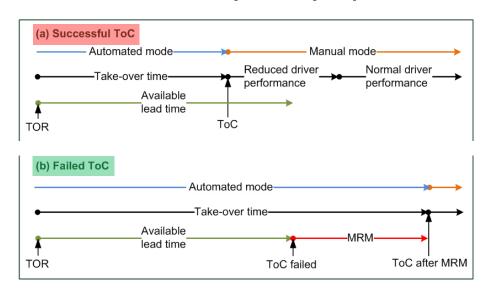
Dr. Sven Maerivoet

- www.transaid.eu
- @transaid_h2020
- www.linkedin.com/groups/13562830/
- www.facebook.com/transaidh2020/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723390

Background

Situations in which (C)AVs may struggle



Sequence of events when AD disengages

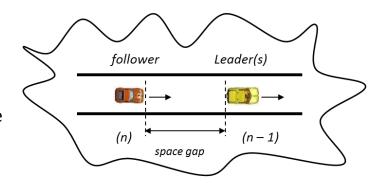
- Take-over request (TOR) issued by the car
- Transition of Control (**ToC**) from car to driver
- Minimum-Risk Maneuver (MRM) by the car

Cooperative management as a solution

- Different SAE levels, (C)AVs, legacy vehicles, ... share the road
- Missing sensor inputs, highly complex situations, adverse weather conditions, ...
 - Current limitations of automated driving may require a change of level

Transition Areas

- The EC's Horizon 2020 TransAID project ('18-'20) focuses on:
 - Realistic driver/vehicle behaviour and V2X communications
 - Hierarchical traffic management procedures for transition areas
 - Field tests in The Netherlands and Germany
 - Guidelines and roadmap for stakeholders (OEMs, authorities, cities, ...)


Modelling Automated Driving

Microscopic traffic flow modelling

- Describe explicitly the interactions of vehicles in a traffic stream (seems more realistic)
- Low aggregation, high level of detail

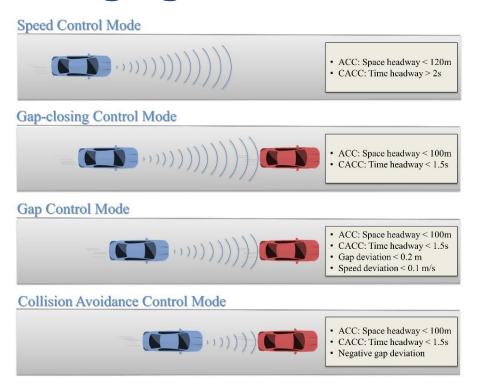
Car-following model

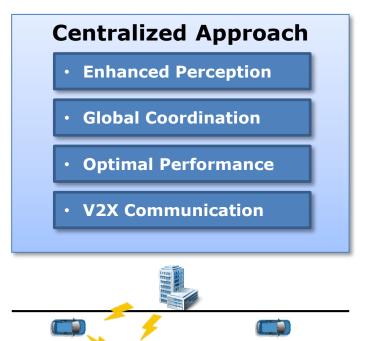
- Stimulus-response
- Optimal velocity
- Psycho-physical distance
- Cellular automata
- Queueing theory

Lane-choice model

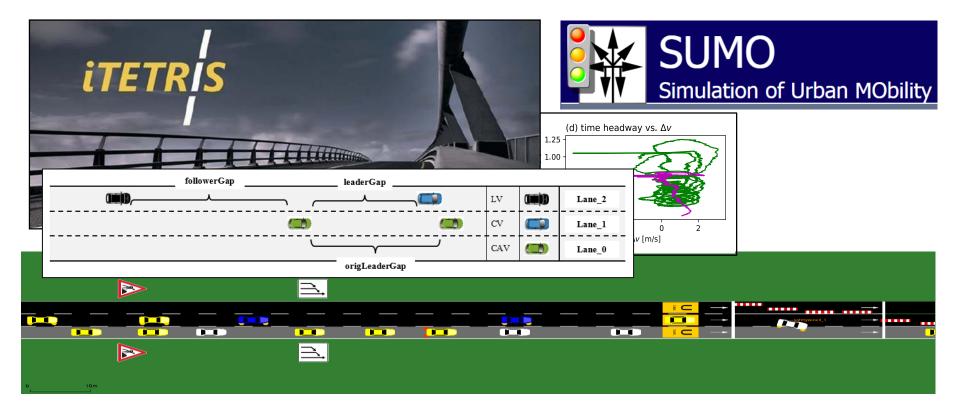
- Gap-acceptance
- Mandatory versus discretionary lane change

• Submicroscopic flow models encompass physical characteristics such as engine performance, gear shifting, ... and human decisions (non-strategic)

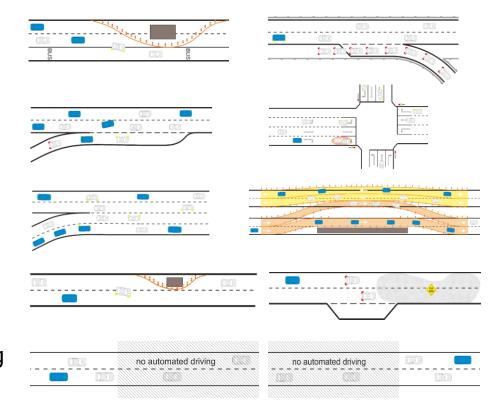

When SimCity is made by traffic engineers



Source: Pixabay (Cities: Skylines, 2019)μμ


Cooperative adaptive cruise-control and lanechanging

Difference between platooning and clustering!


TransAID's simulation environment

Traffic Management in Transition Areas

Initial selection of services / use cases

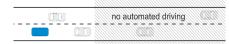
- 1. Prevent ToC/MRM by providing vehicle path information
- 2. Prevent ToC/MRM by providing speed, headway and/or lane advice
- 3. Prevent ToC/MRM by traffic separation
- 4. Manage MRM by guidance to safe spot
- 5. Distribute ToC/MRM by scheduling ToCs

Main observations about state-of-the-art

- General approaches
 - Coordinated network-wide traffic management
 - Using KPIs, hierarchical controls via layered architectures, TMaaS
- Cooperative systems
 - V2X / VANETs / C-ITS
- Machine learning techniques (AI)
 - Traffic light control and congestion / queue length predictions

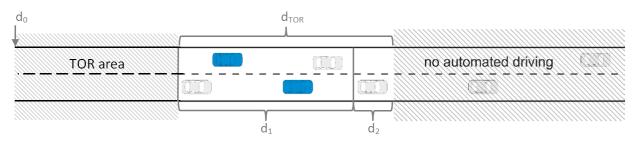
Conclusion

- No (readily available) implementations of more advanced TM schemes
- Focus on solving partial problems with specific measures

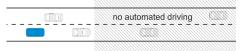


Traffic management by TransAID's services

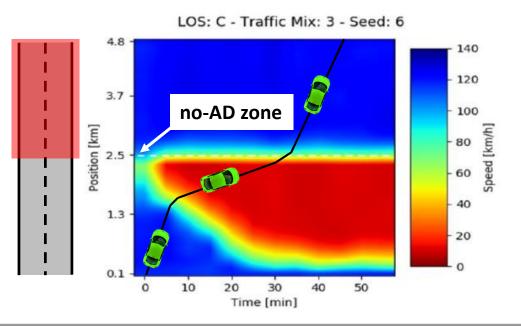
- Solutions take the form of these actions:
 - Prevent ToC/MRM
 - Manage or support ToC/MRM
 - Distribute (in time and space) ToC/MRM
- Assess solutions based on impacts measured by KPIs:
 - Traffic efficiency
 - Network-wide: average speeds and throughput
 - Local: tempo-spatial diagrams
 - Traffic safety
 - Number of events with time-to-collision < 3 sec
 - Environmental impact
 - CO₂ emissions

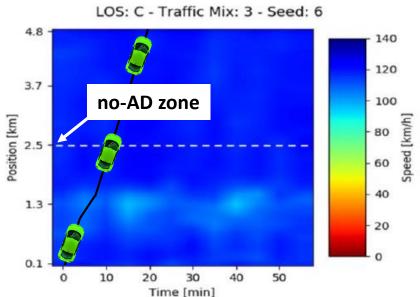

Example service: TOR distribution

Vehicle mix	LOS A	LOS B	LOS C
1			
2			
3			

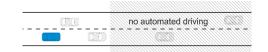

• Where?

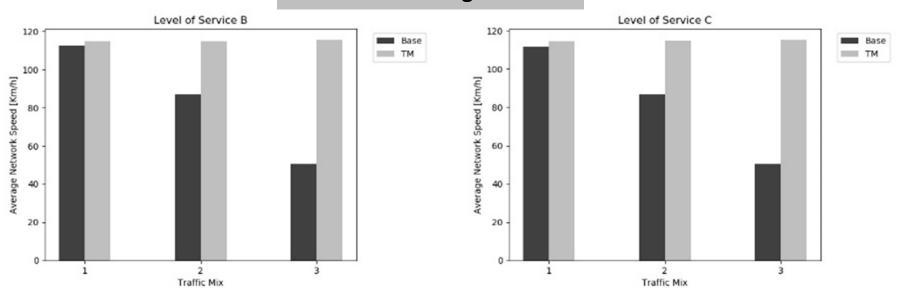
- How?
 - **Distribute the TORs** within a dedicated TOR area ranging from d_{TOR} farther upstream to a distance of $d_0 > d_{TOR}$


Example use case 5.1 (local speeds)


Distribute the TORs within a dedicated TOR area

Without traffic management

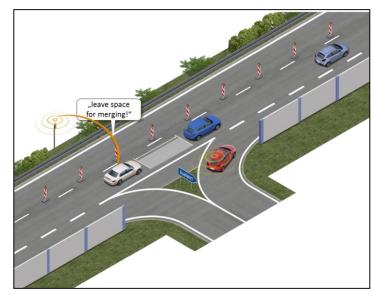

With traffic management



Example use case 5.1 (network speeds)

With traffic management

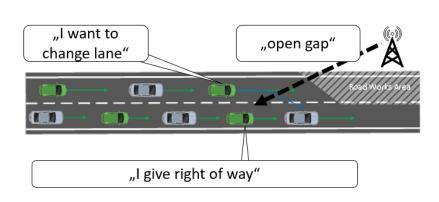
(varying the LOS and vehicle mixes)

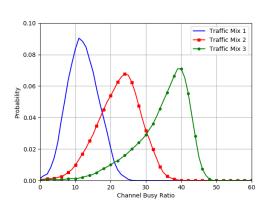


Suitable V2X Communications

Designing suitable V2X message sets

- Cornerstone for I2V-assisted traffic management
- Suitability strongly depends on:
 - Reuse of existing standards (interoperability)
 - Backwards compatibility
 - Reasonable use of radio resources (QoS)



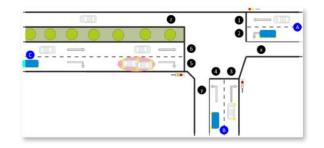


V2X message sets to facilitate TM for automated driving

- Contributed to the standardisation of:
 - ETSI V2X messages / IEEE 802.11bd / ETSI Technical Report 103 562
- Evaluation and evolution of ETSI collective perception
- TransAID services have been validated with realistic modelling of communications (ns-3)

Real-World Testing

Real world integration: First iteration testing (07/2019)



Real world integration Planned public road tests (07/2020)

Let's stay in touch

- Contact:
 - sven.maerivoet@tmleuven.be (TML)
 - julian.schindler@dlr.de (DLR, project coordinator)

- Social media:
- Website: www.transaid.eu https://www.transaid.eu/deliverables/
- Twitter: @transaid_h2020
- iii LinkedIn: https://www.linkedin.com/groups/13562830/
- Facebook: https://www.facebook.com/transaidh2020/
- Subscribe to our newsletters!

