

From Automated to Manual - Modeling Control Transitions with SUMO

Leonhard Lücken, Evangelos Mintsis, Kallirroi Porfyri, Robert Alms, Yun-Pang Flötteröd, Dimitris Koutras leonhard.luecken@dlr.de

www.transaid.eu

- @transaid_h2020
- m www.linkedin.com/groups/13562830/
- www.facebook.com/transaidh2020/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723390

SUMO User Conference | May 2019

TransAID - Transition Areas for Infrastructure-Assisted Driving

05/2019 | TransAID | SUMO User Conference

- A Model for Automated Vehicles
- Transitions of Control and a Model for human driving
- Traffic Management in
 Transition Areas Two Use Cases

Models for automated vehicles

- ACC Car-Following Model [Milanés et al., 2014]
 - Speed control mode: is designed to maintain the by the driver chosen desired speed,
 - Gap control mode: aims to maintain a constant time gap between the controlled vehicle and its predecessor,
 - iii. Gap-closing control mode: enables the smooth transition from speed control mode to gap control mode,
 - iv. Collision avoidance mode: prevents rear-end collisions.

Parametrized Lane Change Model

i. Variance based sensitivity analysis

 \rightarrow Influential lane change calibration parameters

		Speed Rang	e [0, 100] (km/h)	
Parameter	Lead (ego	er gap lane)	Leader gap (target lane)	Follower gap (target lane)
Sensitivity Index	S _i [%]	<i>ST_i</i> [%]		NegativeRelativeSpeed
lcStrate gic	0.39	0.62	100	OEM proposed
lcKeepRight	1.08	0.83	80 -	IcAssertive=0.7
lcSpeedGain	0.90	8.12		
lcAssertive	59.15	77.03	[4] 60 - E	×
UMO lane c s HMETC lar	hange o ne chan	output ge data	y] paads 40 -	
→ Recon	ciliation	-	20 -	Jan Carlos and Carlos
			₀⊥,≝	20 40 60 80

distance to leader (target lane) [m]

ii.

ToC / MRM Model

General CF Model:

 $\dot{x}(t) = v(t)$

 $\dot{v}(t) = a(\Delta x(t), \Delta v(t))$

Perceived quantities:

$$\Delta \tilde{x} = \Delta x + \eta_x$$

 $\Delta \tilde{v} = v + \eta_v$

Erroneous CF Model: $\dot{x}(t) = v(t)$ $\dot{v}(t) = a(\Delta \tilde{x}(t), \Delta \tilde{v}(t))$

ToC / MRM Model

- <u>https://sumo.dlr.de/wiki/Car-Following-Models/ACC</u>
- <u>https://sumo.dlr.de/wiki/ToC_Device</u>
- <u>https://sumo.dlr.de/wiki/Driver_State</u>

05/2019 | TransAID | SUMO User Conference

TransAID

Color \sim speed

Color \sim ToC state

TransAIC

Results

- 1h random vehicle flow (LoS C ~ 1155 veh/h)
- Fleet mixes (MV-AV): mix 1: 70-30 mix 2: 50-50 mix 3: 20-80

350

300

100

50

0

1

05/2019 | TransAID | SUMO User Conference

Results

- 1h random vehicle flow (LoS C ~ 3234 veh/h)
- Fleet mixes (MV-AV): mix 1: 70-30 mix 2: 50-50 mix 3: 20-80

Results

Summary

- Models:
 - New models for automated vehicles (CFModels ACC + CACC)
 - New model for simulation of control transitions
 - Driver State model
- Assessment of TM procedures:
 - Safety improvements for smoother flows at lane drops
 - Reducing perturbances by distribution of ToCs
- Upcoming:
 - Realistic simulation of communications
 - Combination of TransAID Services
 - Real world feasibility assessment

Thank you!

See also:

- Mintsis et al. 2018, *TransAID Deliverable 3.1*
- Maerivoet et al. 2018, *TransAID Deliverable 4.2*

www.transaid.eu

Funding: EU H2020, GNo 723390

General CF Model:

 $\dot{x}(t) = v(t)$

 $\dot{v}(t) = a(\Delta x(t), \Delta v(t))$

A ~ A .

Perceived quantities:

$$\Delta \tilde{x} = \Delta x + \eta_x$$

 $\Delta \tilde{v} = v + \eta_v$

Erroneous CF Model:
$$\dot{x}(t) = v(t)$$

 $\dot{v}(t) = a(\Delta \tilde{x}(t), \Delta \tilde{v}(t))$

TransAID

18

Perception errors:

$$\eta_x(t) = c_x \cdot \Delta x(t) \cdot \mathbf{H}_t$$

$$\eta_{\nu}(t) = c_{\nu} \cdot \Delta x(t) \cdot \mathbf{H}_t$$

Error base process: $dH_t = -\theta_t \cdot H_t \cdot dt + \sigma_t \cdot dW_t$ Base process coefficients: $\theta_t = c_\theta \cdot A(t)$ Erroneous CF Model:

 $\dot{x}(t) = v(t)$

$$\dot{v}(t) = a(\Delta \tilde{x}(t), \Delta \tilde{v}(t))$$

$$\sigma_t = c_\sigma \cdot (1 - A(t))$$
 $A(t) = "awareness"$

19

Trans