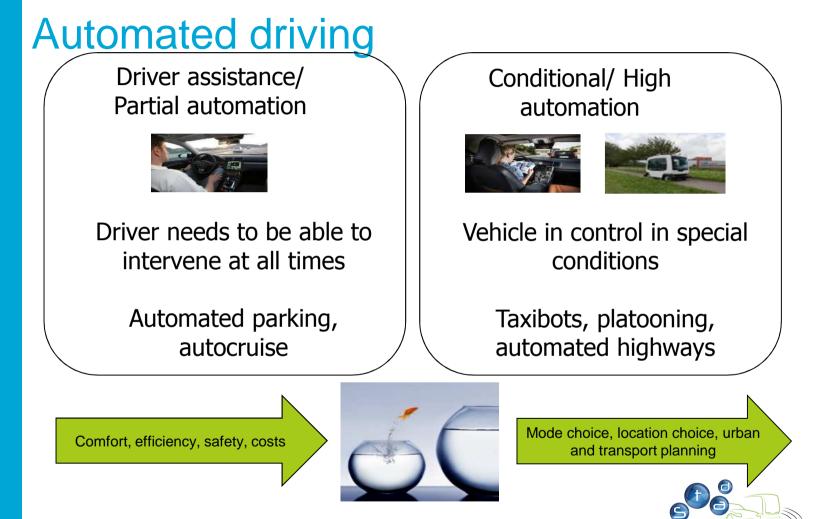


Self-Driving Cities: Will we have them? Do we need them? Do we want them?

Bart van Arem, Delft University of Technology, The Netherlands Joint CoEXist/MAVEN/TRANSAID workshop, POLIS, Brussels, 10th October 2017

Will we have them?

Spatial and Transport Impacts of Automated Driving



Will we have them?

Spatial and Transport Impacts of Automated Driving

Many questions ...

When fully automated vehicles will hit the market?

Will we travel safer?

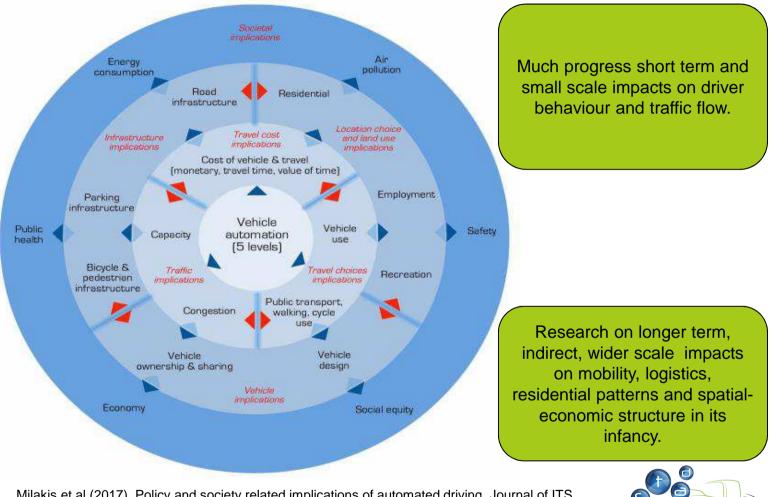
Are we going to own or share cars?

Will we need more or less road infrastructures?

Will we still need buses?

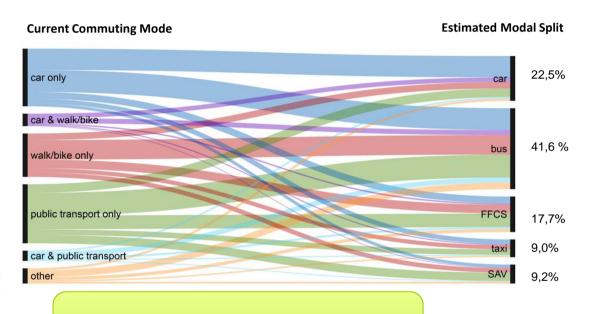
Will there be more or less congestion?

Will we drive longer or shorter distances?


How much on-street and off-street parking spaces will still be needed?

How will cities evolve?

Will we consume more or less energy to travel?


ŤUDelft

Milakis et al (2017), Policy and society related implications of automated driving, Journal of ITS.

Which of the following options would you choose for going from your home to your fictive work / educational institution?

840 respondents Amsterdam, Utrecht, The Hague Rotterdam

Winter et al (2017), Mode Preferences in Times of Free-Floating Carsharing and Shared Automated Vehicles - a Stated Choice Experiment, submitted.

Value of travel time in private vehicles

VOTT

VOTT

VOTT,

ŤUDelft

The amount a traveller is willing to pay for 1 minute travel time reduction.

Trip is less useful or comfortable, traveller is willing to spend more for a shorter trip

Trip is useful and comfortable, traveller is willing to spend less for a shorter trip

Value of time in private vehicles: a stated preference experiment

Assume your next trip is from home to work, which option would you choose?

A. Conventional car	B. AV – <u>office interior</u>	C. AV – <u>leisure interior</u>			
Travel time: 15 Min Travel costs: € 4.50	Travel time: 45 Min Travel costs: € 4.50	Travel time: 30 Min Travel costs: € 7.50			
Walking time: 6 Min	Walking time: 0 Min	Walking time: 0 Min			
AV activity: driving	AV activity: working extra time	AV activity: do whatever you want			
Travel companions: friends and/or family	Travel companions: friends or family	Travel companions: alone			
0	0	0			
TU Delft	De Looff et al (2017), Value of travel time changes as a results of vehicle automation – a case study in the Netherlands (forthcoming)				

242 respondents; results excluding 96 non traders

	Mean value of travel time
Conventional car	7,91
AV Office interior	4,97
AV Leisure interior	10,47

Office interior aligns with work activities

Leisure interior does not align with work activities

Convenience, safety and trust

Driving with ACC

Field study 8 ACC vehicles at RHDHV Questionnaire in cooperation with RDW

Current ACC systems maintain longer headways than human drivers

Drivers reduce lane changing when using ACC -staying in left or right most lane

ACC users rate pleasureness at 8 on a 1-10 scale Full range ACC scores higher Clumsy technology decreases pleasure

ACC more likely to be bought by high-income males

Winter, et al (2017), Pleasure in using adaptive cruise control, Traffic Injury Prevention Schakel et al (2017), Driving Characteristics and Adaptive Cruise Control, IEEE ITS Magazine

	Reactietijd [s]	Gemiddelde volgtijd [s]	Gemiddelde maximale versnelling [m/s²]	Gemiddelde normale vertraging [m/s²]	Gemiddelde maximale vertraging [m/s²]
Auto	0.8	- (≈ 1.0)	2.8	-3.5	-7
ACC	0.8	1.6	2.5	-2.5	-6
Nieuwere ACC	0.4	1.6	2.5	-2.5	-6
Verbeterde ACC	0.4	1.2	2.5	-2.5	-6
CACC	0.2	0.8	2.5	-2.5	-6
> 75% 50% - 75% 25% - 50% 10% - 25% <10%	C Pens				
Contraction of the second seco	eand Nieuwe Gadeeng		D) Correction of the second se		Constaliand e Constaliant

Current ACC increases congestion New/improved ACC start reducing congestion at 10% penetration rate CACC strongly reduces congestion

Note: (C)ACC modelled as 'special' drivers

Huisman (2016) Repository.tudelft.nl

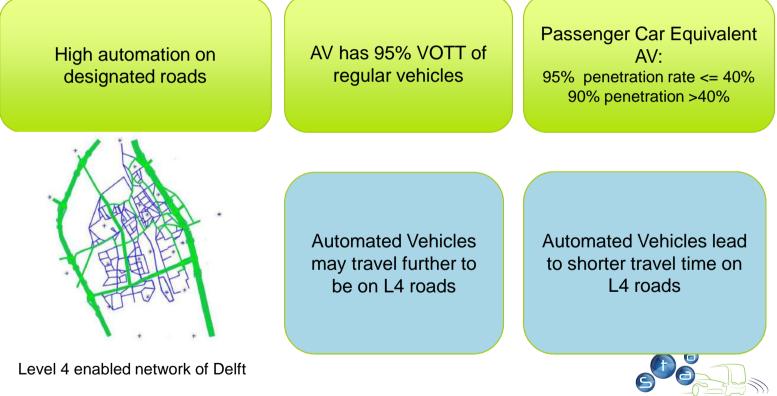
General findings on motorway capacity

"CACC can double roadway capacity"

- on motorways without on/off ramps -

Many microsimulations Different reference cases ACC and CACC Hardly any bottlenecks Arnaout & Bowling, 2011; Arnaout & Arnaout, 2014; Delis, Nikolos, & Papageorgiou, 2015; Fernandes, Nunes, & Member, 2015; Grumert, Ma, & Tapani, 2015; Hoogendoorn, van Arem, & Hoogendoorn, 2014; Huang, Ren, & Chan, 2000; Michael, Godbole, Lygeros, & Sengupta, 1998; Monteil, Nantes, Billot, Sau, & El Faouzi, 2014; Ngoduy, 2013; Rajamani & Shladover, 2001; Shladover, Su, & Lu, 2012; van Arem, van Driel, & Visser, 2006; Yang, Liu, Sun, & Li, 2013; Carbaugh et al., 1998; Hall et al., 2001; Le Vine et al., 2015; Michael et al., 1998; Talebpour & Mahmassani, 2016; Wang et al., 2016a, b; Xie et al., 2016; Zhou et al., 2016)

ACC changes motorway capacity between -5% and +10% At bottlenecks change is less than +10% Additional benefits: improving stability (CACC) and reducing capacity drop CACC increase capacity further at penetration rates beyond 40%


Hoogendoorn et al (2014), Automated driving, traffic flow efficiency and human factors: literature review, Transportation Research Record Milakis et al (2017), Policy and society related implications of automated driving, Journal of ITS.

Network design and impacts of Automated Driving

ŤUDelft

atial and Transport Impacts of Automated Driving

User equilibrium static assignment

ŤUDelft

	0%		90 % 0.9 0.8 0.8 0.7 0.7 0.7	Dynamic assignment Multi-user class Optimal
Penetration Rate	Total Travel Cost (€)	Total Travel Time (h)	Total Travel Distance (km)	Network Design
0	71265	3451	211580	
10%	70897	3448	211686	
50%	67574	3438	212911	
90%	64634	3429	213971	
Max improvement	- 9%	- 1%	+1%	rth coming to the coming of th

Madadi et al (2017) Automated Driving and infrastructure network design (TRB 2018, forthcoming)

Automated Vehicles in National Market and Capacity Analysis (NMCA) MMCA personenvervoer 2040

NMCA

Updated every 4 year to identify main transport problems

Used to support major transport infrastructure decisions

Typical horizon 20 years

Uses Dutch National Transport Model (LMS)

What if AVs could deliver substantial capacity improvement in 20 years?

I&M (2017), Nationale Markt- en Capaciteitsanalyse Hoofdrapport, 01-05-2017

Spatial and Transport Impacts of Automated Driving

Results* motorways

	AV Penetration rate cars	AV Penetration rate trucks	PCU car HWN	PCU truck HWN*	∆VOT car	ΔVOT truck
Truck platooning	0%	40%	1	0,75	0%	-20%
Autonomous	30%	40%	1,15	0,75	-5%	-20%
Cooperative	30%	40%	0,7	0,75	-5%	-20%
Cooperative VOT	30%	40%	0,7	0,75	-20%	-20%
	0070	1070	No.	0,10	2070	2070

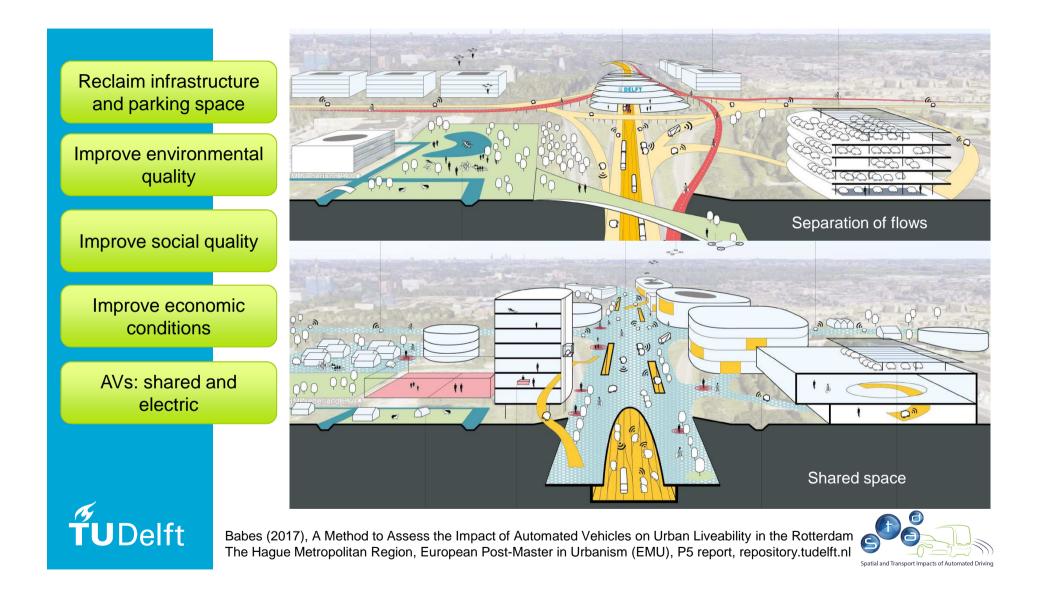
Capacity –4,5%

Capacity + 9%

KM driven	Morning peak	Evening peak	Other	Total	Vehicle loss hours	Morning peak	Evening peak	Other	Total
Truck platooning	100.9	100.8	100.9	100.8	Truck platooning	97.6	95.9	99.6	97.8
Autonomous	99.1	100.2	99.0	99.8 🕇	Autonomous	103.6	107.9	104.7	105.3
Cooperative	105.3	103.2	105.4	103.9	Cooperative	91.0	80.0	91.9	87.9
Cooperative VOT	106.4	105.0	106.7	105.5	Cooperative VOT	94.0	83.9	95.1	91.3

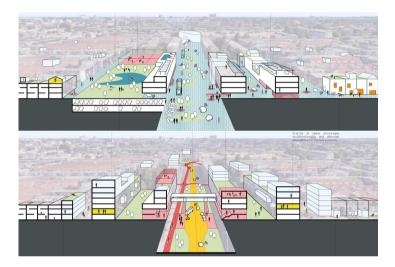
* Results are indications. Functionality to assess impacts of AVs is still experimental.

Do we need them?



Self-driving cities

AV slowly building market penetration in specific groups


Traffic efficiency only improves when AVs are cooperative

Transport system level impacts moderate

ŤUDelft

AV friendly roads C-ITS EVs, sharing Parking, accessibility and land use policies Learning by doing (but safe!)

Thank you!

http://www.citg.tudelft.nl/BvanArem

