

Vehicle automation modelling and simulation

Evangelos Mintsis

www.transaid.eu
@transaid_h2020
www.linkedin.com/groups/13562830/
www.facebook.com/transaidh2020/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723390

Vehicle/Driver Models for (C)AVs

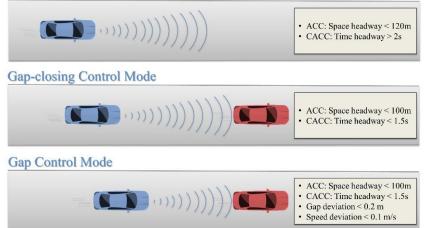
• Car-following

- Adaptive Cruise Control (ACC)
- Cooperative Adaptive Cruise Control (CACC)

Lane changing

- ➢ Parametrized SUMO lane change model → Automated Vehicles (AVs)

• **Control Transitions (automated** ↔ manual)

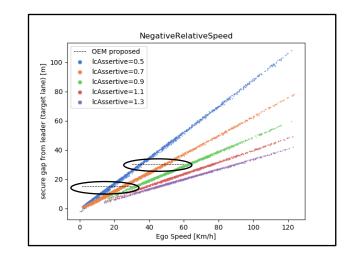

- ➤ Transition of Control (ToC) process → Downward & Upwards transitions
- ➢ Minimum Risk Maneuver → Unsuccessful ToCs

Car-following

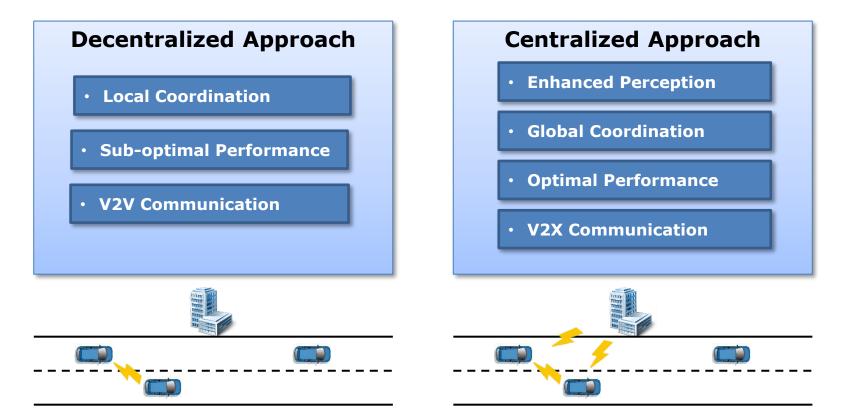
• (Cooperative) Adaptive Cruise Control – California PATH

Speed Control Mode

Collision Avoidance Control Mode

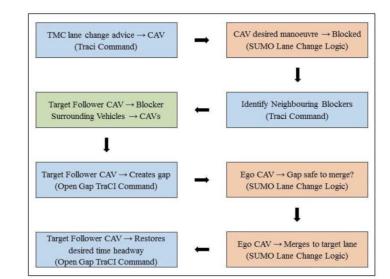

- i. **Speed control mode**: is designed to maintain the desired driver speed,
- **ii. Gap control mode**: aims to maintain a constant space/time gap between the controlled vehicle and its predecessor,
- **iii. Gap-closing control mode**: enables the smooth transition from speed control mode to gap control mode,
- iv. Collision avoidance mode: prevents rear-end collisions.

Lane Changing


- Parametrized SUMO Lane Change Model
 - i. Variance based sensitivity analysis \rightarrow Influential lane change calibration parameters
 - ii. SUMO lane change output vs HMETC lane change data \rightarrow Reconciliation

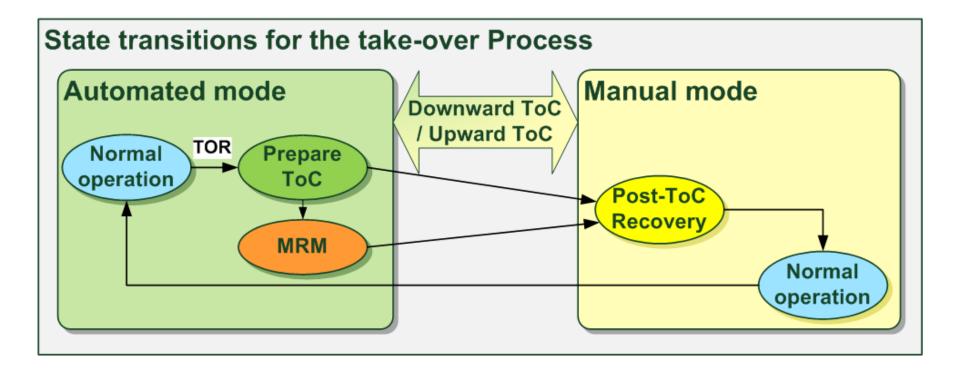
Speed Range [0, 100] (km/h)							
Parameter	Leader gap (ego lane)		Leader gap (target lane)		Follower gap (target lane)		
Sensitivity Index	S _i [%]	<i>ST_i</i> [%]	S _i [%]	<i>ST_i</i> [%]	S _i [%]	<i>ST_i</i> [%]	
lcStrategic	0.39	0.62	0.74	2.62	1.14	0.47	
lcKeepRight	1.08	0.83	3.32	7.57	1.13	2.26	
lcSpeedGain	0.90	8.12	10.92	22.26	0.77	1.37	
lcAssertive	59.15	77.03	61.26	80.17	91.40	95.56	

Cooperative Manoeuvring

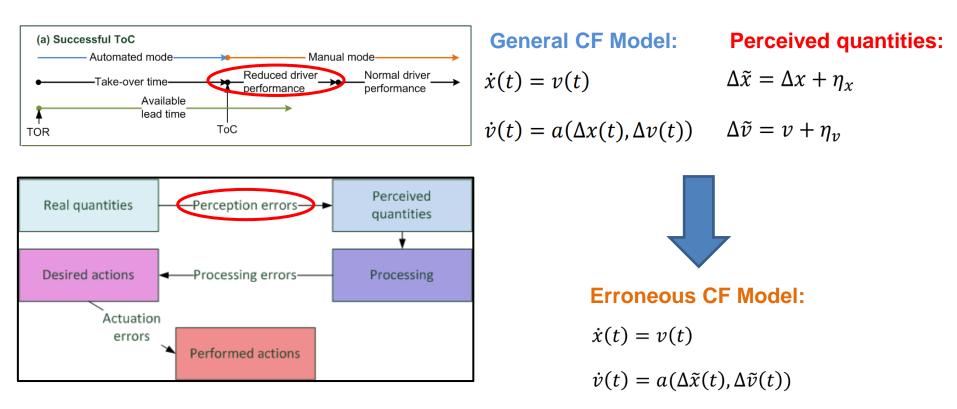

Cooperative Lane Changing

- Decentralized approach
- ➤ Cooperation between ego CAV & target follower CAV → Gap Creation
- \blacktriangleright openGap TraCI function \rightarrow

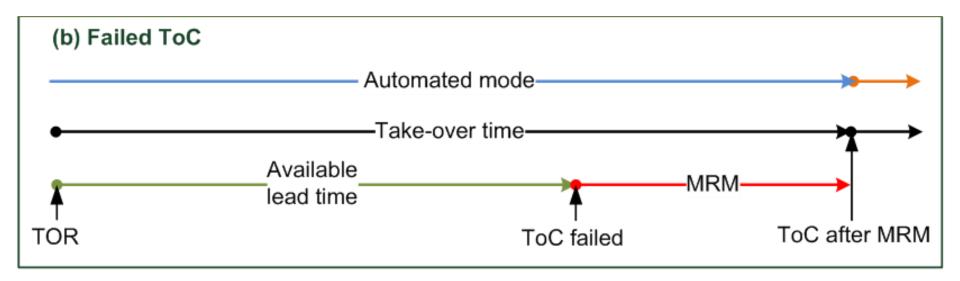
https://sumo.dlr.de/wiki/TraCI/Change Vehicle State#open gap .280x16.29


Parameter Name	Value	Description
newTimeHeadway	4 s	The vehicle's desired time headway will be changed to the given new value with use of the given change rate.
newSpaceHeadway	15 s	The vehicle is commanded to keep the increased headway for the given duration once its target value is attained.
duration	5 s	The time period in which the time and space headways will be changed to the given new values.
changeRate	0.5	The rate at which the new headways' effectiveness is gradually increased.
maxDecel	1 m/s ²	The maximal value for the deceleration employed to establish the desired new headways.
referenceVehicleID	ID #	The ID of the reference vehicle.

Open Gap Function



Control Transitions


Transition of Control

TransAID Twinning | ITS Japan – UtmobI Meeting | 08/04/2020

TransAID

Minimum Risk Maneuver

- i. **MRM** \rightarrow Current lane
- ii. MRM → Right-most lane (including lane change maneuver)
- iii. MRM \rightarrow Constant deceleration rate (3.0 m/s²)

Triggering of Take-over Requests (TORs)

- Fixed TOR location \rightarrow Specified through TraCI function
- **Dynamic TOR triggering** → Induced by static blockage (e.g. road works etc.)
 - CAV merging to open lane blocked by neighboring traffic
 - \blacktriangleright dynamicToCThreshold * currentSpeed + MRM_{dist} < distanceToBlockage
 - Situation-specific available lead time
- ToC Preparation Phase \rightarrow Open gap TraCI function
 - > Establish safe gap to leading vehicle prior to downward control transition
- Lane Change Abstinence during:
 - ToC Preparation Phase
 - Recovery Phase

Mixed Traffic Simulations

Vehicle Types

Vehicle type	Share on urban roads	Share on motorways		
Passenger vehicle	87%	77%		
LGV	10%	10%		
HGV	3%	13%		

Automation/Communication Penetration

Vehicle Mix	Class 1	Class 1 (Conn.)	Class 2	Class 2 (Conn.)	Class 3	Class 3 (Conn.)	Class 4	Class 4 (Conn.)
1	60%	10%	-	15%	-	15%	-	-
2	40%	10%	-	25%	-	25%	-	-
3	10%	10%	-	40%	-	40%	-	-

Traffic Demand Levels

Facilitas Terra	6 ¥ (14.5	Level of Service (LOS)			
Facility Type	Capacity (veh/h/l)	В	С	D	
Urban (50km/h)	1500 veh/h/l	825	1155	1386	
Rural (80 km/h)	1900 veh/h/l	1045	1463	1756	
Motorway (120 km/h)	2100 veh/h/l	1155	1617	1940	
Intensity / Capacity (IC) ratio	0,55	0,77	0.92		

Parametrization Schemes

	ACC	SL2015	ToC/MRM	ToC/MRM	ToC/MRM
Parametrization Scheme	Desired time headway	Desired longitudinal gaps	Driver response time	Post ToC driver performance	MRM likelihood
Pessimistic Safety (PS)	Smal1	Short	Long	Low	High
Pessimistic Efficiency (PE)	Large	Large	Long	Low	High
Moderate Safety and Efficiency (MSE)	Moderate	Moderate	Moderate	Moderate	Moderate
Optimistic Efficiency (OE)	Smal1	Short	Short	High	Low
Optimistic Safety (OS)	Large	Large	Short	High	Low

Model Integration in SUMO

- (Cooperative) Adaptive Cruise Control Model → SUMO Source Code
 - <u>https://sumo.dlr.de/wiki/Car-Following-Models/ACC</u> (Sumo Wiki Page)
 - <SUMO_HOME>/src/microsim/cfmodels/MSCFModel_ACC.cpp
 - <u>https://sumo.dlr.de/wiki/Car-Following-Models/CACC</u> (Sumo Wiki Page)
 - <SUMO_HOME>/src/microsim/cfmodels/MSCFModel_CACC.cpp
- **Parametrized Lane Change Model** → Adaptation of existing model params
- **Cooperative lane changing** → Open gap TraCI function
 - https://sumo.dlr.de/wiki/TraCI/Change Vehicle State#open gap .280x16.29
- ToC/MRM Model → ToC Device (SUMO Source Code + TraCI Functions)
 - <u>https://sumo.dlr.de/wiki/ToC_Device</u> (Sumo Wiki Page)

Discussion Topics

• What if manually driven vehicles cause cut-in situations?

- > Emergency braking issued by (C)AVs?
- > Could emergency braking result in vehicle disengagements? When?

Do you expect that lane change behaviour of AVs will be more

- > conservative compared to manually driven vehicles?
- > more conservative compared to CAVs?

• What errors are expected from drivers during the Post-ToC recovery phase?

> Do you expect that these errors can significantly disrupt traffic flow?

How long should the available lead time last in case of control transitions?

- > SAE Level 3 AV
- > SAE Level 4 AV

Discussion Topics (cont'd)

- Can (C)AV acceleration be allowed during available lead time?
- Should drivers be allowed to resume vehicle control during MRMs?
- What do you expect a (C)AV do in case of a Minimum Risk Manoeuvre?
 - > Do you consider that a stop in lane constitutes a safe harbour after a Minimum Risk Manoeuvre?
 - > Do you expect that lane changing will be possible during Minimum Risk Maneuvers?

Let's stay in touch

- Contact:
 - julian.schindler@dlr.de (DLR, project coordinator)
 - vmintsis@certh.gr (CERTH/HIT)
- Social media:
 - 💮 Website: www.transaid.eu
 - Twitter: @transaid_h2020
 - In LinkedIn: https://www.linkedin.com/groups/13562830/
 - Facebook: https://www.facebook.com/transaidh2020/
- Subscribe to our newsletters!

