
An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 1/248

www.trafmon.org

Detailed Design
Thomas Grootaers, Luc Lechien

Software Release 1.0

2020-10

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 2/248

COPYRIGHT, LICENSE AND TRADEMARKS
Original text is © 2020 AETHIS sa/nv Belgium, Thomas Grootaers, Luc Lechien

This material is based upon work funded and supported by the European Space Agency
and the Belgian Federal Authorities (BELSPO) under GSTP Contract Nr ESRIN
4000128964/19/I-EF with AETHIS sa/nv, Belgium.

The view, opinions, and/or findings contained in this material are those of the authors and
subsequent free contributors and should not be construed as an official ESA, Government
or AETHIS position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name,
trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favouring by ESA or AETHIS.

NO WARRANTY. THIS AETHIS MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. AETHIS
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. AETHIS DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT] This material is for approved for public release and
unlimited distribution under the terms and conditions of Open Source Apache License v2.0
(https://www.apache.org/licenses/LICENSE-2.0.txt, OSI Approved
https://opensource.org/licenses/Apache-2.0), which governs its use, distribution,
modification and re-publication.
Adobe is a registered trademark of Adobe Systems Incorporated in the United States and/or other countries.
AngularJS is a trademark of Google, Inc., https://angularjs.org/
CentOS Marks and JBoss are trademarks of Red Hat, Inc. ("Red Hat").
CERT is a registered trademark owned by Carnegie Mellon University
Eclipse and BIRT are registered trademarks of the Eclipse Foundation, Inc. in the United States, other
countries, or both.
JQuery and JQuery UI are trademark of OpenJS Foundation, https://openjsf.org/
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
MaxMind, GeoIP, GeoLite, and related trademarks are the trademarks of MaxMind, Inc.
Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and/or other
countries.
OpenSSL is a registered trademark of the OpenSSL Software Foundation in the U.S. and other countries.
Oracle, Java, MySQL, WebSphere and Solaris are registered trademarks of Oracle and/or its affiliates in the
United States and other countries.
Python is a registered trademark of the Python Software Foundation.
Tomcat® and Apache HTTP Server™ are (registered) trademarks of the Apache Software Foundation.
UNIX is a registered trademark of The Open Group.
WebLogic is a registered trademark of IBM Corp. in the United States, other countries, or both
Wireshark is a registered trademark of the Wireshark Foundation.
All other trademarks are the property of their respective owners.

https://www.apache.org/licenses/LICENSE-2.0.txt
https://opensource.org/licenses/Apache-2.0

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 3/248

DOCUMENT HISTORY

Release Date Change
1.0 Oct 2020 First issue

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 4/248

ACKNOWLEDGEMENTS
The authors wish to acknowledge the valuable contributions of all ancient employees of
the AETHIS® Company in Belgium, who have worked on the successive versions of the
base software and its documentation from which the open source trafMon software is
derived.

In particular, special recognition is given to Jacques Maes, David Orban, Jonathan Van
den Schrieck, Benoît Liétaer, Julien Denis, Thomas Soupart, Fabien Coenegrachts, who
have more specifically participated to its elaboration. Also a thought is given in memory the
authors’ deceased associate, Luc Steenput, who has heavily promoted the initial idea and
subsequent enhancements of the tool, within the European Space Agency and elsewhere.

Lastly, the authors wish to acknowledge the strong support of ESA staff members:
Manfred Lugert, Erling Kristiansen, Johan Stjernevi, Manfred Bertelsmeier, Gioacchino
Buscemi, Michele Iapaolo, Andrea Cogliandro and Claudia Neroni, as well as of officers of
the Belgian BELSPO Federal Service, Jacques Nijskens, Agnès Grandjean and Hendrick
Verbeelen.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 5/248

TABLE OF CONTENT
1. TRAFMON SOFTWARE STRUCTURE ...10

1.1 OVERVIEW OF TRAFMON SOFTWARE COMPONENTS .. 10
1.2 SOFTWARE CODE STRUCTURE .. 11

1.2.1 C Programs .. 12
1.2.2 Diagnostics Messages Logging ... 14
1.2.3 C Coding Convention ... 15
1.2.4 trafGen: TCP/UDP Packet Generator .. 20

1.3 TRAFMON MEASUREMENT MECHANISM ... 23
1.3.1 Probing .. 23
1.3.2 Filtering for Flow Classes Matching .. 26
1.3.3 Retaining FTP Data Connection Packets and IPv4 Second and Subsequent fragments 27
1.3.4 Protocol Stateful Analysis and Probe Measurements ... 28
1.3.5 Probe PDU Protocol with Collector ... 32
1.3.6 Collector Further Processing and Output .. 34
1.3.7 One-Way Flows Observations Consolidation and Measurement .. 37

2. TRAFMON C-CODE ON-LINE SOFTWARE COMPONENTS ...40

2.1 TRAFMON MEASUREMENT MECHANISM ... 40
2.1.1 Probing .. 40
2.1.2 Filtering for Flow Classes Matching .. 41
2.1.3 Retaining FTP Data Connection Packets and IPv4 Second and Subsequent fragments 42
2.1.4 Protocol Stateful Analysis and Probe Measurements ... 43
2.1.5 Probe PDU Protocol with Collector ... 47
2.1.6 Collector Further Processing and Output .. 49

2.2 PROBE: MAIN DATA STRUCTURES ... 53
2.2.1 Capture Interfaces ... 53
2.2.2 Dissected Packet Information ... 54
2.2.3 IP Fragments to Skip ... 59
2.2.4 Flow Class Parsed Specifications ... 60
2.2.5 Single-Pass Combined Flow Classes Filtering .. 64
2.2.6 Granular Flows and Discovered Flow Instances .. 68
2.2.7 IP Reassembly Queues .. 71
2.2.8 TCP Connection Record ... 72
2.2.9 FTP Control Session Record ... 74
2.2.10 FTP Data Connection .. 75
2.2.11 Packet Counters ... 76
2.2.12 Histograms and Delay Metrics ... 78
2.2.13 Probe PDU Pending ACK ... 79

2.3 COLLECTOR: MAIN DATA STRUCTURES .. 82
2.3.1 Peer Probe Records ... 82
2.3.2 Input PDU Ring Buffer ... 83
2.3.3 Flow Instance Records ... 83
2.3.4 Flow Class Hops Records ... 84
2.3.5 Consolidated Packet Observations Records .. 85

2.4 TRAFMON COMMON CORE C DATA STRUCTURES .. 87
2.4.1 Probe PDU structures .. 87
2.4.2 Histograms and Metrics .. 87
2.4.3 Efficient Flexible Dictionary and BTree .. 89
2.4.4 Circular Buffers .. 92

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 6/248

2.4.5 Hash Table .. 95
2.4.6 Timers ... 97

3. TRAFMON DATABASE PROCESSING AND REPORTING...99

3.1 DATABASE SCHEMA ... 99
3.1.1 Persistent Tables Templates ... 101
3.1.2 Temporary Input Tables Templates .. 125

3.2 DATABASE STORED PROCEDURES .. 134
3.2.1 Protocol Details Aggregates Update ... 134
3.2.2 Partitioning Process .. 136
3.2.3 Data Preparation Procedures .. 136
3.2.4 Additional Stored Procedures .. 138
3.2.5 Data Computations upon Report Generation ... 139

3.3 NETFLOW DATA COLLECTION .. 140
3.4 DATABASE REGULAR LOADING AND AGGREGATING PYTHON SCRIPT .. 141

3.4.1 IP Addresses Geolocation .. 142
3.4.2 Database Regular Aggregation ... 142
3.4.3 Database Partitions and Efficient Clean-up .. 143

3.5 DATABASE USERS .. 144
3.5.1 Database management user ... 144
3.5.2 Database reporting user ... 144

3.6 BIRT REPORTING .. 145
3.6.1 Selected Tools ... 145
3.6.2 Expert User .. 145
3.6.3 BIRT Report Templates .. 146
3.6.4 Apache Tomcat Environment for On-demand Generation of trafMon Reports 147
3.6.5 Apache Httpd Environment for On-demand Generation of trafMon Reports ... 149
3.6.6 Apache Tomcat Environment for Batch Generation of trafMon Reports .. 153

3.7 DATA MAINTENANCE ... 157

4. TRAFMON INTERFACE CONTROL DOCUMENTATION .. 159

4.1 TRAFMON ONLINE FUNCTIONS XML CONFIGURATION INTERFACE .. 159
4.1.1 Definition of XML Configuration ... 161
4.1.2 Example of XML Configuration File ... 180

4.2 TRAFMON DIAGNOSTIC LOGGING CONTROL INTERFACE .. 190
4.3 PROBE CAPTURE INTERFACE .. 192
4.4 PROBE PDU TO COLLECTOR PROTOCOL ... 195

4.4.1 General Mechanism .. 195
4.4.2 Common PDU Header ... 195
4.4.3 Heart Beat PDU ... 195
4.4.4 Flow Instance Description Records PDU .. 195
4.4.5 Flow Instance Protocol Counters Records PDU ... 198
4.4.6 Compact per-Packet/Datagram One Way Observations PDU .. 203
4.4.7 Individual Delays PDU ... 209
4.4.8 Metric Single or Multi-Slice (Histogram) Aggregate Description PDU .. 212
4.4.9 Metric Instances Data PDU ... 214
4.4.10 Per-TCP Connection Stateful Observation Data PDU ... 215
4.4.11 Per-File Transfer Information PDU ... 217
4.4.12 Events PDU ... 219

4.5 PROBE LOCAL SAVING OF PDU’S (UNUSED).. 221
4.6 COLLECTOR OUTPUT LOG FILES .. 221

4.6.1 Flow Description Log ... 228
4.6.2 Flow IP Counters Log ... 229

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 7/248

4.6.3 Flow IP Sizes Distribution Log .. 230
4.6.4 Flow ICMP Counters Log ... 231
4.6.5 Flow UDP Counters Log ... 232
4.6.6 Flow TCP Counters Log .. 232
4.6.7 Flow FTP Counters Log .. 234
4.6.8 Flow TCP Connections Log... 236
4.6.9 Flow FTP File Transfers Log ... 238
4.6.10 Metric Slices Definitions Log... 241
4.6.11 Flow Round-Trip Delay Metrics Data Log ... 242
4.6.12 Flow Classes Hop Lists .. 244
4.6.13 Flow Individual 1-Way Observations Log ... 245
4.6.14 Flow 1-Way Latency Log .. 247
4.6.15 Flow 1-Way Abnormality Counters Log .. 248

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 8/248

TABLE OF FIGURES
Figure 1: trafMon Factory Qualification Environment 180

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 9/248

ACRONYMS AND ABBREVIATIONS

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 10/248

1. TRAFMON SOFTWARE STRUCTURE
Although compatible with other versions and different Linux distributions, the trafMon
software has been developed for the Linux CentOS 7.x operating system, which is the
open-source correspondent of RedHat Enterprise Linux (RHEL) 7.x.

1.1 OVERVIEW OF TRAFMON SOFTWARE
COMPONENTS
The trafMon software consists in an on-line part, which continuously analyses the
monitored traffic its captures, and an off-line part, which consists in batch measurements
loading and metrics computation and aggregation in relational database and in a report
generation function.

The on-line functions are, by nature, distributed.

The probe program materialises the points where the monitored traffic is captured. This
program runs at the several monitoring locations. It conducts protocol dissection, filtering
and categorising of traffic flows, whose instances are dynamically discovered; some flows
are simply reported as individual packet observations, others are feeding statistics
counters that are regularly reported, other serve to measure 2-way round-trip delays, other
feed full-stack stateful protocol analysis, following the evolution of TCP connections, the
command/response dialog of FTP control sessions and producing measurement records
of application-level transfer of files.

The collector program centralises live observations and measurements from the probes,
typically at one location. However collectors can be replicated at different sites; for
redundancy reasons or for separately feeding their local monitoring centres. Most of the
probes measurements are sufficiently complete and compact to be simply output by the
collector. Others require further aggregation processing and metrics production, as the
one-way latency and counters of packet losses/partial/dropped. While the granular per-
packet partial observations, produced by different probes, are merged before collector
output or measurement processing.

Although offline – i.e. not directly connected with the monitored network – the offline
functions are continuously fed, in near real time, with the results data files produced by the
collector.

The database loading, metrics computation and aggregation is a script launched
periodically, at a period in the order of few minutes to a quarter. It pre-loads all available
collector output data into temporary tables. These data serve to selectively update and
complement the recent top of the several corresponding metric aggregates, at different
time scales. Then the fine grain raw data persistent tables are complemented with the
newly loaded information.

A data ageing mechanism, also run regularly, permits to keep the size of persistent raw
data and of granular aggregates at acceptable level, by destroying ancient records when

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 11/248

they fall out of the per table defined time window span. This mechanism is implemented in
an efficient way by playing with the partitioning property of the concerned MySQL tables
into successive time range physical chunks. Cleaning out old data from a table consists in
dropping an obsolete partition.

The reporting functions rely on the BIRT public domain tool running on Apache Tomcat
and extracting the relevant measurements via ODBC SQL queries executed on the
MySQL database.

Several report templates are pre-designed. Those report templates can be run in batch
mode to produce reports over fixed time frames, typically as PDF electronic documents.

Those report templates can also be run dynamically via a Web interface, with custom
selection of report parameters – typically time boundaries – and through navigation of drill-
down sub-reports accessible via hyperlinks. This way, each report figure is produced on-
the-fly, implying to wait for execution of database queries and supplemental BIRT reporting
computations.

To facilitate the interactive drill-down navigation through the reports and data, a basic Web
application presents a dynamic menu bar at the top of the browser window. This is built in
JavaScript with AngularJS and JQuery, and is linked to the database via PHP scripts.

While the Web Runtime Engine of BIRT runs as an Apache Tomcat application, the
trafMon Menu Bar is served by the Apache HTTPD daemon.

1.2 SOFTWARE CODE STRUCTURE
The trafMon software and configuration samples is a GIT repository. In a first time it won’t
yet be published on GitHub, before the available lifecycle support tool for open source
community are fully understood to permit contributors to participate in an orderly way.

The on-line function are coded in C language. The source code has been written using
uniform conventions, keeping in mind that the code must be easy to understand by any
newcomer (comments are felt more important than a perfect code). Care has been taken
to control the memory boundaries and to never trust any portion of the network packets,
especially those under inspection. This source code is entirely located in the three
following source files sub-directories: tmon_core, tmon_probe and tmon_coll.

$ ls -A trafMon
.git DIST_FILES.sh NOTICE tmon_core trafMon_reports
.gitattributes INSTALL README.trafMon tmon_probe trafMon_scripts
.gitignore ISSUES tgen trafMon_web
CHANGES LICENSE tmon_coll trafMon_etc

The files (schema, database users and permissions, sample configuration files, Python
scripts) related to the database, the data loading and the qualificaton of IP addresses are
stored in the sub-directory trafMon_db.

The set of trafMon pre-designed BIRT report templates are stored under the sub-directory
trafMon_db.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 12/248

The Web application implementing the interactive menu bar for selecting report generation
parameters consist in a mix of AngularJS+JQuery view and control JavaScript files and of
PHP files in a hierarchy under the sub- directory trafMon_web.

Several complementary scripts (Python and bash shell), for the batch generation of PDF
reports, for optional extraction of SiLK™ NetFlow records, for maintaining a production
trafmon system and for the generation of controlled traffic patterns are stored under
trafMon_scripts.

A more specialized C program that permits to implement a cycling over a precise scenario
of individual UDP datagrams and TCP pseudo-packets is provided under tgen.

Several samples of configuration files for setting up a production trafmon system are
stored in the sub- directory trafMon_etc.

A set of text files with upper case names are implied by the open source software
distribution and the choose Apache2 License.

The DISFILES.sh script permits to copy the non-binary architecture-independent files from
the source tree to a distribution package structure.

NOTE: currently, the source code and files are not adapted for the use of Autotools.
Contribution for this would be welcome.

1.2.1 C Programs
The directory tmon_core contains those modules shared between the tmon_probe and
tmon_collector programs.

$ ls tmon_core
Makefile tmon_circ_buf_tst.c tmon_diag.h tmon_metric.c
libtmon_NO_SNMP.a tmon_circ_pbuf.c tmon_dict.c tmon_metric.h
libtmon_SNMP.a tmon_circ_pbuf.h tmon_dict.h tmon_sharedmem.c
tmon_PDU.c tmon_config.c tmon_dict_tst.c tmon_sharedmem.h
tmon_PDU.h tmon_config.h tmon_event.c tmon_snmp.c
tmon_btree.c tmon_core.h tmon_event.h tmon_snmp.h
tmon_btree.h tmon_delay.c tmon_hash.c tmon_statistics.h
tmon_circ_buf.c tmon_delay.h tmon_hash.h tmon_timer.c
tmon_circ_buf.h tmon_diag.c tmon_hash_tst.c tmon_timer.h

For the specific case of tmon_snmp.c, conditional compilation permits to compile the
actual net-SNMP sub-agent related routines, or to replace them by empty stubs:

% cd tmon_core
% make clean
% make "COND_SNMP=SNMP"

or

% cd tmon_core
% make clean
% make "COND_SNMP=NO_ SNMP"

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 13/248

Once the right library file has been made, you can build the tmon_probe and
tmon_collector with the same conditional make.

The probe-specific source modules are under tmon_probe:

$ ls tmon_probe/
Makefile tmp_child.h tmp_pktinfo_dump.h
TRAFMON-PRB-MIB.txt tmp_delay.c tmp_publish.c
myProbe.diag.sample tmp_delay.h tmp_publish.h
singleProbe_sample.xml tmp_event.c tmp_reassembly.c
tmon.dtd tmp_event.h tmp_reassembly.h
tmon.xml_pcapFile_sample tmp_flowclass.c tmp_snmp.c
tmon_probe.c tmp_flowclass.h tmp_snmp.h
tmon_probe.diag tmp_flowfilter.c tmp_statistics.c
tmon_probe.h tmp_flowfilter.h tmp_statistics.h
tmon_probe_NO_SNMP tmp_granularflow.c tmp_tcpconnection.c
tmon_probe_SNMP tmp_granularflow.h tmp_tcpconnection.h
tmp_aggregate.c tmp_interface.c tmp_transmission.c
tmp_aggregate.h tmp_interface.h tmp_transmission.h
tmp_analyse.c tmp_pkt_dissect.c tmp_udptransaction.c
tmp_analyse.h tmp_pkt_dissect.h tmp_udptransaction.h
tmp_child.c tmp_pktinfo_dump.c

This directory also holds a sample production version and a typical testing versions of the
diagnostics trace tuning (resp. myProbe.diag.sample and tmon_probe.diag), the
SNMP custom MIB definition implemented by the conditional SNMP sub-agent within the
probe (TRAFMON-PRB-MIB.txt), the fully commented XML DTD file with the syntax for
the trafMon runtime configuration tuning (tmon.dtd) and two sample trafMon XML
configuration files: one for re-playing a packet capture file
(tmon.xml_pcapFile_sample), and one example with a single probe but with two
capture interfaces (singleProbe_sample.xml).

The collector-specific source modules are under tmon_coll:

$ ls tmon_coll/
Makefile tmc_flowinstance.h tmc_snmp.h
TRAFMON-COL-MIB.txt tmc_metric.c tmc_statistics.c
myCollector.diag.sample tmc_metric.h tmc_statistics.h
tmc_delay.c tmc_output.c tmc_transmission.c
tmc_delay.h tmc_output.h tmc_transmission.h
tmc_event.c tmc_pdu_decoder.c tmon_collector.c
tmc_event.h tmc_pdu_decoder.h tmon_collector.diag
tmc_flowclass.c tmc_probes.c tmon_collector.h
tmc_flowclass.h tmc_probes.h tmon_collector_NO_SNMP
tmc_flowinstance.c tmc_snmp.c tmon_collector_SNMP

This directory also holds a sample production version and a typical testing versions of the
diagnostics trace tuning (resp. myCollector.diag.sample and
tmon_collector.diag), the SNMP custom MIB definition implemented by the
conditional SNMP sub-agent within the probe (TRAFMON-COL-MIB.txt).

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 14/248

1.2.2 Diagnostics Messages Logging
The diagnostics tracing verbosity of every C software module file can be independently
tuned in the .diag configuration file. For a simple message printing at a given severity
level (fatal, error, warning, trace0, trace1, trace2 or trace3), the code
contains the following macro invocations:

#ifndef NO_SANITY
 if(!pktInfop || !pkt) {
 FATAL "INTERNAL: NULL argument pointer to routine" END;
 }
 if((pktInfop->pktHighestProtocol & isUDP) != isUDP) {
 ERR "pkt 0x%016"PRIx64" WRONG PACKET: Attempting to dissect NTP"
 " on non UDP packet", pktInfop->pktID END;
 return(0);
 }
#endif /* NO_SANITY */

…

 if((aTimeT < -4000) || (aTimeT > 4000)) {
 aTimeT = secs; /* uint32_t -> time_t for localtime argument */
 (void)strftime(str, 29, "%T", localtime(&aTimeT));
 WARN "pkt 0x%016"PRIx64" %s Client NTP SKIPPED:"
 " Orig time %s (%u sec) too far from packet capture time(%d)",
 pktInfop->pktID,
 TmpPktInfoIPv4Addrs2Str(pktInfop->pktIpInfo.ipSrcAddr,
 pktInfop->pktIpInfo.ipDstAddr,
 errMsg, STRMAX),
 str, secs, capTime END;
 return(0);
 }

…

 if(pktInfop->pktNtpInfop->ntpOrgTm.tv_sec == 0) {
 TR1 "pkt 0x%016"PRIx64" NTP Request SKIPPED: NULL Orig. Timestamp",
 pktInfop->pktID END;
 TR3 "MEM: free'd %p: SKIPPED", oneWayp END;
 free(oneWayp);
 return;
 }

…

 TR2 "pkt 0x%016"PRIx64" SNMP %s Round-Trip %s - %s DELAY %d.%.06d",
 reqPktp->pktID,
 (reqPktp->pktSnmpInfop->snmpType == SNMP_INFORM)? "INFORM": "Request",
 TmonGMTimeToStr(&(reqPktp->pktPcapHdr.ts)),
 TmonGMTimeToStr(&(rspPktp->pktPcapHdr.ts)), delta.tv_sec,
 delta.tv_usec END;

…

START_TR3
 switch(pktInfop->pktNtpInfop->ntpMode) {

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 15/248

 case NTP_MODE_CLIENT: /* This has the second timestamp */
 typeStr = "New REQ";
 break;
 case NTP_MODE_SERVER:
 typeStr = "Prev RSP";
 break;
 default:
 return;
 }
 TR3 "pkt 0x%016"PRIx64" Submitted %s for NTP CLIENT ROUND-TRIP: "
 "Org=%d.%.06d, Rcv=%d.%.06d, Xmit=%d.%.06d", pktInfop->pktID, typeStr,
 pktInfop->pktNtpInfop->ntpOrgTm.tv_sec,
 pktInfop->pktNtpInfop->ntpOrgTm.tv_usec,
 pktInfop->pktNtpInfop->ntpRcvTm.tv_sec,
 pktInfop->pktNtpInfop->ntpRcvTm.tv_usec,
 pktInfop->pktNtpInfop->ntpTmtTm.tv_sec,
 pktInfop->pktNtpInfop->ntpTmtTm.tv_usec END;
END_TR3

In the .diag configuration file, it is possible to globally deactivate the code to format and,
maybe even to prepare (see above example between START_TR3 and END_TR3),
messages at a given level or higher: Highest_level directive (which takes precedence).
This alleviates the runtime work.

Then, for each module, the desired level of verbosity and the list of destinations (log
filename and/or stdout and/or stderr) can be specified.

Lines starting with a hash mark are comments

Highest_level trace2

FORMAT
======
program module level log log ...
WHERE log is a full pathname or stdout or stderr

…
tmon_probe tmp_udptransaction warning /var/log/trafMon/myProbe.log
#tmon_probe tmp_udptransaction trace2 /var/log/trafMon/myProbe.log stderr
#tmon_probe tmp_udptransaction trace3 /var/log/trafMon/myProbe.log

1.2.3 C Coding Convention
The C code is manually aligned for max. 80 characters per line (easy to print, easy to
juxtapose multiple editor windows, e.g. gvim). Right alignment of split lines is made
manually.

TABS are ALWAYS EXPANDED, aligned at 2 characters (minimal indentation for better
readability).

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 16/248

Routine names start with upper case letter, variables with lowercase, typedefs end with _t,
pointer variables end with p.

Routine names are normally prefixed as per their module name of at least program name.

Return type of a routine is written in the line above is definition, so that the routine name is
left aligned. This permits to retrieve all definitions at once:

% grep '^[A-Z].*(' *.c

Each word in an identifier starts with an upper case letter. Except for types, underscore
separators are avoided to keep identifiers relatively short.

As in K&R C (before ANSI-C), all local variables are declared at the start of the routine
and, were relevant, are pre-initialised (especially pointers). This way, no difficulty for a
reader to retrieve its declaration (and type).

Comments and readability are more important than a working code: anybody can later fix
the problems, provided he can understand what the code is intended for (even if buggy).
Comments must be maintained up-to-date with code changes!

Obfuscated construct must be avoided of fully explained.

Example:

/*
 * Extracts type and Request ID from SNMPv1/v2c or MessageID from v3 packet
 */
/*
 * SNMP Implies partial support of ASN.1 Basic Encoding Rules
 *
 * Routine that read one element form a BER sequence:
 * i.e. Its type (one byte)
 * its length (one or more bytes)
 * its value (depending on type-length)
 *
 * Returns 1 when successfully decoded next BER item
 * 0 upon parsing limitation (unexpectedly complex format)
 * -1 upon format error
 */
int
TmpGetBerItem(const u_char **bufp, int *sizp, tmp_ber_t *item)
{
#ifndef NO_SANITY
 if(!bufp || !*bufp || !sizp || *sizp < 3 || !item) {
 WARN "Can't get any BER item from %p of size %u", bufp ? *bufp : 0,
 sizp ? *sizp : 0 END;
 return(-1);
 }
#endif /* NO_SANITY */

 item->type = (*bufp)[0];
 (*bufp)++; (*sizp)--; /* Type removed */

 item->size = (uint16_t)(*bufp)[0]; /* Size [0..127] on 7 bits ? */
 (*bufp)++; (*sizp) --; /* 1-byte size removed */
 if(item->size == 0x81) { /* No, size [0..255] in next byte */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 17/248

 item->size = (uint16_t) (*bufp)[0];
 (*bufp)++; (*sizp)--; /* 1-more-byte size removed */
 } else if(item->size == 0x82) { /* No, size [0..65535] in 2 next bytes */
 memcpy(&(item->size), *bufp, 2);
 item->size = ntohs(item->size); /* Put it in host byte order */
 (*bufp) += 2; (*sizp) -= 2; /* 2-more-byte size removed */
 } else if(item->size & 0x80) {
 WARN "Can't handle BER items over 64K: %02x", item->size END;
 return(0);
 }

 if(item->size > *sizp) {
 TR2 "BER item needs more bytes than what buffer has got: %u > %u",
 item->size, *sizp END;
 item->size = *sizp;
 }

 switch(item->type) {
 case BER_INT_TYPE:
 item->ber_intVal = 0;
 if(item->size > 4) {
 WARN "Can't handle INT over 32 bits: %u", item->size END;
 return(0);
 }
 memcpy(&(item->ber_intVal), *bufp, item->size);
 /* justify to low bytes: [abcdef--] -> [00abcdef] */
 item->ber_intVal = ntohl(item->ber_intVal); /* Host byte order */
 item->ber_intVal = item->ber_intVal >> (8 * (4-item->size));
 TR2 "BER decoded %u-byte INT: %u", item->size, item->ber_intVal END;
 break;
 case BER_STR_TYPE:
 item->ber_strVal = (char*)*bufp;
 TR2 "BER decoded STR of %u bytes", item->size END;
 break;
 case BER_SEQ_TYPE:
 case SNMP_GET_REQ:
 case SNMP_GET_NEXT:
 case SNMP_GET_RESP:
 case SNMP_SET_REQ:
 case SNMP_GET_BULK:
 case SNMP_INFORM:
 case SNMP_REPORT:
 case SNMP_V1_TRAP:
 case SNMP_V2_TRAP:
 item->ber_berVal = (void*)*bufp;
 TR2 "BER decoded BER of %u bytes", item->size END;
 break;
 default:
 item->ber_anyVal = (void*)*bufp;
 TR2 "BER decoded ANY(%02x) of %u bytes", item->type, item->size END;
 }
 (*bufp) += item->size; (*sizp) -= item->size;
 return(1);
}
/*
 * Minimal SNMP Dissector
 *

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 18/248

 *
 * UDP payload is one of:
 * SNMPv1/v2c
 * /--BER-SEQUENCE--\
 * | /--PDU-------------------\ |
 * | [--VERSION-NUM--] [--COMMUNITY--] | [--REQ-ID--] ... | |
 * | \------------------------/ |
 * \--/
 * SNMPv3
 * /--BER-SEQUENCE--\
 * | /--BER-SEQUENCE------------\ |
 * | [--VERSION-NUM--] | [--REQ-ID--] ... | ... |
 * | \--------------------------/ |
 * \--/
 *
 * Returns 1 when transaction/request ID parsed from SNMP packet
 * 0 otherwise
 * Exit(1) upon sanity error
 */
int
TmpDissectSNMP(tmp_packet_info_t *pktInfop, const u_char *pkt)
{
 register int res; /* remaining payload size */
 const u_char *berp = 0; /* Current position of BER decoder */
 int size; /* remaining payload size */
 tmp_ber_t berItem; /* Used to decode BER items */

#ifndef NO_SANITY
 if(!pktInfop || !pkt) {
 FATAL "INTERNAL: NULL argument pointer to routine" END;
 }
 if((pktInfop->pktHighestProtocol & isUDP) != isUDP) {
 ERR "pkt 0x%016"PRIx64" WRONG PACKET: Attempting to dissect SNMP"
 " on non UDP packet", pktInfop->pktID END;
 return(0);
 }
 if(pktInfop->pktPayloadLen < SNMP_MINHLEN) {
 ERR "pkt 0x%016"PRIx64" Too Short to dissect NTP Timestamps",
 pktInfop->pktID END;
 return(0);
 }
#endif /* NO_SANITY */

 berp = &(pkt[pktInfop->pktPayloadOfst]);
 size = pktInfop->pktPayloadLen;

 /*
 * Surrounding SEQUENCE
 */
 res = TmpGetBerItem(&berp, &size, &berItem);
 if((res <= 0) || (berItem.type != BER_SEQ_TYPE)) {
 WARN "pkt 0x%016"PRIx64" WRONG PACKET: Not SNMP format",
 pktInfop->pktID END;
 return(0);
 }

 /* Decode the content of the BER sequence */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 19/248

 berp = berItem.ber_berVal;
 size = berItem.size;

 /*
 * SNMP Protocol Version: INTEGER
 * =====================
 */
 res = TmpGetBerItem(&berp, &size, &berItem);
 if((res <= 0) || (berItem.type != BER_INT_TYPE)) {
 WARN "pkt 0x%016"PRIx64" WRONG PACKET: Not SNMP format",
 pktInfop->pktID END;
 return(0);
 }

 switch(berItem.ber_intVal) {
 case SNMPV1_VERSION:
 case SNMPV2C_VERSION:
 /*
 * Skip Community Name
 */
 res = TmpGetBerItem(&berp, &size, &berItem);
 if((res <= 0) || (berItem.type != BER_STR_TYPE)) {
 WARN "pkt 0x%016"PRIx64" WRONG PACKET: Not SNMP format",
 pktInfop->pktID END;
 return(0);
 }
 /*
 * SNMP PDU Type
 */
 res = TmpGetBerItem(&berp, &size, &berItem);
 if((res <= 0) || (berItem.type < SNMPPDU_TYPE_MIN)
 || (berItem.type > SNMPPDU_TYPE_MAX)
 || (berItem.type == SNMP_V1_TRAP)
 || (berItem.type == SNMP_V2_TRAP)) {
 return(0);
 }
 /* only for request/response */
 pktInfop->pktSnmpInfop->snmpType = berItem.type;
 /*
 * SNMP Request ID
 */
 berp = berItem.ber_berVal;
 size = berItem.size;
 res = TmpGetBerItem(&berp, &size, &berItem);
 if((res <= 0) || (berItem.type != BER_INT_TYPE)) {
 return(0);
 }
 pktInfop->pktSnmpInfop->snmpReqID = berItem.ber_intVal;
 return(1);
 case SNMPV3_VERSION:
 /*
 * SEQUENCE
 */
 res = TmpGetBerItem(&berp, &size, &berItem);
 if((res <= 0) || (berItem.type != BER_SEQ_TYPE)) {
 return(0);
 }

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 20/248

 /*
 * SNMPv3 MessageID
 */
 berp = berItem.ber_berVal;
 size = berItem.size;
 res = TmpGetBerItem(&berp, &size, &berItem);
 if((res <= 0) || (berItem.type != BER_INT_TYPE)) {
 return(0);
 }
 pktInfop->pktSnmpInfop->snmpReqID = berItem.ber_intVal;
 return(1);
 /* XXX should continue to decode for trying to detect no privacy */
 /* (i.e. not encrypted) and decode the SNMP PDU Type */
 default:
 /* not right version */
 return(0);
 }

 return(1);
}

1.2.4 trafGen: TCP/UDP Packet Generator
The trafgen program re-uses the tmon_core diag, timer and config modules and
make use of a similar XML/DTD approach for the configuration file.

$ ls tgen
Makefile tgen_TCP.h tgen_config.c trafgen trafgen.h
tgen.dtd tgen_UDP.c tgen_config.h trafgen.c
tgen_TCP.c tgen_UDP.h tgen_ipts.xml trafgen.diag

The DTD gives explanations for use:

<!--
 Copyright (c) 2020 AETHIS s.a./n.v., Belgium. All rights reserved.
 www.trafmon.org

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<!-- The Traffic Generator (trafGen) DTD ### Current version $Id:
aedf10a5fc18d828c81ab6aa2cd6b838c92130f4 $-->
<!ELEMENT TrafGen (Peers, Scenario) >
<!ATTLIST TrafGen name NMTOKEN #REQUIRED
 serial NMTOKEN #REQUIRED
 startAt CDATA #REQUIRED
>

http://www.apache.org/licenses/LICENSE-2.0

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 21/248

 <!-- the name identifies the generator instance and its .xml config -->

<!ELEMENT Peers EMPTY >
<!ATTLIST Peers srcIP NMTOKEN #IMPLIED >
<!ATTLIST Peers srcPort NMTOKEN #IMPLIED >
<!ATTLIST Peers dstIP NMTOKEN #REQUIRED >
<!ATTLIST Peers dstPort NMTOKEN #REQUIRED >
<!ATTLIST Peers proto (udp | tcp) "udp" >
 <!-- srcIP and srcport are optional -->
 <!-- lets kernel choose if absent -->
 <!-- dstIP may be a MULTICAST address -->
 <!-- implies setsockopt(IP_MULTICAST_LOOP, 0) -->
 <!-- uses setsockopt(IP_MULTICAST_TTL) instead -->
 <!-- of setsockopt(IP_TTL) when applicable -->

<!ELEMENT Scenario (Message+) >
<!ATTLIST Scenario period NMTOKEN #REQUIRED >
<!ATTLIST Scenario firstdelay NMTOKEN "0" >
 <!-- period: length, in msec, of a cycle covering the -->
 <!-- generation of msgcount message instances. -->
 <!-- More precisely, duration between the start -->
 <!-- times of two successive such cycles. -->
 <!-- N.B. The first period starts on a boundary aligned -->
 <!-- on an absolute second (as know by the local -->
 <!-- computer) -->

<!ELEMENT Message EMPTY >
<!ATTLIST Message flowname NMTOKEN #REQUIRED >
<!ATTLIST Message payloadlen NMTOKEN #REQUIRED >
<!ATTLIST Message mtu NMTOKEN #IMPLIED >
<!ATTLIST Message interfrag NMTOKEN "0" >
<!ATTLIST Message intermsg NMTOKEN "0" >
<!ATTLIST Message msgcount NMTOKEN "1" >
<!ATTLIST Message ToSprec NMTOKEN "0" >
<!ATTLIST Message ToSdtr NMTOKEN "0" >
<!ATTLIST Message iptscount NMTOKEN "0" >
<!ATTLIST Message iptsaddr (false|true) "false" >
<!ATTLIST Message payload CDATA #IMPLIED >
 <!-- A Message is a unit of payload data that can be fragmented -->
 <!-- When a MTU is explicitly specified, the fragmentation is -->
 <!-- made explicit by the generator. But the total volume -->
 <!-- resulting from the sending of one message instance is the -->
 <!-- same as if it would have been fragmented by IP layer: the -->
 <!-- UDP or TCP headers of second and remaining fragments are -->
 <!-- substracted from the message payloadlen -->
 <!-- firstdelay: msec to wait after the boundary aligned on -->
 <!-- the period before sending the first -->
 <!-- message instance. -->
 <!-- payloadlen: #bytes excluding first TCP/UDP header and -->
 <!-- excluding all fragment IP headers (see above)-->
 <!-- mtu: if present and > sizeof(iphdr+tcp/udp hdr) -->
 <!-- is used to compute explicit pseudo -->
 <!-- fragmentation of every message instance -->
 <!-- interfrag: msec to wait between successive fragments of -->
 <!-- a same message instance. -->
 <!-- intermsg: msec to wait between last fragment of a msg -->
 <!-- instance and first frament of next msg within-->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 22/248

 <!-- the same period. -->
 <!-- msgcount: # of successive message instances to send -->
 <!-- within a same period. -->

 <!-- CONSTRAINT: -->
 <!-- firstdelay + ((#frags -1) * interfrag) * msgcount -->
 <!-- + intermsg * (msgcount -1) < period -->

 <!-- ToSprec: IP ToS precedence value (three high order -->
 <!-- bits of the IP ToS byte) -->
 <!-- 0<= ToSprec <8 -->
 <!-- ToSdtr: Value of the three D/T/R bits if the IP ToS -->
 <!-- byte. -->
 <!-- 0<= ToSdtr <8 -->
 <!-- N.B. the binary concatenation of (ToSprec|ToSdtr)-->
 <!-- form the value of the DifServ DCSP -->
 <!-- The two low order bits of the IP ToS byte -->
 <!-- are always set to zero. -->
 <!-- N.B. if ToSprec==0 and ToSdtr==0, the generator -->
 <!-- does not specify the IP ToS to the IP stack -->
 <!-- iptscount: When iptscount > 0, creates an IP TIMESTAMP -->
 <!-- for containing up to iptscount (limited by -->
 <!-- maximum IP header length) -->
 <!-- iptsaddr: When iptscount > 0, ask the gateways to place -->
 <!-- their IP address together with their IP -->
 <!-- timestamp. -->
 <!-- payload: Optional content to be placed at start of -->
 <!-- message payload (less than 10000 resulting -->
 <!-- bytes). -->
 <!-- format: string of hexadecimal bytes (case insensitive)-->
 <!-- with following keywords: -->
 <!-- - sequence of 'T' (or 't') characters means -->
 <!-- to put current timestamp in second coded -->
 <!-- over as many bytes as there are 'T' (or 't')-->
 <!-- characters. -->
 <!-- MAXIMUM 4 consecutive 'T'. -->
 <!-- - sequence of 'N' (or 'n') characters means to-->
 <!-- put current message number coded over as -->
 <!-- many bytes as there are 'N' (or 'n') chars -->
 <!-- MAXIMUM 4 consecutive 'N'. -->
 <!-- - sequence of 'L' (or 'l') characters means to-->
 <!-- put current message fragment total payload -->
 <!-- length. -->

This sample XML config generates UDP datagram units sent from 141.253.123.200 to
UDP port 12345 at 192.168.102.30.

Every 500 ms, it generates:

• first, one short datagram with 128 bytes UDP payload (unfragmented), with room for
4 IP timestamps (unlike Solaris, Linux fills the first at source host), then waits 200
ms;

• then a big datagram, with 2880 bytes UDP payload, which results in
o one fragment, with room for 3 IP timestamps, then waits 100 ms,
o one fragment, with room for 3 IP timestamps

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 23/248

<!DOCTYPE TrafGen SYSTEM "tgen.dtd">

<TrafGen name="tgen_ipts" serial="1" startAt="2014-03-27 00:00:00">
 <Peers proto="udp" srcIP="141.253.123.200" dstIP="192.168.102.30"
 dstPort="12345"/>
 <Scenario period="500">
 <Message flowname="ipts" payloadlen="128" msgcount="1" intermsg="200"
 iptscount="4"/>
 <Message flowname="ipts" payloadlen="2880" msgcount="1" interfrag="100"
 iptscount="3"/>
 </Scenario>
</TrafGen>

1.3 TRAFMON MEASUREMENT MECHANISM

1.3.1 Probing
All measurements conducted by trafMon come from the inspection of IP (IPv4) traffic
packets captured by probe interfaces (C source file tmp_interface.c).

The packet capture relies on the standardised libpcap 1.4 module which, in its Linux
implementation, stores the packet in a possibly quite large kernel-resident ring buffer. In
trafMon, each probing interface can be configured with a storage capacity large enough to
cope with foreseeable peaks in high rate traffic flows. Such user configuration tuning must
be derived from a trade between the overall portion of computer RAM dedicated to this
usage and the traffic bursts anticipated at all the probing interface of a same probe
computer. Only the packet selected by the BSD capture filter assigned to each interface
will actually enter its kernel-resident capture buffer.

Such buffer capacity is set by the user in terms of number of number of (1600 bytes)
Ethernet frames.

Packet capacity
bufPacketCount

Maximum Frame Size
snapLen

Consumed RAM Bytes

70 000 1600 112 000 000

1 000 000 1600 1 600 000 000

Table 1: Per Probe Capture Interface Kernel Buffer Memory Consumption

 Care must however been taken in tuning such buffering for each interface. RAM is also
required for the probe processing (internal data structures, but also shared memory buffer
between father and child processes of the trafMon probe program) and file I/O (although
limited on probe dedicated computing platforms), as well as the potential output queue of
un-acknowledged trafMon PDU’s at destination of (temporarily unreachable) collectors.

By hiding this Linux specific kernel interface behind a general portable API, the libpcap
does unfortunately not reflect the actual amount of RAM that has been reserved. This

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 24/248

could well be only half of the requested size. An indirect (uneasy) feedback can be given
when launching the tmon_probe with strace:

strace -o strace.log ./tmon_probe -l probe
…
^C

In the strace.log, you can see the way the socket(PF_PACKET, SOCK_RAW) is
initialized:

socket(PF_PACKET, SOCK_RAW, 768) = 3
ioctl(3, SIOCGIFINDEX, {ifr_name="lo", ifr_index=1}) = 0
ioctl(3, SIOCGIFHWADDR, {ifr_name="Auto_p1p1", ifr_hwaddr=00:10:18:f7:b2:88}) =
0
ioctl(3, SIOCGIFINDEX, {ifr_name="Auto_p1p1", ifr_index=4}) = 0
bind(3, {sa_family=AF_PACKET, proto=0x03, if4, pkttype=PACKET_HOST, addr(0)={0,
}, 20) = 0
getsockopt(3, SOL_SOCKET, SO_ERROR, [0], [4]) = 0
setsockopt(3, SOL_PACKET, PACKET_ADD_MEMBERSHIP,
"\4\0\0\0\1\0\0\0\0\0\0\0\0\0\0\0", 16) = 0
setsockopt(3, SOL_PACKET, PACKET_AUXDATA, [1], 4) = 0
getsockopt(3, SOL_SOCKET, 0x30 /* SO_??? */, [52], [4]) = 0
getsockopt(3, SOL_PACKET, PACKET_HDRLEN, [28], [4]) = 0
setsockopt(3, SOL_PACKET, PACKET_VERSION, [1], 4) = 0
setsockopt(3, SOL_PACKET, PACKET_RESERVE, [4], 4) = 0
ioctl(3, SIOCETHTOOL, 0x7ffc17353e10) = 0
getsockopt(3, SOL_SOCKET, SO_TYPE, [3], [4]) = 0
getsockopt(3, SOL_PACKET, PACKET_RESERVE, [4], [4]) = 0
setsockopt(3, SOL_PACKET, PACKET_RX_RING, {block_size=4096, block_nr=532610,
frame_size=288, frame_nr=7456540}, 16) = -1 ENOMEM (Cannot allocate memory)
setsockopt(3, SOL_PACKET, PACKET_RX_RING, {block_size=4096, block_nr=505979,
frame_size=288, frame_nr=7083706}, 16) = 0

Look at the Linux header file /usr/include/linux/if_packet.h: the argument to
PACKET_RX_RING socket option is a struct tpacket_req, as below:

/*
 Frame structure:

 - Start. Frame must be aligned to TPACKET_ALIGNMENT=16
 - struct tpacket_hdr
 - pad to TPACKET_ALIGNMENT=16
 - struct sockaddr_ll
 - Gap, chosen so that packet data (Start+tp_net) alignes to
TPACKET_ALIGNMENT=16
 - Start+tp_mac: [Optional MAC header]
 - Start+tp_net: Packet data, aligned to TPACKET_ALIGNMENT=16.
 - Pad to align to TPACKET_ALIGNMENT=16
 */

struct tpacket_req
{
 unsigned int tp_block_size; /* Minimal size of contiguous block */
 unsigned int tp_block_nr; /* Number of blocks */
 unsigned int tp_frame_size; /* Size of frame */
 unsigned int tp_frame_nr; /* Total number of frames */
};

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 25/248

We see that a snaplen=”210” is translated by libpcap into tp_frame_size=288. And
we asked for a bufPacketCount="10 000 000". Due to the page size
(tp_block_size=4096), a block can hold a maximum of 14 frames. We were asking
room for more than 210*10 000 000 bytes (via libpcap pcap_set_buffer_size()).
And the library translates that by asking room for 7 456 540 frames (max 14 frames per
block, and an amount of 532610 blocks). But available memory doesn’t suffice
(ENOMEM), hence libpcap reduces its request to 7 083 706 frames (5% less), and this
passes. But the probe (with single interface) reserves more than 2000 MiB upon
initialisation (free –m command before and after the probe launch).

Being hidden inside the libpcap API, the per-interface packet buffer is not directly
accessible to the trafMon probe program, running in user space. And, for the sake of
reaching the stringent performance requirements imposed by the high and sustained data
rate of the EO ground network, the actual content of the vast majority of capture packets
will not undergo any further copy inside the probe program user space.

Packets are therefore analysed one after the other.

Each captured packet is systematically dissected at all possible layers of its protocol stack
(IPv4, ICMP, UDP, TCP, DNS, NTP, SNMP, FTP (HTTP hasn’t been implemented): C
source file tmp_pkt_dissect.c. Note that Flow Class filter mapping (single pass of
combined sieve) is necessary to determine which dissection is requested above UDP or
TCP transport layer (if any).

During protocol dissection, global probe-wide counters are updated.

It is not required to assign an IP address to the probing interface. The only mandatory
operation is to configure such interfaces as UP. This way, packet capture will occur in
stealth mode: the probe will not be visible on the LAN segments it is connected to, and
cannot be a target for attack at IP layer. Furthermore, the packet inspection and analysis
does not rely on trust placed on information field (e.g. announced data lengths), to avoid
that the probe be impacted when capturing a malevolent forged packet.

Although the probe requires packet capture privilege to run, it is not mandatory to run it as
root super-user:

• produce a /opt/tmon/bin/tmon_probe executable binary;

• create a specific Linux group, e.g. pcap and Linux runtime account for the probe,
e.g. probe having pcap as primary group

• Assign pcap as executing group to the tmon_probe:
chgrp pcap /opt/tmon/bin/tmon_probe
chmod 0750 /opt/tmon/bin/tmon_probe

• Assert the CAP_NET_RAW, CAP_NET_ADMIN capabilities for the tmon_probe
binary:
setcap cap_net_raw,cap_net_admin=eip /opt/tmon/bin/tmon_probe
getcap /opt/tmon/bin/tmon_probe

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 26/248

/opt/tmon/bin/tmon_probe = ap_net_admin,cap_net_raw+eip

• The use of sched_setaffinity(2) could also requires CAP_SYS_NICE
capability. But this isn’t necessary by the process modifying its own affinity.

1.3.2 Filtering for Flow Classes Matching
The results of a packet dissection (up to transport level) permit to apply all combined
predicates of all defined filters from all applicable configured flow classes. This filtering
method has been carefully implemented in the trafMon probe, in the most efficient way:
one single sieve traversal for rejecting all non-applicable Flow Classes (C source file
tmp_flowfilter.c). Indeed, all flow calls applicable to a given probe interface provides a filter
combining predicates on its protocol fields (Px). In its most general form, such filter
combines up to three levels of Boolean connectives:

• top level 1: AND or NAND: as in [NOT] (P1 AND S2 AND S3 AND P4)

• intermediate level 2: OR or NOR as in S2::= [NOT] (p5 OR p6 OR s7)

• bottom level 3: AND or NAND: as in s7::= [NOT] (pr8 AND pr9)
Flow class filters are not necessarily mutually exclusive: a packet may well match several
flow classes and, therefore, participate to different measurements.

A same protocol field can therefore be ruled by multiple predicates coming from different
flow class filter expressions.

The design driver for efficient flow class filtering relies therefore on the following
optimisation strategies:

• All predicates relative to a same protocol field are tested altogether, one after the
other (with the field value kept in a CPU register).

• As soon as a predicate test permits to conclude on the success or rejection of an
entire filter expression of a flow class, all its remaining predicates are disabled for
the packet under inspection.

• Systematic resort to switch/case C code constructs permits to avoid the overhead of
long series of if/then/else if ... exhaustive testing sequences.

Each time a predicate is tested, its result recursively updates (from top to bottom) the 1, 2
or 3-layers expression tree of connectives for the corresponding class.

Once the set of applicable flow classes has been determined for a first or single fragment
packet, the probe (father process) can decide whether the packet

• will be ignored or

• will require only its dissected field information for further analysis and measurement,

• will require to keep also its actual payload data for specific analysis (e.g. checksum
of fragmented datagram.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 27/248

1.3.3 Retaining FTP Data Connection Packets and IPv4 Second
and Subsequent fragments
Two specific cases also occur here, for not yet fully qualified packets:

• A TCP packet between a pair of host IP addresses could be member of the Data
connection of an FTP session. As it is always the case in practice, FTP data
transfers are assumed to occur between the same peers as the corresponding FTP
control connection (this is not imposed by the protocol itself but by the
implementations tradition). Therefore when first encountering the establishment of
such FTP control connection, the peer addresses are dynamically registered (in
TmpPktKeepFtpDataConnRoot binary search tree).
Any remaining TCP packet (or only its connection start/end SYN / FIN / RST when
only “start-stop” heuristic measurement is requested for the file transfer) that match
this address pair has its dissected information remembered for further stateful
analysis.

Note that analysing only the ftpdata=”start-stop” of TCP data connection permits to
skip the analysis (and the per-packet copy of dissected information) of nearly all
packets in a network dominated by FTP transfers.

While encountering the end packet of the control session (in practice, always closed
only after the end of a data transfer), the address pair is de-registered.

• A second or subsequent IP fragment does not contain the upper layer protocol
headers. Hence its dissection and flow class membership is incomplete. However,
such fragments need further analysis only when measurements are required:

o for “fullReassembly” checksum verification or
o when requested measurement is for “allFragments” or for reassembled

“datagram”
But fragments could be captured and inspected out of order. So the implemented
strategy is to retain all second or subsequent fragments, except those whose first
fragment has already been analysed, concluding that remaining fragments are not
needed and may be dropped.

So after analysis of a first fragment of an incomplete datagram, if none of its
matched flow classes imposes any of the above two rules then its source and
destination addresses and IP identifier are registered
(TmpReassRegSkippedDgram()), permitting to reject remaining corresponding
fragments (TmpReassIsSkippedDgram()). Those registry entries are regularly
cleaned-out by timeout.

Note that today, IP fragments are quite seldom. In a real target network context, we
have observed that only the UDP SNMP packets (response PDU) are sometimes
too long to fit in a 1500 bytes IP packet. Note the TCP is never fragmented, as the
WAN link can now afford the same MTU size as for Ethernet LAN segments.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 28/248

Finally, for those first or single fragment packets which require individual reporting, the
packet signature hash is computed, permitting to release the packet payload at this stage.

Note that, by dissecting the FTP Control packets, in the father probe process, the
sensitive information (i.e. the user FTP password) is voluntarily not remembered.
This way such items do not leave the captured packet residing only in the OS kernel of the
probe computer.

1.3.4 Protocol Stateful Analysis and Probe Measurements
All possible processing based on single packet content is now complete.

In order to take party of the modern processor architecture (multi-core/multi-CPU
parallelism), and for conducting further stateful protocol analysis and/or metrics
measurements updates on a separate processor core, the rest of the processing of the
retained packets is executed in a child process (C source file tmp_child.c).

The father process removes itself from all CPU core, but one. This CPU ID is then
removed from the scheduling affinity list of the child process (sched_getaffinity() and
sched_setaffinity() Linux system calls). The resulting effect is that the father assigns itself
to one CPU core only, while the child can be scheduled only on all other available CPU
cores.

The child process is launched only after parsing of the configured Flow Class XML
definitions. The resulting internal data structures, created on the father process virtual
memory, are therefore inherited as such by the child (at same virtual memory addresses
as those in father’s space). So the global table tmpFlowClassTab[] and its anchored
substructures can be referred to by the same index from father and from child processes.

A double circular buffer (common core C source file tmon_circbuf.c) for variable size data
chunks is instantiated by the father process inside a shared memory area (common core C
source file tmon_sharedmem.c). The father is the sole writer in the circular buffer, while
the child is the sole reader. Hence a circular buffer is the most efficient way to implement
queuing from father to child, without need of mutual exclusion via semaphores. But the
father warns its child about new availability of queued data by sending it a SIGUSR2
signal, waking it up when blocked in a select() system call. Inversely, when the buffer is
full, the father blocks on a usleep() (nanosleep() system call) and can also be woken up
by a SIGUSR2 signal from the child.

A queued packet always requires its dissected information (tmp_packet_info_t) and upper
layer “transport” sub-structure (tmp_tcp_info_t or tmp_dns_info_t or tmp_ntp_info_t or
tmp_snmp_info_t or tmp_icmp_info_t) and “application” sub-structure (tmp_ftp_info_t or
tmp_http_info_t). These occupy up to three successive slots in the circular buffer.

When the IP payload is also needed, for further processing of the packet, a last circular
buffer slot is filled with this captured upper part raw data chunk.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 29/248

After having fetched all queued data slots information on a next captured packet, the
child’s processing is driven by the TmpAnalyse() routine (C source file tmp_analyse.c).

Where relevant, it starts by re-assembling the datagram (with or without payload data
content), parking fragments in reassembly queue as long as the latest fragment isn’t
gathered (or reassembly timeout of TMP_MAX_REASS_TIME=7 seconds in
tmp_reassembly.h).

All pending reassembly queues for one probing interface are stored in a dictionary
tmpReassTrees[interface index] (common C source files tmon_dict.c and tmon_btree.c).
Inside a given queue, fragment structures are linked in a list ordered by the sequence
order of their payload data in the complete datagram.

Reassembly queues are scanned every TMP_MAX_REASS_TIME seconds for detecting
timed-out queues and releasing their member fragments (via TmpReassFailed()).

A reassembled datagram consists in an ordered linked list of tmp_packet_info_t structures
whose handling pointer (pktInfop) indicates the first fragment.

In a first analysis pass, the list of flow classes matched by the datagram (by the first
fragment thereof) is scanned.

• If requested, the checksum is verified on reassembled datagram.

• Current flow class is attached to every fragment of the datagram (as if they matched
themselves the filter).

• Depending on requirement of upper layer protocol analysis imposed by the current
class:

o TCP connection stateful analysis is updated (once) on the basis of the new
datagram (TmpStatefulTCP());

o FTP control stateful analysis is updated (once) on the basis of the new
datagram (TmpStatefulFTPCtl());

o HTTP stateful analysis is updated (once) on the basis of the new datagram
(TmpStatefulHTTP () hasn’t been implemented yet);

o The further <FlowClass><Condition> statements are verified on the
datagram, to validate or reject the current class membership;

• Finally, the required processing synthetic flags for the datagram are extended with
those applicable, for the corresponding probe interface, from the current class.

Maybe a TCP datagram not yet leading to TCP connection state analysis is member of an
FTP data connection. It is then mapped to its connection by performing the missing TCP
stateful analysis.

When some applicable class requests reporting every 20s and another every 30s, the
period is adapted to 10s. Or the same is done for period in minutes.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 30/248

Then, according to the applicable <GranularFlow> specification(s), the datagram

• either leads to the creation of newly discovered probe flow instance(s), which is
given a probe own unique flow ID,

• or is mapped to already discovered flow instance(s)
Note that it is not precluded that a same packet participates to the measurements made
for more than one flow instance.

Knowing the flow instance(s) the datagram belongs to, the relevant flow instance statistics
counters can then be updated at flow instance level.

Then, each subsequent fragment undergoes the similar processing, where required by
the concerned flow classes:

• The <Condition> criteria for every applicable flow class are verified or the class
membership is denied for the fragment;

• Fragment-based flow instance membership is determined;

• If requested per packet, corresponding flow instance statistics counters are
updated.

The second analysis pass is dedicated to specific measurements:

• <OneWayDelay>: leads to the retrieval of timestamps (capture, IP Timestamp
option, NTP timestamps) and size individually reported, per datagram or per
fragment, to the collector(s).

• <InterPacket> delay: when measured and pre-aggregated by the probe, the
delays between successive datagrams (and fragments inside a datagram) are
updated (not implemented yet).

• <RoundTripDelay>: depending on applicable flow classes specifications, and on
the detected type of datagram, following round-trip delay measurements are
computed:

o TCP SYN vs. SYN-ACK (between probe and responder) and/or
Only once at start of a new connection; this is a true transmission delay as
the SYN/ACK is replied immediately by the listener.

o TCP RTTM peer packets mapping: double probe round-trip delays, resp. with
responder and with initiator sides of the TCP connection.
Although optional, RTTM is apparently systematically used by modern
operating systems.

This provides an upper bound of the combined delay to transmit, to queue, to
ingest and to acknowledge (possible after a delayed ack wait time) the data

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 31/248

packets. For connection transmitting data only in one direction, only the delay
between the probe and data receiver can be computed.

At least with Linux systems, it has been observed that some instance of
measurements produce an artificially long delay: the sender forwards three
packets in a burst; all three with the same RTTM value. But these are
individually acknowledged; the first ACK comes back quickly, the second one
after a longer queuing time and the third after a significantly longer time.

o TCP Data/Ack delay is more efficiently replaced by the RTTM analysis.
Finally, it hasn’t been implemented.
The RTTM standard mechanism has actually been proposed for producing
more accurate measurements, especially in the case of retransmissions. So
this way of measurement can only be worse than that based on RTTM.

o NTP-based delays from probe: with responder (NTP server) and possibly
with initiator (client: this is the current NTP client polling period vis-à-vis a
server).
With the responder, this measurement typically reflects the pure 2-way
transmission delay (server responds immediately).

Delay with the initiator (NTP client) depends on the fact that the client
embeds the server time of the previous NTP response (from this same
server) as origin time in its next request. For servers considered stable (or
too bad) by a client, the client polling period (delay between successive
request/response transactions) is quite long (1024s =~17 minutes). A short
value (few dozens of a second), observed during a significantly long period of
time, indicates problem in correct time synchronisation by the client (e.g.
unstable time server clock or jitter in the network travel).

o DNS round-trip delay between probe and responder (DNS server).
Depending on what is requested and whether the response is cached or not,
the DNS transaction can be quick (pure 2-way transmission time) or long
(cascaded resolution with potentially distant servers). So only those values
near to the minimum (lower delay histogram slice) are representative of the
2-way round-trip transmission time.

o SNMP round-trip delay between probe and responder (SNMP agent).
What is characteristic of the SNMP round-trip time is that it measures the
delay of remote nodes vis-à-vis the control centre location (not necessarily
representative of client-to-server network paths).

o ICMP Echo (ping) round-trip delay between probe and responder.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 32/248

1.3.5 Probe PDU Protocol with Collector
There are several different types of measurement data that are reported by the probe
program to the set of collectors. Some types consist in individual measurement records,
other record types consist in time-regular samples of values of variables accumulating the
individual measurements (updated at each occurrence of a relevant monitored packet).
Each such type corresponds to its own type of probe PDU (in common source file
tmon_PDU.h).

The general mechanism for transmission of observations by the probe is the following:

• Records are formatted by an appropriate publishing routine (in C source file
tmp_publish.c).

• For every target collector (and/or the optional local file logging), the formatted
record is appended to the PDU under construction at destination to the target
collector. Each PDU type has its own table of such pending PDU per collector
(tmpPubFlowPduCollTab[], tmpPubTSPduCollTab[], tmpPub2TSPduCollTab[],
tmpPubFlCtrsPduCollTab[], tmpPubHistDescrPduCollTab[],
tmpPubHistDataPduCollTab[], tmpPubTCPConnPduCollTab[],
tmpPubFTPXferPduCollTab[]), dynamically allocated at start-up. There is also a
standalone pending PDU per type for local saving into a buffer file (currently not
exploited) with same names where the ‘CollTab[]’ is replaced by ‘LocalSavep’.

• When the PDU is full, or its contained data are older than the configured
“maxPDUBuildTime” seconds, the PDU is written to the local buffer file or passed to
the sending module (C source file tmp_transmission.c).

• Sometimes the PDU is flushed-out earlier (flow instance descriptions must be
passed to collectors before data potentially referring to them; same for histogram
slice definitions before the aggregated metric data).

The PDU sending (TmonXmitPduSend()) obeys sophisticated control mechanism.

When no PDU have been sent since a while, the PDU is immediately sent:

• a record is kept in the acknowledgement pending queue
(tmpXmitConfigs[collector_index]. pduSentTreep)

• the PDU is sent over the UDP socket (TmpXmitSendPduNow())

• a retry timer is armed for the PDU (TmpXmitSendPduNow())
Otherwise, a next free time slot is obtained for the PDU via
TmpXmitCollTimeSlot(TMP_XMITSLOT_GET_TIME_SLOT). Indeed, for each target
collector, a minimum of “minTimeGap” milliseconds delay must be respected between
consecutive sending or re-sending of probe PDU’s. Hence the need to assigned
scheduling time slots to output pending PDU’s. And a timer is armed to invoke
TmpXmitSendPduNow() at corresponding time slot.

Each time a PDU is sent, its retry count is decreased, and its retry timer timeout delay is
re-computed with based on “TOMult” and/or “TOIncr”.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 33/248

When the first pending PDU exhausts its “retries” count (has been sent retries+1 times
and after last computed timeout value), the connectivity with the collector is declared
inLongRetryMode:

• This particular PDU will be continuously retried at the frequency given by the initial
timeout period for this collector;

• Next pending PDUs to timeout their last retry will be handled according to their type:
o Important PDU with flow instance descriptions

(TMON_PDU_TYPE_FLDESCR), with histogram/aggregate descriptions
(TMON_PDU_TYPE_HISTDSC) or with FTP file transfer records
(TMON_PDU_TYPE_FTPXFER) will be continuously retried at the longest
timeout period.

o For the other PDU types, a break border time window is computed as [start,
start+ “breakBorderTime”] in seconds, where start is the time of oldest info
in the PDU that triggered the long retry mode. This determines a period “just
before the lack of connectivity” (hence the name “at the border of a break”).
PDU’s whose oldest record fit inside this break border time window are also
continuously retried at their longest timeout period: indeed they may contain
observations illustrating the degradation of the traffic conditions.

o Those other PDU types with data younger than the break border are finally
dropped: those which continue to accumulate information (flow counters
TMON_PDU_TYPE_FLCNTRS), which contain detailed individual
observations (per packet/datagram TMON_PDU_TYPE_PKTOBS or per
individual delay measurement TMON_PDU_TYPE_DELOBS or individual
TCP connection details TMON_PDU_TYPE_TCPCONN) or which contain
less crucial measurements (current time interval of probe aggregated metrics
TMON_PDU_TYPE_HISTDTA).

NOTES:

1) The “TOMult” parameter must be used with care, as successive timeout would
increase quite quickly to unreasonably long duration.

2) When the connectivity from a probe to a collector is re-established, it can take a
while for the remembered observations data arrive at the collector: longest delay =
timeout * TOMult^retries + TOincr * (TOMult^retries-1 + TOMult^retries+ ...
+TOMult^2+TOMult^1+1).

When no PDU has been sent by the probe since “heartBeatDelay” seconds
(TmonXmitHeartBeat()), a fake empty heart beat is sent (TmonXmitHeartBeatSend()),
without registration as no acknowledged will be expected (C source file
tmp_transmission.c).

The collector program receives the probe PDUs (TmcXmitValidateAndAckPDU() in C
source file tmc_transmission.c), validates its shape, type and CRC, updates the
corresponding probe known status (C source file tmc_probes.c) and, when it isn’t a fake

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 34/248

heart beat empty PDU, sends back an acknowledge with full redundancy (2 times the PDU
ID and first byte of CRC).

Then, if the PDU hasn’t been received yet (tracked in probeInfop->rcvdPduDict), it is
pushed at end of the tmcInputQp input queue (instance of the common pointer based
circular buffer implemented by core tmon_circ_pbuf.c).

1.3.6 Collector Further Processing and Output
In addition to its role in centralising the probe observations, the collector should have three
functions:

• Merging information from several probes:
o assigning a unique identifier to probe dynamically discovered flow instances;

Experience has revealed that this is only necessary for partial one-way
observations produced for a same flow by multiple probes. All the rest of flow
measurements must be tagged with their probe interface reference. So they
could keep their probe-assigned unique flowID, complemented by the (fixed)
probeID. This way, receiving flow observations before the corresponding flow
description wouldn’t be a problem. And the collector could be restarted,
independently of the probes, with less consequences.

o matching partial per-packet (per datagram) observations records (with size
and list of timestamps) in order to produce one complete record for a same
data unit observed at different locations;

• Pre-computing certain metrics in order to detect abnormalities in the traffic
performance in near real-time (this hasn’t been implemented yet);

• Further aggregation of instant measurements to reduce the amount of information
pushed to the database (not implemented):

o this feature won’t be needed in case the volume of measurements produced
by the probes is reasonable;

o there is no universal criteria, besides those already implemented upstream
by the probes, that can determine which metrics must be computed (once for
all) by the collector at the exclusion of all others that could be derived for the
then destroyed raw observations;

o if needed, this function could be best implemented outside the online
collector C program, via scripts applied to the post processing of the collector
output raw data files; this would offer the necessary flexibility in addressing
the specific needs of different use case environments;

Therefore, the current collector primarily acts as a formatter of the observations provided
by the probe into corresponding types of output files.

And for the specific case of individual packet/datagram one-way observations, its stores
the partial observations in a dictionary with sophisticated ability to retrieve stored items
“near in time” to a given search key.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 35/248

The several probe PDU types are decoded by dedicated routines in the C source file
tmc_pdu_decoder.c.

• Flow instance descriptions (TMON_PDU_TYPE_FLDESCR):
Retrieves from the registry (probeInfop->prFlowIdMap) based on the corresponding
probe Flow ID.

If found and same description, simply maps to collector-assigned globally unique
ID.

If not found or new definition, remove potential ancient record; generate a new
collector-assigned globally unique ID: the UNIX timestamp at the millisecond; keep
track of the new flow description (TmcFlowInstanceNew()) and writes the flow
instance description in corresponding output file (TmcFlowInstanceOutput()) in C
source file tmc_flowinstance.c).

• Protocol counters records per flow instance (TMON_PDU_TYPE_FLCNTRS):
When probe flow isn’t yet known, the record is IGNORED.

Decodes the variable length fields of each record and invokes
TmcStatsFlowInstanceUpdate(): Outputs those sub-records that have non zero
counters (C source file tmc_statistics.c):

o IPv4 counters: TmcStatsFlowIPUpdate()
o IPv4 packet sizes distribution: TmcStatsFlowIPDistrbUpd()
o ICMP counters: TmcStatsFlowICMPUpdate()
o UDP Counters: TmcStatsFlowUDPUpdate()
o TCP counters: TmcStatsFlowTCPUpdate()
o FTP counters: TmcStatsFlowFTPUpdate()
o [HTTP counters: TmcStatsFlowHTTPUpdate() not implemented]

• Per packet/datagram individual observations (potentially partial)
(TMON_PDU_TYPE_PKTOBS):
The TmcPduDecodePktObs() routine implements a specific processing that is
detailed below (see section 4.4.6 below).

When the collector reconstitute a complete packet/datagram observation record,
with size and all expected hop timestamps, it outputs it via TmcPduDecodePktObs()

• Per delay individual records (TMON_PDU_TYPE_DELOBS):
Those individual delay measurements (round-trip, currently) are optionally
produced, not aggregated inside the probe, and delivered to the collector. But these
aren’t yet further processed because they would be used for collector–based event
detection and, possibly, collector aggregation, which are functions targeted but not
implemented.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 36/248

Therefore, those PDU are currently simply dissected by a debugging trace routine,
without output yet. Nevertheless, round-trip delays are provided as histogram
distributions pre-aggregated inside the probe (see below).

• Probe-aggregated Metrics Histogram Slices/Time Aggregate Definitions
(TMON_PDU_TYPE_HISTDSC):
A general approach has been followed to store the results of pre-aggregated
metrics (common core module tmon_metric.c – see below). In short, a given type
of metric (configured in a Flow Class) has its range of values split in 1, 2 or multiple
slices. This permits to optionally preserve the notion of statistical distribution
(histogram), whatever be the time span in further aggregation. For the general case
of more than 3 slices (N>3), the first and last slices are voluntarily unbound,
respectively, at bottom and at top; the first slice ends before the specified histogram
lower bound (typically covering unexpected low values) while the last slice starts at
the specified histogram upper bound (typically covering those unexpected too high
values) The range between lower and upper bounds is partitioned in N equal size
value ranges, delimiting the histogram slices. When N==1, no distribution
characteristics are remembered: the metrics measurements form a simple
aggregate ranging from lower (possibly unbound) to upper (possibly unbound)
configured values. When N==2, some heuristic is used to determine the slices
based on specified lower and upper bounds. When N==3, the aggregate consists in
a single slice of most probable values, framed by two unbound slices (keeping track
of unexpected too low and too high respective values).

When an histogram or single-slice aggregate is aggregated in the probe, the
applicable parameters (slice count, lower bound – possibly INT32_MIN -- and upper
bound – possibly INT32_MAX -- for a particular metric type and probe detected flow
instance are published at destination of the collector(s) before any actual metric
data.

Only the round-trip delay metrics are (currently) implementing this histogram
approach in the probe, and reported by the TMON_PDU_TYPE_HISTDSC and
TMON_PDU_TYPE_HISTDTA PDU units. Histograms are also provided by the
probe for the distribution of IPv4 packet or datagram sizes. But this last is specific
and part of the protocols statistics gathering and reporting (embedded in the overall
TMON_PDU_TYPE_FLCNTRS PDU types).

The routine TmcProbeMetricInstanceNew() (C source file tmc_metric.c) computes
the set of respective slice bounds (via common TmonDelayHistoSplit() routine of
core C source file tmon_delay.c), stores (or updates) the characteristics of every
metric instance slice and outputs them to the corresponding results log file.

• Probe-aggregated Metrics Data (TMON_PDU_TYPE_HISTDTA):
In-line with their published histogram/aggregate characteristics, the probes
accumulates the statistics synthetic results of every measurement in their
corresponding histogram slice: incrementing the population, updating the sum and
the sum of square, possibly updating the min or max. At the required frequency, the

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 37/248

probe publishes these four values of its not-empty histogram slices over the time
period, and reset them for the next period.

The collector (TmcPduDecodeHistogramsData()) first maps the probe flow ID to is
collector-assigned unique value. When probe flow isn’t yet known, the record is
IGNORED.

Then the collector (TmcMetricHistogramDecode()) retrieves the corresponding
stored histogram record (tmcMetricDictp), verifies its description and replaces the
stored record slice with values for the new period.

Then it re-computes the slice average and outputs those data in the corresponding
results log file.

• TCP Connections detailed Monitoring Data (TMON_PDU_TYPE_TCPCONN):
Whether being a regular update or the final data after closure, each TCP connection
record is handled the same way.

When probe flow isn’t yet known, the record is IGNORED.

Through TmcPduDecodeTcpConnection(), the several monitoring variables (when
present, otherwise being zero) have their variable-length encoding parsed into a
working tmc_tcpconn_stats_t structure. Then TmcStatsTCPConnectionUpdate()
prepares the corresponding record string to be output to the corresponding results
log file.

• FTP File Transfer detailed Monitoring Data (TMON_PDU_TYPE_FTPXFER):
Whether being a regular update or the final data after closure, each TCP connection
record is handled the same way.

When probe flow isn’t yet known, the record is IGNORED.

Through TmcPduDecodeFtpXfer(), the several monitoring variables (when present,
otherwise being zero) have their variable-length encoding parsed into a working
tmc_ftpxfer_stats_t structure. Then TmcStatsFTPFileXferUpdate() prepares
the corresponding record string to be output to the corresponding results log file.

1.3.7 One-Way Flows Observations Consolidation and
Measurement
The main processing performed by the collector component is the handling of one-way
flow observations.

A tricky job is the decoding of the TMON_PDU_TYPE_PKTOBS compact PDU units, for
extracting per-packet (per reassembled datagram) partial observations (probe FlowID,
signature, timestamp(s) and size). See section 4.4.6 below for details.

The probe FlowID is replaced by the collector-assigned unique value.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 38/248

An attempt is made to retrieve the collector record for the corresponding packet, which
serves to gather the set of timestamps reports by the several concerned probes
(TmcPktObsRetrieve() in tmc_delay.c). Because the few bytes of content signature risks to
collide with that of another packet for the same Flow Class/Flow Instance, we need to find
the best match in terms of timestamps: the packet whose reference time (seen by another
probe) is the closest to that of the new partial observation record.

For this, a special kind of dictionary has been implemented (tmon_dict.c). It is made of
BTree (balanced 2-3 tree, where each tree node has 2 or 3 children, tmon_btree.c) whose
leafs are anchors of a doubly linked list of the dictionary elements, maintained in
increasing key order. This list allows easy travel, from the head/tail or from any element,
and easy insertion/extraction.

For our per-packet (per datagram) observations, the key also embeds the oldest known
timestamp of the record to search. Hence, most of the search won’t lead to an exact match
(same packet timestamp at different locations of the network traversal path). But the BTree
search routine produces either the matched leaf, or the one either at right or at left. So, in
case of an approximate match, we can get the element of the dictionary which is the
closed to the search key (also embedding a timestamp value).

Upon a signature clash, we can then match the records with the closest known timestamp.
Not only do we then detect the signature clashes, we are tolerant to them and continue to
consolidate individual sets of per packet observations for different packets that exhibit the
same signature hash value.

Per packet (per datagram) observations are gradually complemented with partial records
from the several probes on the path. Note that a partial observation can consist in one or
several timestamps, and the packet/datagram size. Timestamps can be

• the capture time at a probe interface (or first and last timestamps of a fragmented
datagram),

• the value of an entry in the IP Timestamp Option from the IPv4 header,

• the value of a specified (type of) NTP timestamp extracted from the NTP packet
content.

Alternative paths (routes) in the network travel of a data flow are supported by giving the
same hop name to different timestamps (typically different probe capture interfaces at
alternative nodes in the network.

When all specified hop timestamps have received a value, the packet observations is
completed (TmcPktObsComplete() in tmc_delay.c). Either the record, with a list of
timestamps, is produced as-is in the output, available for further custom processing
(database or other data handling), or the latency is requested between two identified hops.
In this case, the collector directly computes the one-way delay and maintains a set of
latency histogram slices, which are output and reset at regular time intervals.

The partial observations dictionary is also regularly traversed (TmcDelPartialObsCleanup()
in tmc_delay.c) for finding ancient incomplete records (TmcDelIncompleteObs() in
tmc_delay.c).

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 39/248

• If a missing observation has lapsed the maximum lifetime inside a probe, the probe
would have already dropped it from its PDU retry queue. Hence the collector
declares the one-way record has “dropped”.

• If the expected probe for missing observation has been silent (maybe due to loss of
connectivity) around the time it would have produced the timestamp(s) and sent
them to the collector, the observations is kept waiting for late arrival of still missing
observations.

• If the missing timestamp(s) is(are) at the end of the ordered hop list, the obsolete
record induces the declaration of a “packet lost”.

• Otherwise, for a reason or another, we have observations for the packet (datagram)
at the end of its travel but not at the start or an intermediate hop. The record is then
declared “incomplete” or “partly missed”.

Either each of those three type of one-way incomplete hops are output individually
(TmcOutputRecord()) in , each in their log file corresponding to the exception type (lost:
TMC_RECORD_TYPE_1WLOST, dropped: TMC_RECORD_TYPE_1WDROPD, or
missed: TMC_RECORD_TYPE_1WMISSG), or these exception counters are aggregated
by the collector (Tmc1WDelayAggrOutput() in tmc_delay.c).

In case of collector aggregation, because observations can finally become complete after
a delay longer than the period of reporting aggregated one-way statistics (latency
histograms and/or exception counters), successive slots of aggregation are maintained in
the collector: each slot represent one reporting interval. Those slots form a time window
that ends with the still open interval containing “now”. So the consolidated one-way
observations are output with a delay of several slots.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 40/248

2. TRAFMON C-CODE ON-LINE SOFTWARE
COMPONENTS

2.1 TRAFMON MEASUREMENT MECHANISM

2.1.1 Probing
All measurements conducted by trafMon come from the inspection of IP (IPv4) traffic
packets captured by probe interfaces (C source file tmp_interface.c).

The packet capture relies on the standardised libpcap 1.4 module which, in its Linux
implementation, stores the packet in a possibly quite large kernel-resident circular buffer.
In trafMon, each probing interface can be configured with a storage capacity large enough
to cope with foreseeable peaks in high rate traffic flows. Such user configuration tuning
must be derived from a trade between the overall portion of computer RAM dedicated to
this usage and the traffic bursts anticipated at all the probing interface of a same probe
computer. Only the packet selected by the BSD capture filter assigned to each interface
will actually enter its kernel-resident capture buffer.

Such buffer capacity is set by the user in terms of number of number of (1600 bytes)
Ethernet frames.

Packet capacity
bufPacketCount

Maximum Frame Size
snapLen

Consumed RAM Bytes

70 000 1600 112 000 000

1 000 000 1600 1 600 000 000

Table 2: Per Probe Capture Interface Kernel Buffer Memory Consumption

 Care must however been taken in tuning such buffering for each interface. RAM is also
required for the probe processing (internal data structures, but also shared memory buffer
between father and child processes of the trafMon probe program) and file I/O (although
limited on probe dedicated computing platforms), as well as the potential output queue of
un-acknowledged trafMon PDU’s at destination of (temporarily unreachable) collectors.

By hiding this Linux specific kernel interface behind a general portable API, the libpcap
does unfortunately not reflect the actual amount of RAM that has been reserved. This
could well be only half of the requested size (see section XXX for a hint of indirect
feedback).

Being hidden inside the libpcap API, the per-interface packet buffer is not directly
accessible to the trafMon probe program, running in user space. And, for the sake of
reaching the stringent performance requirements imposed by the high and sustained data

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 41/248

rate of the EO ground network, the actual content of the vast majority of capture packets
will not undergo any further copy inside the probe program user space.

Packets are therefore analysed one after the other.

Each captured packet is systematically dissected at all possible layers of its protocol stack
(IPv4, ICMP, UDP, TCP, DNS, NTP, SNMP, FTP [and HTTP]): C source file
tmp_pkt_dissect.c.

It is not required to assign an IP address to the probing interface. The only mandatory
operation is to configure such interfaces as UP. This way, packet capture will occure in
stealth mode: the probe will not be visible on the LAN segments it is connected to, and
cannot be a target for attack at IP layer. Furthermore, the packet inspection and analysis
does not rely on trust placed on information field (e.g. announced data lengths), to avoid
that the probe be impacted when capturing a malevolent forged packet.

Although the probe requires packet capture privilege to run, it is not mandatory to run it as
root super-user:

• produce a /opt/tmon/bin/tmon_probe executable binary;

• create a specific Linux group, e.g. pcap and Linux runtime account for the probe,
e.g. probe having pcap as primary group

• Assign pcap as executing group to the tmon_probe:
chgrp pcap /opt/tmon/bin/tmon_probe
chmod 0750 /opt/tmon/bin/tmon_probe

• Assert the CAP_NET_RAW, CAP_NET_ADMIN capabilities for the tmon_probe
binary:
setcap cap_net_raw,cap_net_admin =eip /opt/tmon/bin/tmon_probe
getcap /opt/tmon/bin/tmon_probe
/opt/tmon/bin/tmon_probe = ap_net_admin,cap_net_raw+eip

• The use of sched_setaffinity(2) also requires CAP_SYS_NICE capability:

2.1.2 Filtering for Flow Classes Matching
During protocol dissection, global probe-wide counters are updated.

The results of a packet dissection permit to apply all combined predicates of all defined
filters from all applicable configured flow classes. This filtering method has been
specifically implemented in trafMon probe, in the most efficient way., (C source file
tmp_flowfilter.c) Indeed, all flow calls applicable to a given probe interface provides a filter
combining predicates on its protocol fields (Px). In its most general form, such filter
combines up to three levels of Boolean connectives:

• top level 1: AND or NAND: as in [NOT] (P1 AND S2 AND S3 AND P4)

• intermediate level 2: OR or NOR as in S2::= [NOT] (p5 OR p6 OR s7)

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 42/248

• bottom level 3: AND or NAND: as in s7::= [NOT] (pr8 AND pr9)
Flow class filters are not necessarily mutually exclusive: a packet may well match several
flow classes and, therefore, participate to different measurements.

A same protocol field can therefore be ruled by multiple predicates coming from different
flow class filter expressions.

The design driver for efficient flow class filtering relies therefore on the following
optimisation strategies:

• All predicates relative to a same protocol field are tested altogether, one after the
other.

• As soon as a predicate test permits to conclude on the success or rejection of an
entire filter expression of a flow class, all its remaining predicates are disabled for
the packet under inspection.

• Systematic resort to switch/case C code constructs permits to avoid the overhead of
long series of if/then/else if ... exhaustive testing sequences.

Each time a predicate is tested, its result recursively updates (from top to bottom) the 1, 2
or 3-layers expression tree of connectives for the corresponding class.

Once the set of applicable flow classes has been determined for a first or single fragment
packet, the probe (father process) can decide whether the packet

• will be ignored or

• will require only its dissected field information for further analysis and measurement,

• will require to keep also its actual payload data for specific analysis (e.g. checksum
of fragmented datagram.

2.1.3 Retaining FTP Data Connection Packets and IPv4 Second
and Subsequent fragments
Two specific cases also occur here, for not yet fully qualified packets:

• A TCP packet between a pair of host IP addresses could be member of the Data
connection of an FTP session. As it is always the case in practice, FTP data
transfers always occur between the same peers as the corresponding FTP control
connection. Therefore when first encountering the establishment of such FTP
control connection, the peer addresses are dynamically registered (in
TmpPktKeepFtpDataConnRoot binary search tree).
Any remaining TCP packet (or only its connection start/end SYN / FIN / RST when
only “start-stop” heuristic measurement is requested for the file transfer) that match
this address pair has its dissected information remembered for further stateful
analysis.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 43/248

While encountering the end packet of the control session (in practice, always closed
only after the end of a data transfer), the address pair is de-registered.

• A second or subsequent IP fragment does not contain the upper layer protocol
headers. Hence its dissection and flow class membership is incomplete. However,
such fragments need further analysis only when measurements are required:

o for “fullReassembly” checksum verification or
o when requested measurement is for “allFragments” or for reassembled

“datagram”
But fragments could be captured and inspected out of order. So the implemented
strategy is to retain all second or subsequent fragments, except those whose first
fragment has already been analysed, concluding that remaining fragments are not
needed and may be dropped.

So after analysis of a first fragment of an incomplete datagram, if none of its
matched flow classes imposes any of the above two rules then its source and
destination addresses and IP identifier are registered
(TmpReassRegSkippedDgram()), permitting to reject remaining corresponding
fragments (TmpReassIsSkippedDgram()). Those registry entries are regularly
cleaned-out by timeout.

Note that today, IP fragments are quite seldom. In the target EO network context,
only the UDP SNMP packets (response PDU) are sometimes too long to fit in a
1500 bytes IP packet. Note the TCP is never fragmented, as the WAN link can
afford the same MTU size as for Ethernet LAN segments.

Finally, for those first or single fragment packets which require individual reporting, the
packet signature hash is computed, permitting to release the packet payload at this stage.

Note that, by dissecting the FTP Control packets, in the father probe process, the
sensitive information (i.e. the user FTP password) is voluntarily not remembered.
This way such items do not leave the captured packet residing only in the OS kernel of the
probe computer.

2.1.4 Protocol Stateful Analysis and Probe Measurements
All possible processing based on single packet content is now complete.

In order to take party of the modern processor architecture (multi-core/multi-CPU
parallelism), and for conducting further stateful protocol analysis and/or metrics
measurements updates on a separate processor core, the rest of the processing of the
retained packets is executed in a child process (C source file tmp_child.c).

The father process removes itself from all CPU core, but one. This CPU ID is then
removed from the scheduling affinity list of the child process (sched_getaffinity() and
sched_setaffinity() Linux system calls). The resulting effect is that the father assigns itself

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 44/248

to one CPU core only, while the child can be schedule only of all other available CPU
cores.

The child process is launched only after parsing of the configured Flow Class XML
definitions. The resulting internal data structures, created on the father process head, are
therefore inherited as such by the child (at same virtual memory addresses as those in
father’s space). So the global table tmpFlowClassTab[] and its anchored substructures can
be referred to by the same index from father and from child processes.

A double circular buffer (common core C source file tmon_circbuf.c) for variable size data
chunks is instantiated by the father process inside a shared memory area (common core C
source file tmon_sharedmem.c). The father is the sole writer in the circular buffer, while
the child is the sole reader. Hence a circular buffer is the most efficient way to implement
queuing from father to child, without need of mutual exclusion via semaphores. But the
father warns its child about new availability of queued data by sending it a SIGUSR2
signal, waking it up while in blocking select() system call. Inversely, when the buffer is full,
the father blocks on a usleep() (nanosleep() system call) and can also be woken up by a
SIGUSR2 signal from the child.

A queued packet always requires that its dissected information (tmp_packet_info_t) and
upper layer “transport” sub-structure (tmp_tcp_info_t or tmp_dns_info_t or tmp_ntp_info_t
or tmp_snmp_info_t or tmp_icmp_info_t) and “application” sub-structure (tmp_ftp_info_t or
tmp_http_info_t). These occupy up to three successive slots in the circular buffer.

When the IP payload is also needed for the packet further processing, a last circular buffer
slot is filled with this captured upper part raw data chunk.

After having fetched all queued data slots information on a next captured packet, the
child’s processing is driven by the TmpAnalyse() routine (C source file tmp_analyse.c).

Where relevant, it starts by re-assembling the datagram (with or without payload data
content), parking fragments in reassembly queue as long as the latest fragment isn’t
gathered (or reassembly timeout of TMP_MAX_REASS_TIME=7 seconds in
tmp_reassembly.h).

All pending reassembly queues for one probing interface are stored in a dictionary
tmpReassTrees[interface index] (common C source files tmon_dict.c and tmon_btree.c).
Inside a given queue, fragment structures are linked in a list ordered by the sequence
order of their payload data in the complete datagram.

Reassembly queues are scanned every TMP_MAX_REASS_TIME seconds for detecting
timed-out queues and releasing their member fragments (via TmpReassFailed()).

A reassembled datagram consists in an ordered linked list of tmp_packet_info_t structures
whose handling pointer (pktInfop) indicates the first fragment.

In a first analysis pass, the list of flow classes matched by the datagram (by the first
fragment thereof) is scanned.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 45/248

• If requested, the checksum is verified on reassembled datagram.

• Current flow class is attached to every fragment of the datagram (as if they matched
themselves the filter).

• Depending on requirement of upper layer protocol analysis imposed by the current
class:

o TCP connection stateful analysis is updated (once) on the basis of the new
datagram (TmpStatefulTCP());

o FTP control stateful analysis is updated (once) on the basis of the new
datagram (TmpStatefulFTPCtl());

o HTTP stateful analysis is updated (once) on the basis of the new datagram
(TmpStatefulHTTP () not implemented);

o The further <FlowClass><Condition> statements are verified on the
datagram, to validate or reject the current class membership;

• Finally, the required processing synthetic flags for the datagram are extended with
those applicable, for the corresponding probe interface, from the current class.

Maybe a TCP datagram not yet leading to TCP connection state analysis is member of an
FTP data connection. It is then mapped to its connection by performing the missing TCP
stateful analysis.

When some applicable class requests reporting every 20s and another every 30s, the
period is adapted to 10s. Or the same is done for period in minutes.

Then, according to the applicable <GranularFlow> specification(s), the datagram

• either leads to the creation of newly discovered probe flow instance(s), which is
given a probe own unique flow ID,

• or is mapped to already discovered flow instance(s)
Note that it is not precluded that a same packet participates to the measurements made
for more than one flow instance.

Knowing the flow instance(s) the datagram belongs to, the relevant flow instance statistics
counters can then be updated at flow instance level.

Then, each subsequent fragment undergoes the similar processing, where required by
the concerned flow classes:

• The <Condition> criteria for every applicable flow class are verified or the class
membership is denied for the fragment;

• Fragment-based flow instance membership is determined;

• If requested per packet, corresponding flow instance statistics counters are
updated.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 46/248

The second analysis pass is dedicated to specific measurements:

• <OneWayDelay>: leads to the retrieval of timestamps (capture, IP Timestamp
option, NTP timestamps) and size individually reported, per datagram or per
fragment, to the collector(s).

• <InterPacket> delay: when measured and pre-aggregated by the probe, the delays
between successive datagrams (and fragments inside a datagram) are updated (not
implemented).

• <RoundTripDelay>: depending on applicable flow classes specifications, and on the
detected type of datagram, following round-trip delay measurements are computed:

o TCP SYN vs. SYN-ACK (between probe and responder) and/or
Only once at start of a new connection; this is a true transmission delay as
the SYN/ACK is replied immediately by the listener.

o TCP RTTM peer packets mapping: double probe round-trip delays, resp. with
responder and with initiator sides of the TCP connection.
Although optional, RTTM is apparently systematically used by modern
operating systems.

This is provides upper bound of the combined delay to transmit, queue,
ingest and acknowledge (possible after a delayed ack wait time) the data
packets. For connection transmitting data only in one direction, only the delay
between the probe and data receiver can be computed. At least with Linux
systems, it has been observed that some instance of measurements produce
an artificially long delay: the send the forwards three packets in a burst; all
three are individually acknowledged; the first ACK comes back quickly, the
second one after a longer queuing time and the third after a significantly
longer time.

o TCP Data/Ack delay is more efficiently replaced by the RTTM analysis. It has
not been implemented.
The RTTM standard mechamism has just been proposed for producing more
accurate measurements, especially in the case of retransmissions. So this
way of measurement can only be worse than that base on RTTM.

o NTP-based delays from probe: with responder (NTP server) and possibly
with initiator (client: this is the current NTP client polling period vis-à-vis a
server).
With the responder, this measurement typically reflects the pure 2-way
transmission delay (server responds immediately).

Delay with the initiator (NTP client) depends on the fact that the client
embeds the server time of the previous NTP response (from this same
server) as origin time in its next request. For servers considered stable (or
bad) by a client, the client polling period (delay between successive

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 47/248

request/response transactions) is quite long (1024s =~17 minutes). A short
value (few dozens of a second) for a significantly long period of time
indicates problem in correct time synchronisation (e.g. unstable time server
clock).

o DNS round-trip delay between probe and responder (DNS server).
Depending on what is requested and whether the response is cached or not,
the DNS transaction can be quick (pure 2-way transmission time) or long
(cascaded resolution with potentially distant servers). So only those values
near to the minimum (lower delay histogram slice) are representative of the
2-way round-trip transmission time.

o SNMP round-trip delay between probe and responder (SNMP agent).
What is characteristic of the SNMP round-trip time is that it measures the
delay of remote nodes vis-à-vis the control centre location (not necessarily
representative of client-to-server network paths).

o ICMP Echo (ping) round-trip delay between probe and responder.

2.1.5 Probe PDU Protocol with Collector
There are several different types of measurement data that are reported by the probe
program to the set of collectors. Some types consist in individual measurement records,
other record types consist in time-regular samples of values of variables accumulating the
individual measurements (updated at each occurrence of a relevant monitored packet).
Each such type corresponds to its own type of probe PDU (in common source file
tmon_PDU.h).

The general mechanism for transmission of observations by the probe is the following:

• Records are formatted by an appropriate publishing routine (in C source file
tmp_publish.c).

• For every target collector (and/or the optional local file logging), the formatted
record is appended to the PDU under construction at destination to the target
collector. Each PDU type has its own table of such pending PDU per collector
(tmpPubFlowPduCollTab[], tmpPubTSPduCollTab[], tmpPub2TSPduCollTab[],
tmpPubFlCtrsPduCollTab[], tmpPubHistDescrPduCollTab[],
tmpPubHistDataPduCollTab[], tmpPubTCPConnPduCollTab[],
tmpPubFTPXferPduCollTab[]), dynamically allocated at start-up. There is also a
standalone pending PDU per type for local saving into a buffer file (currently not
exploited) with same names where the ‘CollTab[]’ is replaced by ‘LocalSavep’.

• When the PDU is full, or its contained data are older than the configured
“maxPDUBuildTime” seconds, the PDU is written to the local buffer file or passed to
the sending module (C source file tmp_transmission.c).

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 48/248

• Sometimes the PDU is flushed-out earlier (flow instance descriptions must be
passed to collectors before data potentially referring to them; same for histogram
slice definitions before the aggregated metric data).

The PDU sending (TmonXmitPduSend()) obeys to sophisticated control mechanism.

When no PDU have been sent since a while, the PDU is immediately sent:

• a record is kept in the acknowledgement pending queue
(tmpXmitConfigs[collector_index]. pduSentTreep)

• the PDU is sent over the UDP socket (TmpXmitSendPduNow())

• a retry timer is armed for the PDU (TmpXmitSendPduNow())
Otherwise, a next free time slot is obtained for the PDU via
TmpXmitCollTimeSlot(TMP_XMITSLOT_GET_TIME_SLOT). Indeed, for each target
collector, a minimum of “minTimeGap” milliseconds delay must be respected between
consecutive sending or re-sending of probe PDU’s. Hence the need to assigned
scheduling time slots to output pending PDU’s. And a timer is armed to invoke
TmpXmitSendPduNow() at corresponding time slot.

Each time a PDU is sent, its retry count is decreased, and its retry timer timeout delay is
re-computed with based on “TOMult” and/or “TOIncr”.

When the first pending PDU exhaust its “retry” count (has been sent retry+1 times and
after last computed timeout value), the connectivity with the collector is declared
inLongRetryMode:

• This particular PDU will be continuously retried at the frequency given by the initial
timeout period for this collector;

• Next pending PDUs to timeout their last retry will be handled according to their type:
o Important PDU with flow instance descriptions

(TMON_PDU_TYPE_FLDESCR), with histogram/aggregate descriptions
(TMON_PDU_TYPE_HISTDSC) or with FTP file transfer records
(TMON_PDU_TYPE_FTPXFER) will be continuously retried at the longest
timeout period.

o For the other PDU types, a break border time window is computed as [start,
start+ “breakBorderTime”] in seconds, where start is the time of oldest info in
the PDU that triggered the long retry mode. This determines a period “just
before the lack of connectivity” (hence the name “at the border of a break”).
PDU’s whose oldest record fit inside this break border time window are also
continuously retried at their longest timeout period: indeed they may contain
observations illustrating the degradation of the traffic conditions.

o Those other PDU types with data younger than the break border are finally
dropped: those which continue to accumulate information (flow counters
TMON_PDU_TYPE_FLCNTRS), which contain detailed individual
observations (per packet/datagram TMON_PDU_TYPE_PKTOBS or per
individual delay measurement TMON_PDU_TYPE_DELOBS or individual

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 49/248

TCP connection details TMON_PDU_TYPE_TCPCONN) or which contain
less crucial measurements (current time interval of probe aggregated metrics
TMON_PDU_TYPE_HISTDTA).

NOTES:

3) The “TOMult” parameter must be used with care, as successive timeout would
increase quite quickly to unreasonably long duration.

4) When the connectivity from a probe to a collector is re-established, it can take a
while for the remembered observations data arrive at the collector: longest delay =
timeout * TOMult^retries + TOincr * (TOMult^retries-1 + TOMult^retries+ ...
+TOMult^2+TOMult^1+1).

When no PDU has been sent by the probe since “heartBeatDelay” seconds
(TmonXmitHeartBeat()), a fake empty heart beat is sent (TmonXmitHeartBeatSend()),
without registration as no acknowledged will be expected (C source file
tmp_transmission.c).

The collector program receives the probe PDUs (TmcXmitValidateAndAckPDU() in C
source file tmc_transmission.c), validates its shape, type and CRC, updates the
corresponding probe known status (C source file tmc_probes.c) and, when it isn’t a fake
heart beat empty PDU, sends back an acknowledge with full redundancy (2 times the PDU
ID and first byte of CRC).

Then, if the PDU hasn’t been received yet (tracked in probeInfop->rcvdPduDict), it is
pushed at end of the tmcInputQp input queue (instance of the common pointer based
circular buffer implemented by core tmon_circ_pbuf.c).

2.1.6 Collector Further Processing and Output
In addition to its role in centralising the probe observations, the collector should have three
functions:

• Merging information from several probes:
o assigning a unique identifier to probe dynamically discovered flow instances;
o matching partial per-packet (per datagram) observations records (with size

and list of timestamps) in order to produce one complete record for a same
data unit observed at different locations;

• Pre-computing certain metrics in order to detect abnormalities in the traffic
performance in near real-time (such event condition detection could be
implemented later);

• Further aggregation of instant measurements to reduce the amount of information
pushed to the database -- not implemented:

o this feature won’t be needed in case the volume of measurements produced
by the probes is reasonable;

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 50/248

o there is no universal criteria, besides those already implemented upstream
by the probes, that can determine which metrics must be computed (once for
all) by the collector at the exclusion of all others that could be derived for the
then destroyed raw observations;

o if needed, this function could be best implemented outside the online
collector C program, via scripts applied to the post processing of the collector
output raw data files; this would offer the necessary flexibility in addressing
the specific needs of different use case environments;

Therefore, besides for one-way flow measurements, the collector primarily acts as a
formatter of the observations provided by the probe into corresponding types of output
files.

And for the specific case of individual packet/datagram observations, its stores the partial
observations in a dictionary with sophisticated ability to retrieve stored items “near in time”
to a given search key.

The several probe PDU types are decoded by dedicated routines in the C source file
tmc_pdu_decoder.c.

• Flow instance descriptions (TMON_PDU_TYPE_FLDESCR):
Retrieves from the registry (probeInfop->prFlowIdMap) based on the corresponding
probe Flow ID.

If found and same description, simply maps to collector-assigned globally unique
ID.

If not found or new definition, remove potential ancient record; generate a new
collector-assigned globally unique ID: the UNIX timestamp at the millisecond; keep
track of the new flow description (TmcFlowInstanceNew()) and writes the flow
instance description in corresponding output file (TmcFlowInstanceOutput()) in C
source file tmc_flowinstance.c).

• Protocol counters records per flow instance (TMON_PDU_TYPE_FLCNTRS):
When probe flow isn’t yet known, the record is IGNORED.

Decodes the variable length fields of each record and invokes
TmcStatsFlowInstanceUpdate(): Outputs those sub-records that have non zero
counters (C source file tmc_statistics.c):

o IPv4 counters: TmcStatsFlowIPUpdate()
o IPv4 packet sizes distribution: TmcStatsFlowIPDistrbUpd()
o ICMP counters: TmcStatsFlowICMPUpdate()
o UDP Counters: TmcStatsFlowUDPUpdate()
o TCP counters: TmcStatsFlowTCPUpdate()
o FTP counters: TmcStatsFlowFTPUpdate()

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 51/248

o [HTTP counters: TmcStatsFlowHTTPUpdate() not implemented]

• Per packet/datagram individual observations (potentially partial)
(TMON_PDU_TYPE_PKTOBS):
The TmcPduDecodePktObs() routine implements a specific processing that is
detailed below.

When the collector reconstitute a complete packet/datagram observation record,
with size and all expected hop timestamps, it outputs it via TmcPduDecodePktObs()

• Per delay individual records (TMON_PDU_TYPE_DELOBS):
Those individual round-trip delay measurements are optionally produced, not
aggregated inside the probe, and delivered to the collector. But these aren’t (yet)
further processed because they would be used for collector–based event detection
and, possibly, collector aggregation, which are not implemented.

Therefore, those PDU are currently simply dissected by a debugging trace routine,
without output yet. Nevertheless, round-trip delays are provided as histogram
distributions pre-aggregated inside the probe (see below).

• Probe-aggregated Metrics Histogram Slices/Time Aggregate Definitions
(TMON_PDU_TYPE_HISTDSC):
A general approach has been followed to store the results of pre-aggregated
metrics (common core module tmon_metric.c – see below). In short, a given type
of metric (configured in a Flow Class) has its range of values split in 1, 2 or multiple
slices. This permits to optionally preserve the notion of statistical distribution
(histogram), whatever be the time span in further aggregation. For the general case
of more than 3 slices (N>3), the first and last slices are voluntarily unbound,
respectively, at bottom and at top; the first slice ends before the specified histogram
lower bound (typically covering unexpected low values) while the last slice starts at
the specified histogram upper bound (typically covering those unexpected too high
values) The range between lower and upper bounds is partitioned in N equal size
value ranges, delimiting the histogram slices. When N==1, no distribution
characteristics are remembered: the metrics measurements form a simple
aggregate ranging from lower (possibly unbound) to upper (possibly unbound)
configured values. When N==2, some heuristic is used to determine the slices
based on specified lower and upper bounds. When N==3, the aggregate consists in
a single slice of most probable values, framed by two unbound slices (keeping track
of unexpected too low and too high respective values).

When an histogram or single-slice aggregate is aggregated in the probe, the
applicable parameters (slice count, lower bound – possibly INT32_MIN -- and upper
bound – possibly INT32_MAX -- for a particular metric type and probe detected flow
instance are published at destination of the collector(s) before any actual metric
data.

Only delay metrics are computed and aggregated in the probe.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 52/248

The routine TmcProbeMetricInstanceNew() (C source file tmc_metric.c) computes
the set of respective slice bounds (via common TmonDelayHistoSplit() routine of
core C source file tmon_delay.c), stores (or updates) the characteristics of every
metric instance slice and outputs them to the corresponding results log file.

• Probe-aggregated Metrics Data (TMON_PDU_TYPE_HISTDTA):
In-line with their published histogram/aggregate characteristics, the probes
accumulates the statistics synthetic results of every measurement in their
corresponding histogram slice: incrementing the population, updating the sum and
the sum of square, possibly updating the min or max. At the required frequency, the
probe publishes these four values of its not-empty histogram slices over the time
period, and reset them for the next period.

The collector (TmcPduDecodeHistogramsData()) first maps the probe flow ID to is
collector-assigned unique value. When probe flow isn’t yet known, the record is
IGNORED.

Then the collector (TmcMetricHistogramDecode()) retrieves the corresponding
stored histogram record (tmcMetricDictp), verifies its description and replaces the
stored record slice with values for the new period.

Then it re-computes the slice average and outputs those data in the corresponding
results log file.

• TCP Connections detailed Monitoring Data (TMON_PDU_TYPE_TCPCONN):
Whether being a regular update or the final data after closure, each TCP connection
record is handled the same way.

When probe flow isn’t yet known, the record is IGNORED.

Through TmcPduDecodeTcpConnection(), the several monitoring variables (when
present, otherwise being zero) have their variable-length encoding parsed into a
working tmc_tcpconn_stats_t structure. Then TmcStatsTCPConnectionUpdate()
prepares the corresponding record string to be output to the corresponding results
log file.

• FTP File Transfer detailed Monitoring Data (TMON_PDU_TYPE_FTPXFER):
Whether being a regular update or the final data after closure, each TCP connection
record is handled the same way.

When probe flow isn’t yet known, the record is IGNORED.

Through TmcPduDecodeFtpXfer(), the several monitoring variables (when present,
otherwise being zero) have their variable-length encoding parsed into a working
tmc_ftpxfer_stats_t structure. Then TmcStatsFTPFileXferUpdate() prepares the
corresponding record string to be output to the corresponding results log file.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 53/248

2.2 PROBE: MAIN DATA STRUCTURES

2.2.1 Capture Interfaces
MODULE:

tmp_interface.c / tmp_interface.h

/* Interface activity state at previous capture stats sampling */
#define TMP_IF_NOMINAL 0 /* receiving sustainable pkt rate - initial default*/
#define TMP_IF_SILENT 1 /* no packet received */
#define TMP_IF_DROPPING 2 /* was dropping filtered packets */

typedef struct tmp_cap_if {
 pcap_t *ifHandle;
 uint8_t ifIdx;
 uint16_t ifId; /* XML interface ID: for PDU */
 char *ifName; /* release through xmlFree() */
 char *ifDescr; /* release through xmlFree() */
 char ifFilter[STRMAX+1];
 struct bpf_program ifFltrPgm; /* compiled packet ifFilter expression */
 int ifFileNo; /* I/F file descriptor for select() */
 int ifPcapSnapLen; /* Snap length "suggested" to libpcap */
 /* see below for observed linux values */
 int ifPcapBufPkts; /* of libpcap/kernel internal buffering */
 int ifPcapBufSize; /* of libpcap/kernel internal buffering */
 /* see below for observed linux values */
 uint32_t ifPcapPktRcvd; /* Last sampled pcap_stat.ps_recv */
 uint32_t ifPcapPktDrops;/* Last sampled pcap_stat.ps_drop */
 uint32_t ifPcapPktIfDrps;/* Last sampled pcap_stat.ps_ifdrop */
 float ifPcapPktRate; /* Last computed Captured Pkt/sec */
 float ifPcapDropRate;/* Last computed Dropped Pkt/sec */
 float ifPcapIfDrpRate;/* Last computed Dropped Pkt/sec */
 uint64_t ifPcapStatTime;/* Time of last pcap_stats() refresh */
 char ifPcapStatSnmpDT[12]; /* When compiled with SNMP: */
 /* SNMP DateAndTime formatted of StatTime*/
 uint8_t ifPrevState; /* IF_NOMINAL=0, IF_SILENT, IF_DROPPING */
 /* Keep track of previously received packet on capture interface */
 /* ==> Removing subsequent duplicate by SPAN port */
 bpf_u_int32 ifPrevCapLen;
 bpf_u_int32 ifPrevLen;
 const u_char *ifPrevPkt; /* due to Linux circular buffer, the prev. */
 /* slot won't be re-used yet at next packet*/
} tmp_cap_if_t;
/*
 * Table of active capture interfaces on probe
 */
#define TMP_MAX_CAP_IF 10 /* Max # of capture interfaces per probe */

extern tmp_cap_if_t tmpCapIfTab[TMP_MAX_CAP_IF];
extern uint8_t tmpCapIfCnt; /* use type int instead of uint8_t
 * to make it a watched Integer32
 * in the NetSNMP embedded (sub-)agent
 */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 54/248

/*
 * Bit Mask of active capture interfaces (for select())
 */
extern fd_set tmpCapFdSet;
extern int tmpCapMaxFD;
/*
 * Using a capture file instead of network interface(s)
 */
extern uint8_t tmpCapfromFile; /* boolean: <CapFile> is applicable */
extern uint8_t tmpCapFileDoDelay;/* boolean: delay processing of
 successive packets from capture
 file in order to respect their time
 schedule */
extern tmon_timeval_t tmpCapFileTmOfst; /* Delay to add to capture time of
 every packet from capture file:
 equal to delta time between first
 packet and start time of its
 processing by the probe */
/*
 * On LINUX with mmap'ed ring buffer, following mappings have been observed,
 * and captured packets are aligned on 16 bytes boundaries (hence the steps)
 *
 * snaplen=140 leads to caplen=122 (-14 ethernet => IP len=108)
 * snaplen=142 leads to caplen=138 (-14 ethernet => IP len=124)
 * snaplen=154 leads to caplen=138 (-14 ethernet => IP len=124)
 * snaplen=156 leads to caplen=138 (-14 ethernet => IP len=124)
 * snaplen=157 leads to caplen=154 (-14 ethernet => IP len=130)
 * snaplen=158 leads to caplen=154 (-14 ethernet => IP len=130)
 */

/*
 * Disable following NIC Card flags of Rx offloaded processing, when enabled
 *
 * - NO RX "Receive Checksumming": no checksum drop before capture
 * - NO LRO "Large Receive Offload": no reassembly before capture
 * - NO GRO "Generic Receive Offload": no reassembly before capture
 * ("generic" GRO is a new way for LRO that deals better
 * with forwarding and bridging)
 */

extern int tmpIfStatTimer; /* Timer handle for the regular update of */
 /* per I/F counters of pkt captured/dropped */
#define TMP_IF_STAT_UPD_TIME 60000 /* 1 minute */

 /* rearm the timer */
 tmpIfStatTimer = TmonTimerTimeout(TmIfStatsUpdate, 0, TMP_IF_STAT_UPD_TIME);

2.2.2 Dissected Packet Information
MODULES:

tmp_pkt_dissect.h + tmp_udptransaction.h + tmp_tcpconnection.h +
tmon_probe.h

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 55/248

In father: tmp_pkt_dissect.c

Ring buffer from father to child:

tmon_sharedmem.c / tmon_sharedmem.h

tmon_circ_buf.c / tmon_circ_buf.h

struct tmp_packet_info {
 uint64_t pktID; /* Unique identifier for this pkt */
 uint32_t pktHighestProtocol;/* One of the above type patterns */
 uint8_t pktSaveCount; /* Whether and how many time this
 structure is saved in pending
 data structure */
 uint8_t pktSanity; /* What error/warn in pkt, if any */
 uint8_t pktInterface; /* ID of capture interface */
 struct pcap_pkthdr pktPcapHdr; /* Timestamp+capt. len+org. pkt len */
 uint16_t pktIpTotLen; /* Len of complete IP hdr + payload*/
 uint16_t pktIpHdrOfst; /* Offset in captured packet towards
 the start of IP Header */
 uint16_t pktIpHdrLen; /* Len of IPv4 hdr + IP options */
 uint16_t pktIpOptOfst; /* Offset in captured packet towards
 the start of IP options */
 uint16_t pktIpOptLen; /* Len of IPv4 IP options */
 uint16_t pktTcpUdpHOfst; /* Offset in captured packet towards
 the start of UDP/TCP header */
 uint16_t pktTcpUdpHLen; /*Length of TCP/TCP header + options*/
 uint16_t pktPayloadOfst; /* Offset in captured packet towards
 the start of payload (above
 pktHighestProtocol */
 uint16_t pktPayloadLen; /* Captured packet length
 after IP or TCP or UDP header */
 int16_t pktChecksum; /* <0: FAILED, 0: not verif., >0: OK*/
 tmp_ip_info_t pktIpInfo; /* Useful info fields from IP header*/
 uint16_t pktSrcPort; /* TCP/UDP Source Port */
 uint16_t pktDstPort; /* TCP/UDP Source Port */
 tmp_upper_protos_t pktProtos; /* Optional upper protocols fields */
#define pktTcpInfop pktProtos.pr_tcp.pr_pktTcpInfop
#define pktFtpInfop pktProtos.pr_tcp.u_tcp.pr_pktFtpInfop
#define pktHttpInfop pktProtos.pr_tcp.u_tcp.pr_pktHttpInfop
#define pktNtpInfop pktProtos.pr_pktNtpInfop
#define pktSnmpInfop pktProtos.pr_pktSnmpInfop
#define pktDnsInfop pktProtos.pr_pktDnsInfop
#define pktIcmpInfop pktProtos.pr_pktIcmpInfop
 void *pktIpPayloadp; /*Optionally presrvd IP Payload data*/
 tmp_pkt_flinstance_t *pktFlowInstp; /* List of Flow Inst. pkt belongs to*/
 int16_t pktFlowClasses[TMF_MAX_CLASSPERPKT+1];
 /* Indexes of FlowClass pkt belongs to*/
 char pktProtocolName[STRMAX+1];/* Printable protocol name */
 uint8_t pktSignature[TM_SIGNMAX];/* content hash signature */

};
typedef struct tmp_packet_info tmp_packet_info_t;

typedef struct tmp_ip_info {
 /* IMPORTANT: These 3 first fields must stay contiguous at start */
 /* of this structure, because used in memcmp(3) as an */
 /* array of 10 bytes in the tree of pending fragments */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 56/248

 uint32_t ipSrcAddr; /* in host byte order */
 uint32_t ipDstAddr; /* in host byte order */
 uint16_t ipIdentifier; /* in host byte order */
 uint8_t ipTOS;
 uint8_t ipTTL;
 uint16_t ipFragOffset; /* byte offset in host byte order,
 ==0 means first frag */
 uint16_t ipFragEnd; /* 1+offset of last payload datagram byte in pkt */
 tmp_packet_info_t *ipFragNext; /* doubly linked chain of IP fragments, */
 tmp_packet_info_t *ipFragPrev; /* if any, during and after reassembly */
 uint16_t ipDgramSz; /* how many payload bytes in datagram/segment */
 /* INCLUDING transport header */
 uint8_t ipFragNum; /* ordinal fragment number (first == 1) */
 uint8_t ipFragCnt; /* how many fragments in datagram/segment */
 uint8_t ipLastFrag; /* is this the last (or unique) fragment ? */
 uint8_t ipDontFrag; /* the IP header Don't Fragment flag */
 uint8_t ipProtocol; /* the IP header Protocol field */
 uint8_t ipTScnt; /* count of optional IP Timestamps present */
 uint32_t ipTS[TM_IP_TS_MAX]; /* optional sequence of IP Timestamps */
} tmp_ip_info_t;

/*
 * Following is a fragment of a tmp_packet_info_t that should ideally
 * be a union of structures, but in fact consists of pointer to separately
 * allocated structures.
 * The reason for this is to reduce the volume of per packet dissected
 * information to the minimum.
 * This information is indeed transferred between the capture front-end
 * processing unit and the back-end in charge of stateful analysis and
 * production of statistics. The less info is to be transferred per packet,
 * the better the probe processing performances
 */
/*
 * Max size is for an FTP Control packet: TCP + FTP infos
 * Hence the definition of the tmp_largest_protos_t, used for
 * the sizeof() in allocating the largest structure.
 */
typedef union tmp_upper_protos {
 struct {
 tmp_tcp_info_t *pr_pktTcpInfop; /* Addit'l TCP info fields from hdr */
 union {
 tmp_ftp_info_t *pr_pktFtpInfop; /* Addit'l FTP Ctl decoded cmd/rsp */
 tmp_http_info_t *pr_pktHttpInfop; /* Addit'l HTTP decoded cmd/rsp */
 } u_tcp;
 } pr_tcp;
 tmp_ntp_info_t *pr_pktNtpInfop; /* Addit'l NTP decoded timestamps */
 tmp_snmp_info_t *pr_pktSnmpInfop; /* Addit'l SNMP decoded: Req ID */
 tmp_dns_info_t *pr_pktDnsInfop; /* Addit'l DNS decoded: Transact.ID */
 tmp_icmp_info_t *pr_pktIcmpInfop; /* Addit'l ICMP info fields from hdr*/
} tmp_upper_protos_t;
/*
 * This is to get the size of a statically allocated tmp_upper_protos_t
 *
 * Mimics the tmp_upper_protos_t,
 * but with real struct instead of pointers
 */
typedef union tmp_largest_protos {
 struct {

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 57/248

 tmp_tcp_info_t pr_pktTcpInfo;
 union {
 tmp_ftp_info_t pr_pktFtpInfo;
 tmp_http_info_t pr_pktHttpInfo;
 } u_tcp;
 } pr_tcp;
 tmp_ntp_info_t pr_pktNtpInfo;
 tmp_snmp_info_t pr_pktSnmpInfo;
 tmp_dns_info_t pr_pktDnsInfo;
 tmp_icmp_info_t pr_pktIcmpInfo;
} tmp_largest_protos_t;

struct tmp_icmp_info {
 uint16_t icmpType;
 uint16_t icmpEchoID;
 uint16_t icmpEchoSeq;
 uint16_t icmpNextHopMTU;
 tmp_packet_info_t embedPktInfo; /* Dissected embedded UDP/TCP packet,
 if any */
};
typedef struct tmp_icmp_info tmp_icmp_info_t;

typedef struct tmp_ntp_info {
 struct timeval ntpOrgTm;
 struct timeval ntpRcvTm;
 struct timeval ntpTmtTm;
 uint8_t ntpMode; /* fromClient / fromServer / broadcast / others */
} tmp_ntp_info_t;

typedef struct tmp_snmp_info {
 uint32_t snmpReqID;
 uint8_t snmpType;
} tmp_snmp_info_t;

typedef struct tmp_dns_info {
 uint16_t dnsTransID;
 uint8_t dnsType; /* fromClient / fromServer */
} tmp_dns_info_t;

typedef struct tmp_tcp_info {
 uint32_t tcpSeq;
 uint32_t tcpAck;
 uint16_t tcpWindow;

 uint8_t tcpDirection:2;/*one of TMP_TCPDIR_UNKNOWN(==0) / _ATOB / _BTOA */
 uint8_t tcpNewRTTM:1; /* boolean: Is tcpRTTMdelay filled-in ? */

 /* Not used flags are 1-bit long, important flags *
 * are in directly addressable bytes */
 uint8_t tcpNSflag :1; /* boolean: ECN-nonce concealment protect. RFC3540 */
 uint8_t tcpCWRflag:1; /* boolean: Congestion Window Reduced RFC3168 */
 uint8_t tcpECEflag:1; /* boolean: ECN Echo */
 uint8_t tcpURGflag:1; /* boolean: */
 uint8_t tcpPSHflag:1; /* boolean: */
 uint8_t tcpACKflag; /* boolean: */
 uint8_t tcpRSTflag; /* boolean: */
 uint8_t tcpSYNflag; /* boolean: */
 uint8_t tcpFINflag; /* boolean: */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 58/248

 uint8_t tcpFlags; /* original Flags byte from TCP header */
 uint16_t tcpMSS; /* Maximum Segment Size option */
 uint8_t tcpType; /* Start/First Data/Retr. Data/empty Ack/End/RST */
 uint8_t tcpWinScale; /* Shift Count of the TCP Window Scaling */
 /* bit 0x80 == true for SYN packet with this opt */
 uint8_t tcpSACKperm; /* boolean: Selective ACK Permitted option */
 uint8_t tcpHasRTTM; /* boolean: Round-Trip Time option present */
 uint8_t tcpAltChksum; /* which checksum algorithm, only #0 is supported */
 uint8_t tcpSACKcnt; /* number of SACK blocks present */
 uint32_t tcpSACKstrt[4];/*start of Select. Ack'ed blocks: inclusive bound */
 uint16_t tcpSACKendOfs[4];/*RELATIVE end of Sel. Ack'ed blks: excl. bound */
 uint32_t tcpTSval; /* Timestamp Value */
 uint32_t tcpTSecr; /* Timestamp Echo Reply */
 struct timeval tcpRTTMstart; /* Valid only when tcpNewRTTM==1 */
 /* Start time of TCP round-trip with probe
 * that this back packet closes with its TSecr
 */
} tmp_tcp_info_t;

/*
 * Dissected useful Info of FTP Control packet
 *
 * Also used to temporarilly buffer changes to apply
 * to FTP related flow counters between:
 * - the FTP stateful analysis ofthis packet
 * - the assignment of the pkt to flow instances
 */
typedef struct tmp_ftp_info {
 uint8_t ftpType:3; /* Command / Response / Other */
 uint8_t truncated:1; /* whether the ftpText is truncated */
 uint8_t addr:1; /* whether the ftpDataAddr is present */
 uint8_t port:1; /* whether the ftpDataPort is present */
 union {
 uint8_t uc_ftpCmd;
 char uc_ftpReplyCode[3];
 } u_code;
#define ftpCmd u_code.uc_ftpCmd
#define ftpReplyCode u_code.uc_ftpReplyCode
 union {
 struct {
 uint32_t dp_ftpDataAddr;
 uint16_t dp_ftpDataPort;
 } dp;
 char ua_ftpText[TMON_FTP_STRMAX+1];
 } u_arg;
#define ftpDataAddr u_arg.dp.dp_ftpDataAddr
#define ftpDataPort u_arg.dp.dp_ftpDataPort
#define ftpText u_arg.ua_ftpText
 /* packet state info for flow stats counters */
 uint32_t newCtlConn:1;
 uint32_t newPassive:1;
 uint32_t newActive:1;
 uint32_t dirList:1;
 uint32_t xferRestart:1;
 uint32_t xferGet:1;
 uint32_t xferPut:1;
 uint32_t xferGetFailed:1;
 uint32_t xferPutFailed:1;

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 59/248

 uint32_t cmdFailed:1;
 uint32_t cipherFailed:1;
 uint32_t loginFailed:1;
 uint32_t dataAbort:1;
 uint32_t cleanClose:1;
 uint32_t dirtyClose:1;
 uint32_t crypted:1;
 uint32_t noLogin:1;
 uint32_t noCommand:1;
 uint32_t noFileXfer:1;
 uint32_t fileXfer:1;
} tmp_ftp_info_t;

2.2.3 IP Fragments to Skip
MODULE:

In father: tmp_reassembly.h / tmp_reassembly.c

typedef struct tmp_dgram_id {
 uint8_t srcDstId[10]; /* key: src IP | dst IP | IP id */
 time_t creatTime;
} tmp_dgram_id_t;

/*
 * Balanced Tree of recent IPv4 datagram identifiers whose
 * second and subsequent fragment do not participate to
 * the probe flow measurements:
 *
 * These can be skipped after basic IPv4 decoding
 */
static tmon_dict_t **tmpReassSkipTree;

/*
 * Initisation of Fragment skip contexts:
 * Allocates one fragment skip dictionary per capture I/F
 *
 * Exit(1) upon memory allocation failure
 */
void
TmpReassSkipInit()
{
 int i;

 tmpReassSkipTree = (tmon_dict_t**)malloc(tmpCapIfCnt * sizeof(tmon_dict_t*));
 if(!tmpReassSkipTree) {
 FATAL "OUT OF MEMORY in allocating Reassembly context dictonaries" END;
 }

 for(i = 0; i < tmpCapIfCnt; i++) {
 tmpReassSkipTree[i] = TmonDictCreate(TmpReassSkipCmp);

 if(!tmpReassSkipTree){
 FATAL "OUT OF MEMORY in allocating Reassembly context dictonaries" END;
 }
 }

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 60/248

 (void)TmonTimerTimeout(TmpReassSkipClean, 0, TMP_MAX_REASS_TIME*1000);
}

2.2.4 Flow Class Parsed Specifications
MODULE:

tmp_flowclass.h + tmon_probe.h / tmp_flowclass.c

Coding of Reporting Period:

/*
 * Probe observations sending period for FlowClass,
 * Also time interval for probe pre-aggregation of measurement
 *
 * either TMF_PERIOD_NONE: send every measurement unit produced, when ready
 * or time for histogram slice, sent at that rate
 *
 * Values are structured as low byte for deci-seconds (10s units)
 * high byte for deci-minutes (10m units)
 * the 6 low-order bits of a byte cover a period of six units (1 min/hour)
 * bit #0 == 10 sec/min offset
 * #1 == 20 sec/min offset
 * #2 == 30 sec/min offset
 * #3 == 40 sec/min offset
 * #4 == 50 sec/min offset
 * #5 == 60 sec/min offset
 * This way, different interval specs (from different applicable flow
 * classes) can be combined to determine the finest requested period:
 * + The different specs are OR'ed together to define resulting period
 * + Resulting high order byte is ignored when low order byte is non-null
 * + Actual period is the smallest distance between asserted bits
 *
 * Example:
 * A)
 * + one flow class requests every 30 m: high byte==00 1 0 0 1 0 0 low b==0
 * + one flow class requests every 60 m: high byte==00 1 0 0 0 0 0 low b==0
 * Result:
 * Both patterns are OR'ed: result = high byte==00 1 0 0 1 0 0 low b==0
 * ==> actual period is 30 sec
 * B)
 * + one flow class requests every 30 s: high byte==0 low bits 1 0 0 1 0 0
 * + one flow class requests every 20 s: high byte==0 low bits 1 0 1 0 1 0
 * + one flow class requests every 20 m: high byte==00 1 0 1 0 1 0 low b==0
 * Result:
 * + high byte ignored, low byte combined through bitwise OR:
 * high byte == 0 low bits == 1 0 1 1 1 0
 * + because bit#1 and bit#2 are both asserted, actual period is 10 seconds
 */
#define TMF_PERIOD_NONE 0x0000 /* Send individual measurements when produced */
 /* Don't send counters */
#define TMF_PERIOD_10s 0x003f /* 10 seconds: all 10s-slots are true */
#define TMF_PERIOD_20s 0x002a /* 20 seconds: every 2 10s-slots are true */
#define TMF_PERIOD_30s 0x0024 /* 30 seconds: every 3 10s-slots are true */
#define TMF_PERIOD_60s 0x0020 /* 1 minute : only sixth 10s-slot is true */
#define TMF_PERIOD_10m 0x3f00 /* 10 minutes: all 10m-slots are true */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 61/248

#define TMF_PERIOD_20m 0x2a00 /* 20 minutes: every 2 10m-slots are true */
#define TMF_PERIOD_30m 0x2400 /* 30 minutes: every 3 10m-slots are true */
#define TMF_PERIOD_60m 0x2000 /* 1 hour : only sixth 10m-slot is true */

#define TMF_PERIOD_MASK 0x3f3f /* mask for any period value */
#define TMF_PERIOD_SECs 0x003f /* mask to check if period has seconds slots*/
#define TMF_PERIOD_MINs 0x3f00 /* mask to check if period has minutes slots*/
/* Resulting time interval */
#define TMF_INTRVL_10s 0x0001
#define TMF_INTRVL_20s 0x0002
#define TMF_INTRVL_30s 0x0004
#define TMF_INTRVL_60s 0x0008
#define TMF_INTRVL_10m 0x0100
#define TMF_INTRVL_20m 0x0200
#define TMF_INTRVL_30m 0x0400
#define TMF_INTRVL_60m 0x0800
#define TMF_INTRVL20_30s 0x0006/* mask to check if interval has 20s & 30s */
#define TMF_INTRVL20_30m 0x0600/* mask to check if interval has 20m & 30m */

Flow Class Overall Information:
struct tmp_flowclass {
 uint16_t flowClassId; /* TrafMon-wide <FlowClass> ID number */
 uint16_t flowClassIdx;/* Index of this FlowClass for probe */
 char *flowClassName; /*<FlowClass> Name string */
 char *flowClassDescr;/*<FlowClass> description */
 /* These strings require xmlFree() */
 tmp_flow_if_t *flowClassIf[TMP_MAX_CAP_IF];
 /* <FlowFilter> expression data */
 /* structures foreach I/F of probe */
 uint8_t flowClassCond; /* Connective type for opt. list of */
 /* addtional conditions on stateful */
 /* context information */
 uint8_t flowClassStPrdCnt; /* # used slots in below table */
 tmff_predicate_t flowClassStatePreds[TMF_MAX_CLSSTATPRED];
 /* The opt. state predicates that */
 /* complement the FlowFilter expr. */
 /* on individual packets */
 uint8_t flowDoChecksum; /* Boolean, whether or not the */
 /* UDP/TCP checksum has to be */
 /* verified where possible: */
 /* fully capt'd pkts &full reass.*/
 uint8_t flowDoReassmbly; /* Boolean, whether or not IP */
 /* reassembly is necessary */
 uint16_t flowMeasIntrval; /* Period to send data samples */
 /* Also interval for aggregation*/
 uint8_t flowDoMeasDelay; /*Whether and which delay to meas*/
 uint8_t flowRTTSide; /* RTT betw. prb and which end(s)*/
 uint8_t flowDoAggrDelay; /* Boolean, are the measurements */
 /*to be aggregated before sending*/
 tmon_histospec_t flowHisto; /* Slices for aggregated delays */
 uint8_t flowSendCounters; /* does probe send pkt or dgram */
 /* counters for flow to collector*/
 uint8_t flowReportTCPConn;/* Are TCP connections for flow: */
 /* - ignored */
 /* - individually reported */
 /* - or grouped and reported */
 uint8_t flowReportFTPTfrs;/* Are FTP sessions for flow: */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 62/248

 /* - ignored */
 /* TMF_TCPFTPREPORT_NONE */
 /* - individually reported */
 /* (with their file transfers) */
 /* TMF_TCPFTPREPORT_EACH */
 /* - or grouped and reported */
 /* TMF_TCPFTPREPORT_GRP */
 /* For data connection: */
 /* - Whether only start/stop pkts*/
 /* TMF_TCPFTPREPORT_BOUND */
 /* - or whether every packet */
 /* ~TMF_TCPFTPREPORT_BOUND */
 uint8_t flowAnalyseProto; /* Which stateful analysis to */
 /* apply to matching packets */
 uint8_t flowObsUnit; /* Which timestamping strategy */

 uint8_t flowHopCnt; /* number of hops for FlowClass */
 char **flowHopNames; /* ordered list of FlowClass hops*/
 /* free: table via free() */
 /* every string via xmlFree() */
 tmp_sign_specs_t flowSignSpecs; /* pkt/dgram signing hash specs */
};
typedef struct tmp_flowclass tmp_flowclass_t;

/*
 * This table contains the loaded definitions of all <FlowClass> definitions
 * applicable to this probe.
 */
#define TMF_MAX_FLOWCLASS 50 /* max <FlowClass> per probe Interface*/

extern tmp_flowclass_t tmpFlowClassTab[TMF_MAX_FLOWCLASS];

Flow Class Information at Capture Interface level:

struct tmp_flow_if {
 struct tmp_flowclass *flowClassp;/* back pointer to father <FlowClass> */
 uint16_t flowClassIfIdx; /* Probe interface for this Class Filter */
 uint16_t flowGrainIdx; /* Specifies flow granularity for obs. */
 /* as index in global TmpFlowGrainTab */
 tmff_node_t flowClassIfFilter; /* anchor of <FlowFilter> exprression */
 /* data structure for probe/if */
 uint16_t flowClassIfPredicates[TMF_MAX_CLASSPRED];
 /*
 * Contains the indexes, in the table of
 * ordered predicates of all flow classes
 * applicable to the capture interface,
 * namely tmpIfFilterPredicatesTab, of all
 * those predicates members of the
 * <FlowFilter> for this <FlowClass>.
 * Permits to selectively de-activate them
 * all when the current packet under match
 * has solved the FlowFilter of this
 * FlowClass (known to either match or
 * not match)
 */
 uint16_t flowClassIfPredCnt;/* First free index in above table */
 uint8_t flowIfCaptTHopNum; /* This hop Seq.# in the TS list */
 uint8_t flowIfIpTSCnt; /* # of expected IP Timestamp */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 63/248

 uint8_t flowIfNtpTSCnt; /* # of expected NTP applic. TS */
 tmp_iptshop_t *flowIfIpTSHops; /* Table of IP TimeStamp specs */
 tmp_ntphop_t *flowIfNtpTSHops; /* table of NTP Time Hop specs */

 /* Detailed Further processing Flags, to be easily combined at run */
 /* time with those of other applicable flow classes for a given packet */
 uint16_t doPublishHopTS;
 uint8_t doInterPktDelay;
 uint8_t doRoundTripWith;
 uint16_t doRoundTripDelay;
 uint16_t doAggrDelay;
 uint16_t doStatCounters;
 uint16_t doTCPConns;
 uint16_t doFileXfers;
};
typedef struct tmp_flow_if tmp_flow_if_t;

typedef struct tmp_iptshop {
 uint8_t iptsNum; /* ordinal # of this TS in the pkt IP Timestamp opt*/
 uint8_t iptsHopNum; /* ordinal num. of this TS in the OneWayDelay list */
} tmp_iptshop_t;

typedef struct tmp_ntphop {
 uint8_t ntpHopType;
 uint8_t ntpHopNum; /* ordinal num. of this TS in the OneWayDelay list */
} tmp_ntphop_t;

Flow Classes structures are stored in a table.

Each member keeps its own index in the table: flowClassIdx

Each Flow Class specification has a table indexed as per the tmpCapIfTab[] interface
table (ifIdx): tmpFlowClassTab[]. For those interface where the Flow Class do apply, the
corresponding table is a pointer to a tmp_flow_if_t structure; other entries are NULL. The
tmp_flow_if_t structure has a back pointer to the overall tmp_flowclass_t structure in the
tmpFlowClassTab[].

The dissected packet structure has a table of pointers towards its directly or indirectly
matched Flow Classes (tmp_pkt_dissect.h)

Flow Classes are parsed in the father process, and its structures allocated. Through a
simple fork() system call, the entire memory image of the father process it copied for
starting the child. Therefore, although not physically shared, the child obtains the complete
structure of Flow Classes specifications.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 64/248

2.2.5 Single-Pass Combined Flow Classes Filtering
For efficient matching a captured packet with all candidate Flow Class filters, all predicates
from all possible filter expressions are checked in sequence, grouped by packet
information field they involve (see section 1.3.2 above).

MODULE:

Father: tmp_flowfilter.c / tmp_flowfilter.h

/*
 * A <FlowFilter> if a boolean expression having up to three layers:
 * - Layer 1: set of predicates (Px) or sub-expressions (Sx) connected by
 * AND or NAND, as in
 * [NOT] (P1 AND S2 AND S3 AND P4)
 * - Layer 2: layer of the sub-expressions (Sx) part of layer 1
 * set of predicates (px) or sub-expressions (sx) connected by
 * OR or NOR, as in
 * S2::= [NOT] (p5 OR p6 OR s7)
 * - Layer 3: layer of the sub-expressions (sx) part of layer 2
 * set of predicates (prx) connected by AND or NAND, as in
 * s7::= [NOT] (pr8 AND pr9)
 * Layer 3 may only consist in predicates, not sub-expressions
 */
/*
 * NON OPTIMISED WOULD-BE IMPLEMENTATION:
 * All predicates and anchors of sub-expressions are materialised by
 * a tmff_node_t structure.
 * A union u distinguishes between the fields for predicate and those
 * for sub-expression
 * The tmffOp operator identifier permit to know whether the node is
 * a sub-expression connective (TMFF_AND, TMFFNAND, TMFF_OR and TMFF_NOR)
 * Inside a layer, the heading node is always a connective, and is the start
 * (via its tmffChildp) of a linked list of nodes, based on the
 * respective tmffNextp pointers.
 * Every node in the list points back to the heading connective via tmffHeadp.
 *
 * A sub-expression is materialised by a connective node, whose tmffOper
 * is,
 * as <FlowFilter> starting anchor: TMFF_AND or TMFF_NAND
 * at layer 1: TMFF_OR or TMFF_NOR
 * at layer 2: TMFF_AND or TMFF_NAND
 * A connective node has a tmffChildp with the list of it components
 * A connective node also has a tmffEltCnt constant count of the number
 * of its components.
 *
 * A predicate has a comparison operator, an ID of the packet field it applies
 * to and 1 or 2 operand values to compare the packet field with
 *
 * IMPORTANT TRICK:
 * This <FlowFilter> data structure encompasses the definition of the
 * expression, but is also dynamically collects the partial results during
 * the flow class matching of every packet, one-by-one.
 *
 * Hence, the connective nodes also have a tmffRes field whose value is
 * TMFF_UNKNOWN (0): at packet match initialisation

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 65/248

 * TMFF_FALSE (-1): as soon as one member invalidates the AND/OR connective
 * > 0: number of member predicates already processed for the
 * current packet, which do not invalidate the connective
 * When tmffRes == tmffEltCnt, then the connective succeeds
 *
 *typedef struct tmff_node tmff_node_t;
 *
 *typedef struct tmff_node {
 * tmff_node_t *tmffNextp; * to brother of the AND/OR expression *
 * tmff_node_t *tmffHeadp; * to the expr. heading AND or OR node *
 * union {
 * struct connective {
 * tmff_node_t *u_c_tmff_childp; * the the sub-expression nodes list *
 * int u_c_tmff_eltCnt; * how many members in this list? *
 * int u_c_tmff_res; * partial result for cur. pkt match *
 *#define tmffChildp u.c.u_c_tmff_childp
 *#define tmffEltCnt u.c.u_c_tmff_eltCnt
 *#define tmffRes u.c.u_c_tmff_res
 * } c;
 * struct predicate {
 * int u_p_tmff_pkField; * on which protocol field of packet *
 * int32_t u_p_tmff_val1; * single or first comparison operand *
 * int32_t u_p_tmff_val2; * optional second comparison operand *
 *#define tmffPkField u.p.u_p_tmff_pkField
 *#define tmffVal1 u.p.u_p_tmff_val1
 *#define tmffVal2 u.p.u_p_tmff_val2
 * } p;
 * } u;
 *} tmff_node_t;
 *
 * And all the predicates also need to be copied in a table where they are
 * tetsed in sequence upon matching a given packet for determining its flow
 * class membership.
 */
/*
 * OPTIMISED ACTUAL IMPLEMENTATION:
 * RATIONALE:
 * Because the predicates themselves sit in a table, and refer back to their
 * connective anchor point;
 * And because the connective anchor points know how many members
 * (predicates and sub-expression connectives) they have
 * ==> Then the linked list structures do not have to keep explicit nodes
 * for the predicates themselves. Only connectives form linked lists
 * below their father connectives
 *
 * RESULTING IMPLEMENTATION:
 * It is split in two parts
 * One is a linked structure of the connectives (AND/NAND or OR/NOR) for
 * every subexpression
 * The other is a table of the predicates:
 * packet field, operator, operand(s), pointer to the sub-expression
 * anchor (used to flow back the partial result)
 *
 * Linked Structure for one <FlowClass><FlowFilter>
 *
 * All anchors of sub-expressions are materialised by a tmff_node_t structure,
 * representing its connective (TMFF_AND, TMFF_NAND, TMFF_OR and TMFF_NOR).
 *

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 66/248

 * A sub-expression is materialised by a connective node, whose tmffConn
 * operator is,
 * as <FlowFilter> starting anchor: TMFF_AND or TMFF_NAND
 * at layer 1: TMFF_OR or TMFF_NOR
 * at layer 2: TMFF_AND or TMFF_NAND
 *
 * A connective node has a tmffEltCnt constant count of the number of
 * its components (a mix of predicates and sub-expressions at the lower
 * layer -- only predicates at layer 3).
 *
 * A connective node has a tmffChildp with the list of its potential
 * sub-expression components.
 *
 * A connective node also has a tmffNextp permitting to link all brothers
 * sub-expressions present in a same upper layer expression.
 *
 * The anchor of the complete <flowFilter> is a TMFF_AND/TMFF_NAND without
 * brother (tmffNextp is NULL), but whose tmffChildp starts the list at
 * layer 1. For this, tmffNextp is replaced by tmffClassp pointing to its
 * englobing <FlowClass> definition tmp_flowclass_t structure.
 *
 * Each sub-expression anchor (as well as each predicate in the table) have
 * a tmffHeadp which points back to the connective node at start of the list.
 * This pointer permits to flow back the partial result to the upper layer.
 * IMPORTANT TRICK:
 * This <FlowFilter> data structure encompasses the definition skeleton of
 * the expression, but it also dynamically collects the partial results
 * during the flow class matching of every packet, one-by-one.
 *
 * Hence, the connective nodes also have a tmffRes field whose value is
 * TMFF_UNKNOWN (0): at packet match initialisation
 * TMFF_FALSE (-1): as soon as one member invalidates the AND/OR connective
 * > 0: number of member predicates already processed for the
 * current packet, which do not invalidate the connective
 * When tmffRes == tmffEltCnt, then the connective succeeds
 */

Each Flow Class filter expression is materialised by a tree of following connective nodes:

/*
 * Possible Logical Connectives
 */
#define TMFFCON_AND 1 /* AND(element, element, element ...) */
#define TMFFCON_NAND 2 /* NOT AND(element, element, element ...) */
#define TMFFCON_OR 3 /* OR(element, element, element ...) */
#define TMFFCON_NOR 4 /* NOT OR(element, element, element ...) */

struct tmff_node {
 union { /*
 * The TOP level AND/NAND (level == 0) has no next brother, but
 * points to its <FlowClass definition
 */
 tmff_node_t *u_n_tmff_nextp; /* To brother sub-expression of the expr.*/
 tmp_flowclass_t
 u_c_tmff_classp; / To this <FlowClass> Definition */
 } u;
#define tmffNextp u.u_n_tmff_nextp
#define tmffClassp u.u_c_tmff_classp

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 67/248

 tmff_node_t *tmffHeadp; /* To the expr. heading connective node */
 tmff_node_t *tmffChildp; /* The list of potential sub-expressions */
 uint8_t tmffConn; /* Which logical connective: [N]AND/OR */
 uint8_t tmffLevel; /* 0:top [N]AND, 1: [N]OR, 2: bot. [N]AND */
 uint8_t tmffEltCnt; /* How many members in this expression? */
 uint8_t tmffRes; /* partial result for current pkt match */
};
typedef struct tmff_node tmff_node_t;

The root of this tmff_node_t tree is anchored in the tmp_flowclass_t structure.

The above nodes do not point to the predicates of the expression. This is not needed.
Indeed, the structure is used to solve the filter expression for a given captured packet.
Hence the packet is first checked against a predicate expression; and its result is mapped
upwards in the tree. As soon as a connective node is itself fully resolved, its result in turn
is propagated upwards.

All predicates (from all Flow Classes filter expressions) applicable to a given interface are
stored in a table, ordered by involved packet information field. Aside this, a corresponding
Boolean table marks which predicates are still enabled and which shouldn’t be tested
anymore, as the global list of comparisons progresses for a given packet.

Predicates point back to the instance of connective node (inside an instance of Flow Class
interface structure). This permits to pass its result upwards:

/*
 * A table groups all comparison operations in the global set of
 * <FlowClass><FlowFilter> expressions applicable to packets from a
 * give capture interface
 *
 * A predicate element contains a definition part:
 * Packet field ID,
 * Comparison operator
 * Single or first operand to compare with
 * Optional second operand (e.g. for subnet membership: nw radix and mask
 *
 * This table is sorted by packet field ID, operator, value1, value2 in that
 * order.
 *
 * A predicate element also contains
 * An active flag: true until the corresponding <FlowClass> is known to
 * match or to not match.
 * A back pointer to heading connector, in the <FlowClass>/<FlowFilter>
 * linked structure, representing the expression this predicate is a
 * member of.
 *
 * When matching the flow classes for a given packet, all predicates applying
 * to a same packet field are evaluated in sequence:
 *
 * A same predicate expression appearing in more than one
 * <FlowClass><FlowFilter> expressions then appear as consecutive entries
 * in the table. The test is executed once and result is flown back to
 * all predicate instances within the <FlowClass><FlowFilter> data
 * structures.
 *
 * A same field is collected once, and all comparisons on it are applied

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 68/248

 * as a grouped sequence; respective results being immediately flown back
 * to corresponding predicate instances within the <FlowClass><FlowFilter>
 * data structures.
 */
typedef struct tmff_predicate {
 tmff_node_t *tmffHeadp; /* Head of the sub-expression this is */
 /* a predicate of; point back in the */
 /* corresponding FlowClass/FlowFilter */
 uint16_t tmffPkField; /* On which protocol field of packet */
 uint8_t tmffOper; /* Comparison operator on pkt field */
 uint32_t tmffVal1; /* Single or first comparison operand */
 uint32_t tmffVal2; /* Optional second comparison operand */
} tmff_predicate_t;

/*
 * The global data structure capturing the ordered definitions of the set of
 * all predicates present in all <FlowClass>/<FlowFilter> definitions
 * applicable to every capture interfaces of this probe instance.
 *
 * Each entry in the table point back to the enveloping connective
 * tmf_node_t representingthe sub-expression this predicate is a member of.
 *
 * Each entry in the table is also pointed to by an entry in the
 * flowClassPredicates[] table part of the different tmp_if_flowclass_t
 * <FlowClass> definition record inside the global tmpIfFlowClassTab[][]
 */
static tmff_predicate_t tmpIfFlowPredicatesTab[TMP_MAX_CAP_IF]
 [TMF_MAX_FLOWCLASS*TMF_MAX_CLASSPRED];
/*
 * Next free entry in the above table for every probe capture interface
 */
static int tmpIfFlowPredFreeTab[TMP_MAX_CAP_IF];
/*
 * Runtime table with a disabled flag per predicate for one interface
 *
 * All initialised at false (0) before starting a packet match
 * Records are selectively asserted when a FlowClass filter has been
 * resolved positively or negatively
 */
static uint8_t tmpIfFlowPredDisableTab[TMF_MAX_FLOWCLASS*TMF_MAX_CLASSPRED];

As soon as the first predicate participating to an AND connective is TRUE, or FALSE
within an OR connective, the global result of the connective is known:

• it is propagated upwards in the connectives tree;

• all remaining predicates for this connective are disabled

A similar, but simplified, mechanism is used to check the post <Condition>, this time on a
class by class basis, after the further packet stateful analysis in the child process.

2.2.6 Granular Flows and Discovered Flow Instances
MODULE:

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 69/248

tmp_granularflow.c / tmp_granularflow.h

Granular Flow definitions are stored in a table, sorted by name to permit search by
dichotomy.

 /*
 * Structure for storing the set of criteria defining the granularity
 * of discovered traffic flow for which to accumulate observations
 */
typedef struct tmp_flowgrain {
 char *flowGrainName; /* XML name ID of the <GranularFlow> */
 uint32_t flowGrainIdx; /* Index in the global table */
 tmp_flowgrspec_t flowGrainSpec;
 uint32_t flowGrainAddrMask;/* when withNetMsk == 1 */
 uint32_t flowGrainTcpSpec; /* when perTcpSpec == 1 */
 tmon_dict_t *flowInstancesTree;/* Balanced 2 tree with all
 corresponding flow instance records*/
} tmp_flowgrain_t;

/*
 * Set of flow granularity criteria specifiers
 */
typedef struct tmp_flowgrspec {
 unsigned int perIf :1;/* Preserve Probe interface ID in granular flow */
 unsigned int perSource :1;/* Preserve Source IP Address in granular flow */
 unsigned int perDest :1;/* Preserve Dest. IP Address in granular flow */
 unsigned int perAddr :1;/* Covers all traffic of given IP from/to peers */
 unsigned int perAddPair:1;/* One granular flow per Pair of IP Addresses */
 unsigned int withNetMsk:1;/* Compare only masked subnet part of the addr's*/
 unsigned int perSrcPort:1;/* Preserve UDP/TCP Source Port in granular flow*/
 unsigned int perDstPort:1;/* Preserve UDP/TCP Dest. Port in granular flow */
 unsigned int perPort :1;/* Preserve UDP/TCP Port in granular flow */
 unsigned int perPrtPair:1;/* Preserve both UDP/TCP Ports in granular flow */
 unsigned int onlyPrivPt:1;/* Only Privileged Port(s) kept in distinct flow*/
 unsigned int perSiz200 :1;/* Preserve IP packet sizes in 200 bytes buckets*/
 unsigned int perSiz400 :1;/* Preserve IP packet sizes in 400 bytes buckets*/
 unsigned int perIpProto:1;/* Discriminate between UDP | TCP | Other */
 unsigned int perIpPREC :1;/* Preserve IP Type-of-Svc preced. in gran. flow*/
 unsigned int perIpDSCP :1;/* Preserve IP Type-of-Svc DSCP in granular flow*/
 unsigned int perIpTOS :1;/* Preserve IP Type-of-Svc byte in granular flow*/
 unsigned int perIpTTL :1;/* Preserve IP Time-To-Live in granular flow*/
 unsigned int perIpDF :1;/* Preserve IP Don't Fragment Flag in gran. flow*/
 unsigned int perIpMF :1;/* Preserve IP More Fragment Flag in gran. flow*/
 unsigned int perIpFrOrd:1;/* Preserve IP Frag. ordinal # in granular flow */
 unsigned int perIpFrOfs:1;/* Preserve IP Fragment Offset in granular flow */
 unsigned int perIcmpCls:1;/* Preserve class of ICMP Type/Code in gr. flow */
 unsigned int perIcmpTyp:1;/* Preserve ICMP Type byte in granular flow */
 unsigned int perIcmpTC :1;/* Preserve ICMP Type/Code in granular flow */
 unsigned int perTcpSpec:1;/* Preserve the Packets as per TCP specifier */
} tmp_flowgrspec_t;

/*
 * Stores all <GranularFlow> definitions.
 * Table is dynamically allocated at config. file loading time and sorted
 * on flowGrainName.
 *
 * ID/IDREF mapping between <GranularFlow name=xxx> and <FlowGrain ref=xxx>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 70/248

 * is resolved by dichotomic search.
 */
extern tmp_flowgrain_t *TmpFlowGrainTab;
extern int TmpFlowGrainCount;

Granular Flows specifications are parsed in the father process, and its structures
allocated. Through a simple fork() system call, the entire memory image of the father
process it copied for starting the child. Therefore, although not physically shared, the child
obtains the complete structure of Flow Grain specifications.

Flow Instances are only created and maintained in the child process, after stateful analysis
of the packet and possible Flow Class membership fine tuning, based on the
<Condition> expressions.

Derived discovered Flow Instances are identified by a key consisting in a series of bytes
resulting from the concatenation of its preserved data fields, such that one can quickly
retrieve the potential existing flow instance a new packet is member of.

/*
 * Instance of a flow at selected granularity
 */
#define TMFG_MAXKEY 50

struct tmfg_flowinstance {
 uint64_t flowUniqId;
 uint8_t flowRefCnt; /* How many times this record is referred tor */
 /* by another struct or by dictionary? */
 /* NOTE: dissected packet/datagram are ephemeral */
 /* so they do NOT participate to flowRefCnt*/
 uint8_t flowIfIdx;
 uint8_t flowKeyLen;
 uint8_t flowKey[TMFG_MAXKEY];
 tmp_flowgrspec_t flowGrainSpec; /* what below fields are used and how */
 /* to interpret them? */
 uint32_t flowAddr1;
 uint32_t flowAddr2;
 uint32_t flowNwMask;
 uint16_t flowFrag;
 uint16_t flowIcmp;
 uint16_t flowPort1;
 uint16_t flowPort2;
 uint8_t flowSzRange;
 uint8_t flowIpProto;
 uint8_t flowTTL;
 uint8_t flowTOS;
 uint8_t flowDF;
 uint8_t flowMF;
 uint8_t flowTCPspec;
 uint8_t flowTCPflagsOrType;

 tmp_flow_pkt_stats_t flowPktStats;/* from per packet/dgram counters */
 tmp_fi_del_histogram_t flowDelayHistoTab[TMON_MTR_DELAY_COUNT];
 /*
 * The five possible types of probe-aggregated

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 71/248

 * Delay histogram:
 * - one-way delay between interfaces of probe
 * - round-trip time towards responder
 * - round-trip time towards initiator
 * - inter-datagram delay at probing point
 * (unfragmented of reassembled data units)
 * - inter-fragment delay at probing point:
 * between real incomplete fragments of a same
 * datagram -- complementary of the above one
 */
 tmp_flclass_if_ref_t *flowClIfRefp;/* list of reference to tmp_flow_if_t */
 /* of flow classes that induced this */
 /* flow instance */
 /* forced 64bit time stamps, even on 32bit platform */
 int64_t flowDetectTm;/* Time at which flow has been detected */
 /* == capture TS of first matched packet*/
 int64_t flowLastseenTm;/* Last time a packet has matched */
};
typedef struct tmfg_flowinstance tmfg_flowinstance_t;
/*
 * Anchor for a list of back references from flow instance to
 * flow class specification for the probe/interface
 *
 * This way, the measurements specifications required for the flow instance
 * can be retrieved from the flow instance itself
 */
typedef struct tmp_flclass_if_ref {
 struct tmp_flclass_if_ref *flClsIfRefNextp;
 tmp_flow_if_t *flClsIfp;
} tmp_flclass_if_ref_t;

The dissected packet structure also anchors the linked list of Flow Instances it is a
member of (tmp_pkt_dissect.h+tmon_probe.h):

/*
 * Anchor for linked list of FlowInstances attached to a given packet
 * also reused for attaching FlowInstances to TCP connections
 */
struct tmp_pkt_flinstance {
 tmp_pkt_flinstance_t *pktFlowNextp; /* linked list */
 tmfg_flowinstance_t *pktFlowp; /*
 * A reference to the common flow instance
 * record, which collects observations
 */
};
typedef struct tmp_pkt_flinstance tmp_pkt_flinstance_t;

2.2.7 IP Reassembly Queues
MODULE:

tmp_reassembly.c / tmp_reassembly.h

There is one reassembly dictionary per capture interface.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 72/248

Members are datagram units under reassembly (“reassembly queues”): more precisely,
members are tmp_packet_info_t* as anchor of doubly linked list of per fragment packet
information structures (see section 2.2.2 above).

One tmp_packet_info_t refer to successor fragment in the list via its
pktIpInfo.ipFragNext, and to its predecessor fragment in the list via its
pktIpInfo.ipFragPrev.

Each reassembly queue is maintained ordered by increasing IPv4 fragment offset
(pktIpInfo.ipFragOffset).

Once reassembled, a first-to-last travel permits to count the fragments and their cumulated
datagram size and to assign their ordinal fragment number (first is 1); a last-to-first back
travel assigns the total count and datagram size to each.

/*
 * Table of BTree based TmonDict of IPv4 Fragment Collections under reassembly.
 * There is one dictionary (reassembly queue) per capture interface.
 * Entries are key'ed by {IPv4 Src Address, IPv4 Dst Address, IPv4 Identifier}.
 */
static tmon_dict_t **tmpReassTrees;

typedef struct tmp_dgram_id {
 uint8_t srcDstId[10]; /* key: src IP | dst IP | IP id */
 time_t creatTime;
} tmp_dgram_id_t;

Every TMP_MAX_REASS_TIME=7 seconds, the pending queues are travelled through,
checking whether the incomplete reassembly has time-out.

2.2.8 TCP Connection Record
MODULE:

tmp_tcpconnection.c / tmp_tcpconnection.h

The TCP Connection record has a series of information fields and a table of two sub-
structures, one per direction. The key is such that (tcpAddrA < tcpAddrB) or
(tcpPortA < tcpPortB).

/*
 * TCP Connection Identifying Key
 */
typedef struct tmp_tcp_conn_key {
 uint32_t tcpAddrA;
 uint32_t tcpAddrB;
 uint16_t tcpPortA;
 uint16_t tcpPortB;
 uint8_t Interface;
} tmp_tcp_conn_key_t;

/*
 * TCP Connection State Information
 */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 73/248

#define TMP_TCPDIR_UNKNOWN 0 /* MUST be 0, used as structure initial value */
#define TMP_TCPDIR_ATOB 1 /* MUST be 1, so that TMP_TCPDIR_ATOB-1 == 0 */
#define TMP_TCPDIR_BTOA 2 /* MUST be 2, so that TMP_TCPDIR_BTOA-1 == 1 */

struct tmp_tcp_connection {
 tmp_tcp_conn_key_t tcpConnKey;
 int tcpRefCnt; /*how many pointers refer to this struct*/
 int tcpConnState; /* see below */
 struct timeval tcpConnFirstTime; /* maybe not start of conn. */
 struct timeval tcpConnLastTime;
 tmp_tcp_conn_oneway_t tcpConnDir[2]; /* resp. [TMP_TCPDIR_ATOB-1]
 and [TMP_TCPDIR_BTOA-1] */
 uint8_t tcpConnInitiator; /* 0: unknown
 or TMP_TCPDIR_ATOB == 1
 or TMP_TCPDIR_BTOA == 2 */
 uint8_t tcpConnTerminator; /* 0: unknown
 or TMP_TCPDIR_ATOB == 1
 or TMP_TCPDIR_BTOA == 2 */
 uint8_t tcpConnIsCounted; /* has this connectn already */
 /* led to increment corresp. */
 /* Flow Instance Counter? */
 uint16_t doReport; /* TMF_TCPCN_INTRVL period */
 /* TMF_TCPCN_REGULR flag */
 /* TMF_TCPCN_ATEND flag */
 /* TMF_TCPCN_AGGR flag */
 uint8_t tcpConnUpperType; /* what is the service this */
 /* connection is linked to */
 /* see below */
 void *tcpConnUpperSvc; /* ptr to data struct with */
 /* state info of upper layer */
 /* service context: e.g. */
 /* FTP Control session */
 /* FTP Data file transfer */
 /* HTTP session */
 tmp_pkt_flinstance_t *tcpFlowsp; /* List of anchors referring */
 /* to corresp. flow instances*/
 time_t lastReport; /* time of last produced */
 /* regular report, if any */
};

typedef struct tmp_tcp_conn_oneway {
 uint64_t tcpConnDirSegmBytes;/* Tot bytes of TCP Hdr + Payload*/
 uint64_t tcpConnDirPaylBytes;/* Tot bytes of TCP Payload only */
 uint64_t tcpConnDir1stPlByts; /* Cumul. 1st tansm'd payld bytes*/
 uint32_t tcpConnDirRetrPayld;/* Tot Retransmitted Payld bytes */
 uint32_t tcpConnDirSegmCount;/* # of TCP Segments */
 uint32_t tcpConnDirFirstCnt; /* How many 1st transm'd DATA seg*/
 uint32_t tcpConnDirRetrSegmt;/* # Retransmitted TCP Segments */
 uint32_t tcpConnDirEmAckCnt; /* How many empty Ack packets */
 struct timeval tcpConnDirLastTime; /* Last packet seen for direction*/
 struct timeval tcpConnDirTSvalTime;/* Earliest Time of tcpTSval */
 struct timeval tcpRevDirTSecrTime; /* Earliest Time of tcpTSval echo*/
 struct timeval tcpConnDirRTTime ; /* Round-trip t towards direction*/
 uint32_t tcpConnDirStartSeq; /* Seq. # of SYN pkt for dir. */
 uint32_t tcpConnDirLastSeq; /* ABS.Seq of Lst pkt byte in dir*/
 uint32_t tcpConnDirLastAck; /* ABS. Furthest ACK in rev dir */
 uint32_t tcpConnDirWouldAck; /* First contiguous payload byte */
 /* not yet seen by contiguous seg*/

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 74/248

 /* for this dir. or by highest */
 /* ack in reverse direction */
 /* Corresponds to the expected */
 /* next ack. IN ABSOLUTE SEQ# */
 uint32_t tcpConnDirLastWin; /* Scal Win of Last pk in rev dir*/
 uint32_t tcpConnDirMaxScWin; /* Max. observed real (scaled) */
 /* sending window for this dir.*/
 uint32_t tcpSACKstart[4]; /* ABS from latest rev. SACK opt */
 uint32_t tcpSACKend[4]; /* ABS from latest rev. SACK opt */
 uint32_t tcpTSval; /* Last Tcp opt. TSval in rev dir*/
 uint16_t tcpConnDirFirstWin; /* Init. Win from SYN in rev. dir*/
 uint16_t tcpMSS; /* Max. Segment Size for dir. */
 uint8_t tcpSACKcnt; /* # of curr. active SACK entries*/
 uint8_t tcpConnDirWinScale; /* shift count of Win in this dir*/
 /* !! high order bit (0x80) is
 * ==1: scale proposed by rev. SYN
 * but not yet agreed
 * ==0: scale has been agreed by
 * WIN Scale opt in this dir.
 * SYN
 */
} tmp_tcp_conn_oneway_t;

As for packet information record, a TCP connection is attached a linked list of anchors of
directly or indirectly applicable Flow Instance records (see section 2.2.6 above).

2.2.9 FTP Control Session Record
MODULE:

tmp_tcpconnection.c / tmp_tcpconnection.h

The FTP Control session is made of a TCP Connection records (see section 2.2.8 above)
whose

• tcpConnUpperType == TMP_TCPUPPER_FTPCTL 1

• tcpConnUpperSvc == ftp_control_session_t*

typedef struct ftp_control_session {
 tmp_tcp_connection_t *ftpCtlConnp; /* correspdng TCP Connection record */
 ftp_data_conn_t *ftpDataConnp; /* Data Conns List in reverse order */
 uint8_t ftpCtlStatus; /* see below */
 uint8_t ftpCtlActFlags; /* see below */
 uint8_t ftpCtlTrMode; /* see below */
 uint8_t ftpCtlType; /* see below */
 uint8_t ftpCtlDataMode; /* see below */
 uint16_t ftpCtlDataPort; /* Data Connection rsp port*/
 uint32_t ftpCtlDataAddr; /*Data Connection responder*/
 uint64_t ftpCtlFileSz; /* from SIZE or RETR response */
 uint64_t ftpCtlFileOffset; /* from REST cmd on stream */
 uint8_t ftpCtlLastCmd; /* Code of last seen cmd */
 char ftpCtlUser[NAMEMAX+1]; /* Log'ed FTP username */
 char ftpCtlWorkDir[TMON_FTP_STRMAX+1];
 /* Current workg directory */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 75/248

 char ftpCtlFileName[TMON_FTP_STRMAX+1];
 /*Latest referred filename*/
 char ftpCtlTmpStr[TMON_FTP_STRMAX+1];
 /* prepared new string ... */
 /* ... waiting command rsp */
} ftp_control_session_t;

This points back to its underlying TCP connection and anchors a list of FTP Data
Connection records (see ftp_data_conn_t section 2.2.10 below)

2.2.10 FTP Data Connection
MODULE:

tmp_tcpconnection.c / tmp_tcpconnection.h

There are two types of FTP Data connections:

• One is less interesting, it contains the response of a directory listing command
(TMP_TCPUPPER_FTPLIST 2).

• The other corresponds to a file transfer (TMP_TCPUPPER_FTPFILE 3).
The underlying TCP connection has

tcpConnUpperSvc == ftp_data_conn_t*

struct ftp_data_conn {
 ftp_control_session_t *ftpCtlSessionp; /* reverse pointer to Ctl session */
 ftp_data_conn_t *ftpDataConnNextp; /* prev conducted data conn for session */
 tmp_tcp_connection_t *tcpDataConnp;/* Correspdng TCP Connection record */
 uint8_t tcpConnUpperType; /* TMP_TCPUPPER_FTPLIST or ..._FTPFILE */
 uint8_t ftpDataTrMode; /* TMP_FTPTRMODE_xxx: see above */
 uint8_t ftpDataType; /* TMP_FTPTYPE_xxx: see above */
 uint8_t ftpDataConnMode; /* TMP_FTPDMODE_xxx: see above */
 char ftpCtlUser[NAMEMAX+1]; /* Log'ed FTP username */
 char ftpCtlWorkDir[TMON_FTP_STRMAX+1];
 /* Current workg directory */
 /* Only for File Transfers: */
 /* ======================== */
 uint8_t ftpDataXferDir; /* a GET or a PUT of the file */
 char ftpDataFileName[TMON_FTP_STRMAX+1];
 /* Transferred Filename */
 uint64_t ftpDataFileSz; /* from SIZE or RETR response */
 uint64_t ftpDataFileOffset; /* 0 or from REST cmd on stream*/
 time_t lastReport; /* Time of last produced */
 /* regular report, if any */
 uint16_t doFileXfers; /* TMF_TCPCN_INTRVL period */
 /* TMF_FILEXF_REGULR flag */
 /* TMF_FILEXF_ATEND flag */
 /* TMF_FILEXF_AGGR flag */
};

The above structure points back to its underlying TCP connection, but also to the FTP
Control session record. And a next pointer permits to link all data connections belonging to
a same control session.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 76/248

2.2.11 Packet Counters
MODULE:

tmp_statistics.c / tmp_statistics.h / tmon_statistics.h

Besides the global instance at the probe level (for later populating an embedded SNMP
agent), the per-Flow statistics consist in:

typedef struct tmp_flow_pkt_stats {
 uint16_t periodPattern;/* TMF_PERIOD_XXX */
 uint16_t reportPeriod; /* Lowest periodPattern in seconds */
 uint8_t isPerPkt;/* Boolean: per Fragment or per Dgram */
 tmon_sizes_t ipSizes; /* Sizes at IP layer: */
 /* either 1st fragments only */
 /* or cummulated for UDP dgram/TCP segm */
 int64_t lastReset;/*forced 64bit time, even on 32bit pltfrm*/
 tmon_ipv4_counters_t ipv4;
 tmon_icmpv4_counters_t icmpv4; /* Either flow matched ICMP packets */
 /* Or reflects ICMP errors on UDP/TCP */
 tmon_udpv4_counters_t udpv4;
 tmon_tcpv4_counters_t tcpv4;
 tmon_ftp_counters_t ftp;
 tmon_http_counters_t http;
} tmp_flow_pkt_stats_t;

typedef struct tmon_sizes {
 uint64_t sumBytes; /* cummul. volume of IPv4 pkts (hdr+payload) */
 tmon_size_bucket_t szDistrib[TMON_SIZE_BUCKETS]; /* size distribution: */
 /* bucket 0: 0 <= size < 200 */
 /* bucket 1: 200 <= size < 400 */
 /* bucket 2: 400 <= size < 600 */
 /* bucket 3: 600 <= size < 800 */
 /* bucket 4: 800 <= size < 1000 */
 /* bucket 5: 1000 <= size < 1200 */
 /* bucket 6: 1200 <= size < 1400 */
 /* bucket 7: 1400 <= size */
 /* OR, opt. for datagram/segment bucket 7: 1400 <= size < 1600 */
 /* optional bucket 8: 1600 <= size < 2000 */
 /* optional bucket 9: 2000 <= size < 3000 */
 /* optional bucket 10: 3000 <= size < 4000 */
 /* optional bucket 11: 4000 <= size < 5000 */
 /* optional bucket 12: 5000 <= size < 6000 */
 /* optional bucket 13: 6000 <= size < 7000 */
 /* optional bucket 14: 7000 <= size < 8000 */
 /* optional bucket 15: 8000 <= size */
 uint8_t szBucketsCnt; /* # of szDistrib buckets actually used */

} tmon_sizes_t;
typedef struct tmon_size_bucket {
 uint16_t sz_lower; /* bucket includes this lower boundary */
 uint16_t sz_upper; /* value just above the bucket boundary
 ==0 when not upward bounded */
 uint16_t sz_min; /* actual minimal size within this bucket population*/
 uint16_t sz_max; /* actual maximal size within this bucket population*/
 uint16_t sz_avg; /* average size within this bucket population */
 uint64_t sz_pop; /* actual population covered by this size bucket */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 77/248

 uint64_t sz_sum; /* sum of all size of members of this bucket */
 uint64_t sz_sumsq; /* sum of the square of all sizes within this bucket*/
} tmon_size_bucket_t;

typedef struct tmon_ipv4_counters {
 uint64_t reassemblyTimeout;
 uint64_t fragmentOverlap;
 uint64_t icmp;
 uint64_t udp;
 uint64_t tcp;
 uint64_t others;
} tmon_ipv4_counters_t;

typedef struct tmon_icmpv4_counters {
 uint64_t icmpCksumFailed; /* not counted as malformed */
 uint64_t icmpCksumSkipped;/* checksum not verified (!UDP/TCP or trunc.) */
 uint64_t echoRequest;
 uint64_t echoReply;
 uint64_t fragNeeded;
 uint64_t srcQuench;
 uint64_t ttlExpired;
 uint64_t reassemblyTimeout;
 uint64_t unReach; /* except fragNeeded */
 uint64_t redirect;
 uint64_t otherErrMsg;
 uint64_t otherInfo;
} tmon_icmpv4_counters_t;

typedef struct tmon_udpv4_counters {
 uint64_t udpCksumFailed; /* not counted as malformed */
 uint64_t udpCksumSkipped;/* no checksum or not verified (frag. or trunc.) */
 uint64_t udpEmpty;
 uint64_t snmp;
 uint64_t dns;
 uint64_t ntp;
 uint64_t other;
} tmon_udpv4_counters_t;

typedef struct tmon_tcpv4_counters {
 uint64_t tcpCksumFailed; /* not counted as malformed */
 uint64_t tcpCksumSkipped;/* checksum not verified: frag. or trunccated */
 uint64_t tcpRestransmit;
 uint32_t tcpLatePkt;
 uint32_t tcpStartConns;
 uint32_t tcpCleanClose;
 uint32_t tcpDirtyClose;
 uint32_t ftpCtlConns;
 uint32_t ftpFileXfers;
 uint32_t httpFileXfers;
 uint32_t otherTcpConns;
} tmon_tcpv4_counters_t;

typedef struct tmon_ftp_counters {
 uint32_t ftpStartSessions;/* # started CTL sessions */
 uint32_t ftpCleanClose; /* # of QUIT commands seen */
 uint32_t ftpDirtyClose; /* # of FTP ctl session closed without QUIT */
 uint32_t ftpEncrypted; /* # of FTP ctl session encrypted */
 uint32_t ftpNoLogin; /* # of FTP ctl session without succ. login */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 78/248

 uint32_t ftpNoCommand; /* # of FTP ctl session without logged-in command*/
 uint32_t ftpNoFileXfer; /* # of FTP ctl session without logged-in xfer */
 uint32_t ftpWithFileXfer; /* # of FTP ctl session with logged-in file xfer */
 uint32_t ftpActives; /* # of PORT/EPRT/LPRT based data connections,
 including Directory Listing */
 uint32_t ftpPassives; /* # of PASV/EPSV/LPSV based data connections,
 including Directory Listing */
 uint32_t ftpDirList; /* # directory listing */
 uint32_t ftpGets; /* # succeeded RETR of files */
 uint32_t ftpPuts; /* # succeeded STOR/STOU/APPE of files */
 uint32_t ftpFailedGets; /* # failed to complete RETR of files */
 uint32_t ftpFailedPuts; /* # failed to complete STOR/STOU/APPE of files */
 uint32_t ftpRestarts; /* # of REST commands seen */
 uint32_t ftpDataAborts; /* # of ABOR commands seen */
 uint32_t ftpLoginFailed; /* # failed USER/PASS exchanges */
 uint32_t ftpCipherFailed; /* # of AUTH command failures */
 uint32_t ftpCmdFailed; /* # of Negative Replies to commands */
} tmon_ftp_counters_t;

typedef struct tmon_http_counters {
 /* TBD */
} tmon_http_counters_t;

2.2.12 Histograms and Delay Metrics
MODULES:

tmp_delay.c / tmp_delay.h

tmon_metric.h / tmon_metric.c

Delay histogram split: tmon_delay.c / tmon_delay.h

2-way delays can be aggregated in the probe. Configurable histogram specifications
determine whether the aggregate is a single slice or a multi-slices histogram where,
typically, the top and bottom slices are unbound and all intermediate slices are partitions of
equal size of a specified range between and upper and a lower bounds.

See sections 2.4.2 below and 4.4.8 below for the generic data structures and principles.

For round-trip delays, special data structures are used to store the one-way packet record,
waiting to be matched with its reverse peer. This is needed for ICMP Echo, NTP, DNS,
SNMP and TCP SYN/ACK, but not for TCP RTTM whose round-trip is deduced during
TCP connection stateful analysis.

/*
 * Round-trip Time related one-way packet information,
 * for whatever 2-way protocol requiring to save one of the peer
 * packets.
 */
#define MAX_RTT_KEY 100

#define RTT_FIRST 1 /* First in loop */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 79/248

#define RTT_ICMP_ECHO 1
#define RTT_NTP_SVR 2
#define RTT_NTP_CLI 3
#define RTT_SNMP 4
#define RTT_DNS 5
#define RTT_TCP_SYN 6
#define RTT_TCP_ACK 7

#define RTT_LAST 7 /* Last in loop */

/*
 * NOTES:
 *
 * RTTM does not require storing packets: RTTM matching is part of
 * TCP connection stateful analysis
 * TCP DATA/ACK does only require to store Data packet (in each direction),
 * and not the ACK
 */
#define RTT_DIR_REQ 0
#define RTT_DIR_RSP 1

extern uint8_t TpMaxRTDelay;
extern int TpRTDelayTimer;
/*
 * Hash tables that stores not (yet) matched one-way pkt obs, waiting
 * to see the peer pkt in reverse direction.
 *
 * First index: RTT_xxx (protocol)
 * Second index: RTT_DIR_xxx
 */
extern tmon_hash_t *TpRTDelayHashTabs[RTT_LAST+1][2];

typedef struct tmp_1way {
 tmp_packet_info_t *oneway_pktinfop;
 uint8_t oneway_key[MAX_RTT_KEY+1];
 uint8_t oneway_keylen;
 uint8_t oneway_protocol:7;
 uint8_t oneway_isresponder:1;
} tmp_1way_t;
/*
 * Module interface routines
 */
extern void TpRoundTripTypeInit(uint8_t bits, int);
extern void TpRTDelayProcess(uint8_t type, uint8_t withResponder,
 struct timeval *start, struct timeval *end,
 tmp_packet_info_t *pktInfop,
 uint16_t doAggrDelay);
extern void TmpDelayCheckPublish(void *);

2.2.13 Probe PDU Pending ACK
MODULE:

tmp_transmission.c / tmp_transmission.h

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 80/248

Per target collector configuration and state variables:

/*
 * Probe UDP socket(s) for communication with Collector(s)
 */
extern int *tmpXmitSocks; /* Table: one socket per <PDUSending> */
extern int tmpXmitSockCnt;
/*
 * Stores the runtime config params of a <PDUSending>/<SendTo>
 *
 * Shared between tmp_publish and tmp_transmission
 */
typedef struct tmp_xmit_conf {
 /*
 * Config. parameters per Collector
 * --------------------------------
 */
 char *collName;
 struct sockaddr_in collAddr;
 int collIdx; /* index of this entry in tmpXmitConfigs[] */
 int sockIdx; /* use socket tmpXmitSocks[sockIdx] */
 int maxPDUSize;
 int maxPDUTime;
 int minGapMsec;
 struct timeval minTimeGap;
 int heartBtDelay;
 int ackTimeout;
 int ackTimeMult;
 int ackTimeIncr;
 int sendTries; /* first send counts for 1 */
 int breakBorder;
 /*
 * Protocol State Variables per Collector
 * --------------------------------------
 */
 void *pduSentTreep; /* sent PDU's to collector waiting for ACK*/
 int pduAckQueueCnt; /* # of sent PDU's waiting for ACK */
 uint32_t nextPduUniqueId;
 struct timeval lastPduTime; /* for Rate control time slots management */
 struct timeval nextPduSlot; /* for Rate control time slots management */
 time_t lastAckRecvd;
 /*
 * Long retry mode for per packet obs (at Border of a connectivity Break):
 *
 * = starts as soon as a PDU exhausts its allowed # of reties, while in
 * normal mode, named PDU* below
 * = ends as soon as an PDU ACK is received for any sent PDU (meaning
 * the central TrafMon server connectivity is restored
 * = implies continuous retry of the PDU*, that caused the switch to
 * the long retry mode, as well as of all PDU whose pduTime is
 * before the pduTime of PDU* + tpsConfig.breakBorderTime
 * = implies normal retry/timeout sending process for all other PDU's:
 * those under retry and the newly published ones.
 */
 int inLongRetryMode; /* boolean */
 time_t breakBorderEndTime; /* absolute time at which the pkt obs
 * PDU's are no more part of the
 * break border boundary

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 81/248

 */

} tmp_xmit_conf_t;

extern tmp_xmit_conf_t *tmpXmitConfigs; /* Table of per-Collector runtime cfg*/
extern int tmpXmitCollCnt; /* size above table== # of collectors*/

extern int tmpXmitMaxPduBuiltPeriodMs;
 /* Minimum value, over all configured*/
 /* <SendTo maxPduBuiltTime=xxx> */
 /* == Period (ms) for regular checks */

Queue of PDU pending their scheduled transmission time slot:

This is implemented by the tmon_timer queue (section 2.4.6 below): a dedicated
timer is launched for each PDU whose transmission is delayed to a scheduled time
slot.

Queue of sent PDU pending ACK/Retry:

/*
 * Sent PDU Descriptor for ACK/Retry Management
 *
 * NOTE:
 */
typedef struct tmp_ack_info {
 tmon_pdu_hdr_t *pdup; /* entire PDU starting with the tmon_pdu_hdr_t */
 uint32_t pduID; /* Sequential PDU # towards this collector */
 int timerID; /* What timer to clear when ACK is received */
 time_t pduTime; /* Time of oldest observations inside PDU */
 int collIdx; /* probe-internal index of destination collector */
 uint8_t tryCnt; /* Number of times PDU was sent inside current */
 /* retry cycle (can be reset) */
 uint8_t sentCnt; /* Number of times PDU was sent */
 uint8_t sockTryCnt;/* Number of times non-blockng sock write failed*/
 uint8_t isLngRetry;/* If part of break border under long retry */
 int sendTimeout;/* Current msec timeout value (can increase) */
 int pduRecCnt; /* how many observations records in PDU */
 int pduLen; /* how many bytes in PDU data */
 uint8_t pduType; /* what type of info in the PDU */
 uint8_t pduCRC0; /* First byte of PDU signature, as complement */
 /* of pduID for late ack'd ancient PDU's */
 uint8_t isFirstContRetry; /* This PDU is the first that exhausted
 * the maximum retry/timeout: the first
 * of a connectivity break with collector.
 * This PDU is PERMANENTLY RETRIED at the
 * initial MINIAL TIMEOUT period.
 * Other PDUs will be either
 * - retried at their maximal timeout
 * period
 * - or dropped after their max.
 * retry/timeout
 */
} tmp_ack_info_t;

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 82/248

The actual queue is implemented by the tmon_timer queue (section 2.4.6 below):
a dedicated timer is launched for next retry timeout for a sent PDU pending its
acknowledge.

A binary search tree (tsearch(3)), pduSentTreep anchored in the per collector
tmp_xmit_conf_t is used to retrieve the pending PDU upon ACK reception, for
cancelling its timer and releasing its pending record.

2.3 COLLECTOR: MAIN DATA STRUCTURES

2.3.1 Peer Probe Records
MODULE:

tmc_probe.c / tmc_probe.h

Probe configuration record with state variables:

/*
 * Probe Statuses
 */
#define TMC_PROBE_ALIVE 0 /*== false */
#define TMC_PROBE_SILENT 1 /*== true; probe is silent since < dropObsTimeout */
#define TMC_PROBE_DROPNG 2 /*== true; probe is silent since > dropObsTimeout */
/*
 * Record of per probe information held at central processing module
 */
typedef struct tmc_probe {
 int prID;
 char *prName;
 char *prDescr;
 struct sockaddr_in prAddr; /* To validate sender of probeID PDU's */
 int64_t prLastPDUTime;/* Youngest ref. time amongst recvd PDUs */
 int64_t prLastRcvTime;/* When last PDU was received from probe */
 int32_t maxIdleTime; /* Max idle time before Peer lost */
 int32_t maxObsDelay; /* Max time for a probe obs to reach coll.*/
 int64_t dropObsTimeout;/* Max. lifetime of observations in probe*/
 int64_t lastStartSilentTime;
 /* When probe was last detected silent */
 int64_t lastEndSilentTime;
 /* When probe was last detected (back) up */
 uint64_t pduCount; /* How many different PDU's received */
 uint64_t pduTotCount; /* How many PDU's recvd, incl. dups */
 tmon_dict_t *rcvdPduDict; /* Dict. of correctly received young PDU's*/
 tmon_dict_t *prFlowIdMap; /* Dict. mappings of flow IDs probe<->coll*/
 tmc_probe_if_t *prIfTab; /* Table of probe capture Interfaces */
 uint8_t prIfCnt; /* Number of probe capture Interfaces */
 uint8_t prIdx; /* Index of this entry in the tmcProbesTab*/
 uint8_t prSilent; /* Is probe conn'y declared lost :
 * - since recently (TMC_PROBE_SILENT)?
 * - since > dropObsTimeout
 * (TMC_PROBE_DROPPING)?
 */
} tmc_probe_t;

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 83/248

/* Probe description Array & probe total number*/
extern tmc_probe_t *tmcProbesTab;
extern int tmcProbesCnt;

The probe interfaces are also recorded, to permit mapping between XML interface ID and
its name and description:

typedef struct tmc_probe_if {
 uint16_t ifID;
 char *ifName;
 char *ifDescr;
} tmc_probe_if_t;

2.3.2 Input PDU Ring Buffer
MODULES:

tmc_transmission.c / tmc_pdu_decoder.c / tmc_transmission.h /
tmc_probe.h

For detecting duplicates, a trace of the correctly received (and acknowledged) PDU’s is
kept for a while in a tmon_dict (see section 2.4.3 below) anchored (rcvdPduDict) in the
corresponding tmc_probe_t record.

The first copy of every correctly received PDU is appended to a ring buffer
tmon_circ_pbuf (see 2.4.4 below, by pointer – no copy-in/copy-out).

/*
 * TrafMon Server Input Queue of newly received probe observations PDU's
 */
extern tmon_circ_pbuf_t *tmcInputQp;

2.3.3 Flow Instance Records
MODULE:

tmc_flowinstance.c / tmc_flowinstance.h

Each probe reported flow instance description is remembered by the collector:

• The tmc_probe_t record (see section 2.3.1 above) anchors a tmon_dict (see
section 2.4.3 below) of its reported flow instances, with the probe-assigned flow ID:
prFlowIdMap

• A global tmon_dict tmcFlowInstanceDict remembers all known flow instance
records

• A unique Flow ID (UNIX timestamp at the millisecond) is assigned by the collector,
which maps all incoming observations references to a probe Flow ID to its unique
collector-assigned value.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 84/248

• When two probes provided a flow description with same descriptive content, they
are mapped to the same collector based record.
NOTE:

Most of the PDU observations relate to a flow that is unique per probe
interface. But due to this re-mapping of flowID by the collector, observation
PDU cannot be taken into account while the collector hasn’t yet received the
corresponding flow description record. When the collector restarts, this can
cause a significant glitch in the data, or all probes have also to be restarted
(which isn’t nice either). In fact, the complete probe observations could more
ideally be output on the basis of the (statically configured) probeID together
with the original probe-assigned flowID. Anyway, the database maintains a
mapping between successive flowIDs assigned to a same flow description
(due to successive probe restarts) and the unique ID of the flow description.

Also, the data tables, where long flow names are used as key in place of
simple numeric value, would maybe more efficiently simply store this unique
flowID, and simple join with the flow description table would be done where
required. This would significantly reduce the volume of database rows and
could reduce the time taken to produce reports (to be further investigated)

/*
 * Dictionary record that maps a given probe Flow Instance ID
 * to the Collector common record for the Flow Instance
 *
 * Some flow instances are distinct per probe
 * Some are common over several probes (possibly NAT'ed at some probes)
 */
typedef struct tmc_probe_flow {
 uint64_t probeFlowId;
 tmc_flow_t *collFlowp;
} tmc_probe_flow_t;

typedef struct tmc_flow {
 tmon_flow_descr_t fDescr;
} tmc_flow_t;

tmon_dict_t *tmcFlowInstanceDict=0;

2.3.4 Flow Class Hops Records
MODULE:

tmc_flowclass.c / tmc_flowclass.h

Either the one-way delay observations are translated into actual latency values, and
aggregated. Or these are reported individually for each observed data unit
(fragment/datagram) as a size and a series of hop timestamps; typically the various
timestamps are not all provided by the same probe (interface).

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 85/248

At (re)start, the collector parses those flows measuring <OneWayDelay> and providing
the ordered list of hops. This information is recorded in the collector and output as a
resulting data log file.
typedef struct tmc_hop_spec {
 char *hopName; /* xmlChar* attribute */
 tmc_probe_t *hopProbes[1]; /* Array of possible observing source probes
 for the given hop
 Last is followed by NULL pointer
 Allocated dynamically */
} tmc_hop_spec_t;

typedef struct tmc_flow_hops {
 struct tmc_flow_hops *flowHopsNextp; /* organised in a linked list */
 char *flowClassName;
 char *flowClassDesc;
 int32_t flowClassID;
 uint8_t flowHopCnt;
 tmc_hop_spec_t *flowHops[1];/* Ordered array of hop name and probes
 Allocated dynamically */
} tmc_flow_hops_t;

/* Linked list of Flow Hops specifications */
extern tmc_flow_hops_t *TmcFlowHopsList;

2.3.5 Consolidated Packet Observations Records
MODULE:

tmc_delay.h + tmc_delay.c

The per-data unit (fragment or datagram) observations consist in a size and a partial list of
hop timestamps.

Normally, for an observations record to be complete, corresponding partial observations
records from two or more probe interfaces must be received by the collector and
consolidated. In the meantime, those observations must be stored in a dictionary, keyed
by the (unique) Flow ID, the packet signature by string and the youngest known
timestamp.

Two observations partitions about a same data unit will generally not exactly match their
respective key: the youngest timestamp of each is expected to differ by the about the one-
way latency.

For this, the “near” searching of the tmon_dict dictionary (see section 2.4.3 below) is
exploited to retrieve the stored record matching a newly received partial record.

When a search is performed through the BTree, if the key is not present, either its right or
left sibling is returned. And all elements in the dictionary are also doubly linked in
increasing order. So when the sibling has the same key, except for the timestamp, we can
retrieve the best match record that the newly received partial observations would
complement.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 86/248

/*
 * Stores individual packet (data unit) obs (signature, timestamps, size)
 * during their gradual merge until corresponding packet observations are
 * received from all concerned probes ... or a LOST (PARTIAL, NO_SOURCE)
 * timeout occurs
 */
extern tmon_dict_t *partialPktObsDictp;

/*
 * Stores an individual packet (data unit) observations from several
 * probes under consolidation by the central colector
 */
typedef struct tmc_cons_pkt_obs {
 tmc_flow_hops_t *obsFlClsHopsp;/* Flow Class record specifng expected hops */
 uint64_t obsFlowID; /* Collector-assigned unique flow instance ID */
 tmon_timeval_t lastUpdate; /* Collector time of last received probe obs */
 tmon_timeval_t oldestTime; /* oldest among already known obs timestamps */
 uint16_t obsSize; /* Size (in bytes) of obs pkt/complete dgram */
 uint8_t obsFragNum; /* Fragment number of individual pkt obs */
 /* first==1, 0 means unfrag or reassmbld dgram*/
 uint8_t obsTSExpCnt; /* # of expected [pairs of] timestamps */
 uint8_t obsTSMissCnt;/* # of not yet rcvd [pairs of] timestamps */
 uint8_t obsSignature[TM_SIGNMAX];/*Signature hash of obs data unit*/
 char obsSignStr[(2*TM_SIGNMAX)+3];/* Signature as hex string
 between [] */
 tmc_hop_time_t obsTimestamps[1];/* Ordered list of hops with corresponding
 timestamp(s) */
 /* dynamically allocated array */
} tmc_cons_pkt_obs_t;

typedef struct tmc_hop_time {
 tmon_timeval_t hopFirstTS; /* First or single hop timestamp */
 tmon_timeval_t hopLastTS; /* optional last hop timestamp */
 uint8_t hopFirstLast;/* boolean: double TS fisrt and last */
 uint8_t hopAssigned; /* boolean: timestamp(s) for hop already
 known ? */
} tmc_hop_time_t;

For a same hop at packet capture probing point, the observation about a reassembled
datagram consists in two different timestamps: youngest (first seen fragment) and oldest
(last seen fragments); other hop observations consists only of the first timestamp.

The observation record refers to the XML FlowClass ID, and each timestamp also provides
it sequence number (starting at 1) in the FLowClass hops list.

Thanks to the registration of hop lists (see section 2.3.4 above), this reference is translated
into the corresponding hopName writing the record in the collector output log.

Either the complete or partial list of hop timestamps is appended to the proper output log
(.1wobs, .1wlost, .1wmiss, .1wdrop suffixes), for further custom processing by the user, or
the either the latency between to hops, or the counters of the three types of abnormalities

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 87/248

(lost, incomplete/missed, dropped), or both, are aggregated per time interval and are
output as statistics. In this case the latency values are produced as histogram slices.

Because of (variable) delay for the several one-way probe observations to arrive at the
collector, and due to the timeout necessary for deciding that per packet/datagram
observations aren’t complete, the output records are available after a non-negligible delay.

This window of time is split into successive output periods. Gradual aggregation of newly
produced (complete or incomplete) records are updating the result data at the several slots
of the window. When time advances, the oldest slot is appended to the output log file
(.latcy, .1wct), and a new slot is created for the ‘current’ results.

/*
 * Collector-aggregated measurements related to one-way delay
 */
/* one period of data */
typedef struct tmc1w_data {
 int64_t tc1w_lostCount;
 int64_t tc1w_IncomplCount;
 int64_t tc1w_DroppedCount;
 tmon_metric_t tc1w_delayHisto;
} tmc1w_data_t;

/* window of successive recent periods of data */
struct tmc_1way_aggr {
 tmc_flow_hops_t *tc1w_classHopsp; /* FlowClass config data from OneWayDelay*/
 int tc1w_statsTimer; /* timer for regular stats reporting */
 int16_t tc1w_reportDelay;/* delay from start of period before
 outputing a record */
 int16_t tc1w_reportPeriod;/* duration of output records */
 int8_t tc1w_periodsCnt; /* number of successive records to keep
 in active window:
 == (delay + period -1) / period */
 tmc1w_data_t tmc1w_window[1]; /* dynamically allocated table of
 tmc1w_periodsCnt elements */
};

2.4 TRAFMON COMMON CORE C DATA STRUCTURES

2.4.1 Probe PDU structures
MODULE:

tmon_PDU.h + tmon_core.h (debugging decoding and dump in tmon_PDU.c)

See section 4.4 below.

2.4.2 Histograms and Metrics
MODULE:

tmon_metric.h + tmon_core.h / tmon_metric.c

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 88/248

These data structures intend to store the synthetic values characterising any time-
aggregate metric or histogram slice thereof.

See also section 4.4.8 below.

/*
 * METRIC TYPES
 * ============
 * A. DELAY METRICS
 * ++++++++++++++++
 * Five possible instance types of probe-aggregated delay histograms:
 *
 * ==> index in table inside a flow instance record in probe.
 */
#define TMON_MTR_DELAY_1WAY 0 /* packet latency between probing
 interfaces */
#define TMON_MTR_DELAY_2W_RSPDR 1 /* round-trip time towards responder */
#define TMON_MTR_DELAY_2W_INITR 2 /* round-trip time towards initiatior */
#define TMON_MTR_DELAY_INTERDGRM 3 /* inter-datagram delay */
#define TMON_MTR_DELAY_INTERFRAG 4 /* inter-fragment (of a same datagram)
 delay */
#define TMON_MTR_DELAY_COUNT 5
/*
 * B. OTHER METRICS
 * ++++++++++++++++
 *
 * TBD
 */
/*
 * Possibly Aggregated Metric Types: index to string
 */
char *TmonMetricName[] = {
 "One-way Delay", /* TMON_MTR_DELAY_1WAY */
 "Two-way Delay towards Responder", /* TMON_MTR_DELAY_2W_RSPDR */
 "Two-way Delay towards Initiator", /* TMON_MTR_DELAY_2W_INITR */
 "Inter-Datagram Delay", /* TMON_MTR_DELAY_INTERDGRM */
 "Delay inter Incomplete Fragments" /* TMON_MTR_DELAY_INTERFRAG */
};

/*
 * Generic definition of an histogram
 */
typedef struct tmon_histospec {
 int32_t hsp_lowBound; /* upper bound of lowest slice of delays histogram */
 int32_t hsp_highBound;/* lower bound of top slice of delays histogram */
 uint8_t hsp_sliceCnt; /* number of slices in histogram, incl. '< lowBound'*/
 /* and including '>= highBound'*/
} tmon_histospec_t;

/*
 * Cover structure of a metric instance
 */
typedef struct tmon_metric {
 uint64_t mtr_flowID; /* ID of the measured Flow Instance */
 tmon_histoslice_t *mtr_sliceTab;/* Table of histogram slice values */
 /* Type of each value, hence of englobing
 * slice strcture, depends on metric type */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 89/248

 int64_t mtr_lastReset;/* start of time aggregation interval */
 int64_t mtr_lastUpdate;/* to detect metric instance obsolescence*/
 tmon_histospec_t mtr_spec; /* stored the metric histogram description */
 uint16_t mtr_Period; /* Lowest periodPattern in seconds */
 uint8_t mtr_Type; /* TMON_MTR_XXX_YYY */
} tmon_metric_t;
/*
 * Generic aggregated statitics values of an histogram slice
 */
typedef struct tmon_histoslice {
 int32_t sl_lower;/* bucket includes this lower bound, maybe INT32_MIN*/
 int32_t sl_upper;/* value just above the bucket bound, maybe INT32_MAX*/
 int32_t sl_min; /* actual minimal value within this bucket population*/
 int32_t sl_max; /* actual maximal value within this bucket population*/
 int64_t sl_pop; /* actual population covered by this slice bucket */
 uint64_t sl_sumsq;/* sum of the square of all delays within this bucket*/
 int32_t sl_sum; /* sum of all delays of members of this bucket */
 int32_t sl_avg; /* average value within this bucket population */
 int8_t sl_num; /* Slice number (starting at 1) */
} tmon_histoslice_t;

2.4.3 Efficient Flexible Dictionary and BTree
MODULEs:

tmon_dict.h + tmon_core.h / tmon_dict.c

tmon_btree.h + tmon_core.h / tmon_btree.c

This is combined data structure that permits:

• efficient insertion of a new element at its ordered position,

• efficient retrieval of an existing element,

• a combination of the two above,

• travel at left or right of a retrieved element of the ordered list of members, with
potential extraction, and optional release, of the specified predecessor/successor

• “near” retrieval of the element which is immediately below or above a non existing
key

The dictionary is made

• of a balanced 2 tree, where intermediate nodes have 2 or 3 children, and where leaf
nodes have 1, 2 or 3 anchors of elements.

• and of a doubly linked list of anchors of elements.
BTree:

/*
 * Implementation of a 2 BTree data structure
 *
 * Generalized from Aho, Hopcroft, Ullman.
 * 'The Design and Analysis of Computer Algorithms, Addison-Wesley 1974

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 90/248

 * Section 4.10 Dictionaries and Priority Queues.
 *
 * In the algorithm above, the tree has nodes for leafs.
 * But this is redundant with the maxLeft, maxCenter of the leafs fathers,
 * except for the right leaf if it exists. Therefore, the last layer
 * of the tree is omitted and the right pointer is overloaded to contain
 * the rigth key in nodes that are fathers of leafs
 *
 * Invariants:
 * leftp = centerp = 0 if childs are leaves
 * maxLeft = highest key of left subtree or the key of left leaf
 * if leftp = 0
 * maxCenter = highest key of center subtree or the key of center
 * leaf if leftp = 0
 * leftp = the left subtree if not 0
 * centerp = the center subtree if not 0
 * rightp = the right subtree if it exists or the key of right leaf
 * if leftp = 0
 * Special condition arise for a single element tree,
 * otherwise, nodes have always at least left and center
 * subtrees if they are not father of leaves.
 *
 * Leaves are in increasing order from left to right
 * ==> maxLeft < maxCenter for each node
 */
typedef struct tmon_btree_node {
 struct tmon_btree_node *leftp;
 struct tmon_btree_node *centerp;
 struct tmon_btree_node *rightp;
 void *maxLeft;
 void *maxCenter;
 } tmon_btree_node_t;

/*
 * Routines exported out of this module
 *
 * When given non-NULL pointers to allocated pointers, one of the
 * *leftp or *rightp is filled with the direct neighbour element
 * that was already stored
 */
extern void *TmonBSearch(void *key, void **treep, int(*compar)(void *,void *),
 void **leftp ,void **rightp);
extern void *TmonBDelete(void *key, void **treep, int(*compar)(void *,void *));
extern void TmonBWalk(void *treep, void (*action)(void*, VISIT, int));
extern void *TmonBFind(void *key, void *treep, int (*compar)(void *,void *),
 void **leftp, void **rightp);
extern void TmonBDestroy(void **treep);

Dictionary:

/*
 * Dictionary anchor
 */
typedef struct tmon_dict {
 unsigned int eltCnt; /* Number of elements in the dictionary */
 int (*cmp)(void*,void*);/* Comparison routine
 * defining elts order relationship:
 * ARGS ARE POINTERS TO USER'S

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 91/248

 * void* ELEMENTS, EVEN THOUGH DECLARED
 * AS void* THEMSELVES
 */
 void *treep; /* BTree as dictionary index
 * whose elements are pointers to
 * tmon_dict_elt_t
 */
 tmon_dict_elt_t elts; /* A fake element as list anchor:
 * list head pointed to by elts.nextp
 * list tail pointed to by elts.prevp
 *
 * Invariants:
 * last->nextp == &elts
 * first->prevp == &elts
 * Empty list:
 * elts.nextp == elts.prevp == &elts
 */
} tmon_dict_t;
/*
 * Element anchor in the dictionary
 */
typedef struct tmon_dict_elt {
 void *elt; /* Needs to be first field in anchor!!
 * Such that a pointer to an anchor is also
 * a pointer to a void* user's element
 */
 struct tmon_dict_elt *nextp;
 struct tmon_dict_elt *prevp;
} tmon_dict_elt_t;
/*
 * Routines exported out of this module
 */
tmon_dict_t *TmonDictCreate(int (*compar)(void*, void*));
void TmonDictDestroy(tmon_dict_t** dictp, void (*optFreeElt)(void*));
 /* double reference to dict for nullifying the ref */
void *TmonDictAdd(void *elt, tmon_dict_t *dictp);
void *TmonDictFind(void *eltKey, tmon_dict_t *dictp);
tmon_dict_elt_t *TmonDictNear(void *eltKey, tmon_dict_t *dictp,
 tmon_dict_elt_t **leftEltp, tmon_dict_elt_t **RightEltp);
void *TmonDictExtract(void *eltKey ,tmon_dict_t *dictp);
tmon_dict_elt_t *TmonDictNext(tmon_dict_elt_t *curEltp, tmon_dict_t *dictp,
 int doFreeCur, void (*optFreeElt)(void*));
tmon_dict_elt_t *TmonDictPrev(tmon_dict_elt_t *curEltp, tmon_dict_t *dictp,
 int doFreeCur, void (*optFreeElt)(void*));
unsigned int TmonDictSize(tmon_dict_t *dictp);

Typical use of “near” retrieval:

/*
 * A pointer to tmon_dict_el_t (i.e. a tmon_dict_el_t*) can be
 * de-referenced in such a way to obtain the dictionary element
 * that the user has stored (seen as a void* by the tmon_dict API):
 * {
 * my_element_t *myEltp;
 * my_element_t myKey;
 * tmon_dict_t *myDictp;
 * tmon_dict_t *found;
 * tmon_dict_t *atLeftp;

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 92/248

 * tmon_dict_t *atRightp;
 *
 * myDict = TmonDictCreate(myCmp);
 *
 * ...
 *
 * myKey = ...
 * myEltp = &myKey;
 *
 * atLeftp = atRightp = 0;
 * found = TmonDictNear(myDictp, myEltp, &atLeftp, &atRightp);
 * if(!found) {
 * if(atLeftp) {
 * myEltp = *(my_element_t**)atLeftp;
 * ...
 * }
 * } else {
 * myEltp = *(my_element_t**)found;
 * ...
 * }
 * ...
 * found = TmonDictNext(myDictp, myEltp, 0, 0);
 * if(found) {
 * myEltp = *(my_element_t**)found;
 * ...
 * }
 * }
 */

For travel, an existing element must first be found by “near” searching. At each step, the
caller may decide to extract the current element while retrieving the previous or next one,
by asserting the doFreeCur Boolean. Furthermore, the caller can also give a releasing
routine as argument optFreeElt, which will be invoked on the just released element.

2.4.4 Circular Buffers
MODULEs:

Storing fixed-size pointers to elements:

tmon_circ_bufp.h + tmon_core.h / tmon_circ_bufp.c

Storing variable-size elements data (with copy-in/copy-out):

tmon_circ_buf.h + tmon_core.h / tmon_circ_buf.c

Support parallelism (multi-threading/multiprocessing) between ONE reader and ONE
writer, without need of semaphores.

For the Circular FIFO buffer for fixed-size pointers to exterior data:

/*
 * = The maximum number of slots in the buffer is fixed after
 * initialisation.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 93/248

 * = The buffer is circular: when head/tail reaches the size of buffer,
 * it wraps back to is base; inversely when it decreases to the base, it
 * jumps back to the end of the buffer memory.
 * = It is also possible to POP (UN-APPEND) back the latest inserted chunk
 * from the tail
 * (e.g. when there is no room enough to accomodate a linked sequence
 * of data chunks)
 *
 * MULTI-PROCESSING:
 *
 * - The writer process is the owner and sole modifier of the tail pointer
 * - The reader process is the owner and sole modifier of the head pointer
 *
 * Upon race condition, the most critical event would be that the buffer
 * is declared full while a slot has just been released, or declared empty
 * while a chunk has just been inserted.
 *
 * Note: UN-APPEND is SAFE, but CAN FAIL
 * The reader may have already consumed the block before the writer
 * triggers its UNDO
 */
typedef struct tmon_circ_pbuf {
 void **tcpb_slotsTab; /* Address of the start of array of pointers */
 uint16_t tcpb_slotsMax; /* Selectable maximum # of slots in buffer */
 /* frozen after the buffer has been initialised */
 uint16_t tcpb_slotsTail;/* Free slot for next pointer elt when Tail!=Head*/
 uint16_t tcpb_slotsHead;/* Next pointer element when Head+1!=Tail */
} tmon_circ_pbuf_t;
/*
 * Module interface routines
 */
tmon_circ_pbuf_t *TmonCircPBufCreate(int16_t, void *(*)(size_t));
int16_t TmonCircPBufFreeSlots(tmon_circ_pbuf_t*);
int TmonCircPBufIsFull(tmon_circ_pbuf_t*, int16_t);
int TmonCircPBufIsEmpty(tmon_circ_pbuf_t*, int16_t);
int TmonCircPBufNoSlotUsed(tmon_circ_pbuf_t*);
int TmonCircPBufAppend(tmon_circ_pbuf_t*, void*);
void* TmonCircPBufUnAppend(tmon_circ_pbuf_t*);
void* TmonCircPBufNext(tmon_circ_pbuf_t*);

For the Circular FIFO buffer with copy-in/copy-out of variable length data, two ring
structures are created: one with the fixed-size lengths of every buffered elements, the
other with variable slots size, storing the elements data themselves:

/*
 * = Maximum size of an element data chunk is 0x7fff=32K
 * = Each data chunk in the buffer is variable in length;
 * = Respective sizes (uint16_t) of stored chunks are saved in a sibling
 * area. Thanks to the fixed size (uint16_t) of the elements in this
 * area, it is possible to know where starts (or ends) the chunk at head
 * (at tail). Using a separate area for the chunk sizes is the least
 * consuming way to know the boundaries of the chunks.
 * = The size of the buffer is fixed after initialisation.
 * = The maximum number of slots in the buffer is also fixed after
 * initialisation.
 * = The buffer is circular: when head/tail reaches the size of buffer,
 * it wraps back to is base; inversely when it decreases to the base, it

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 94/248

 * jumps back to the end of the buffer memory.
 * = NEXT operation occurs in two steps:
 * - the size of the oldest chunk at head is returned to permit
 * the user to allocate a destination memory
 * - the data chunk is copied-out to the destination memory and
 * room is released at head.
 * = It is also possible to POP (UN-APPEND) back the latest inserted chunk
 * from the tail
 * (e.g. when there is no room enough to accomodate a linked sequence
 * of data chunks)
 *
 * MULTI-PROCESSING:
 *
 * - The writer process is the owner and sole modifier of the tail pointer
 * - The reader process is the owner and sole modifier of the head pointer
 *
 * Upon race condition, the most critical event would be that the buffer
 * is declared full while a slot has just been released, or declared empty
 * while a chunk has just been inserted.
 *
 * Note: UN-APPEND is SAFE, but CAN FAIL
 * The reader may have already consumed the block before the writer
 * triggers its UNDO
 */

typedef struct tmon_circ_buf {
 void *tcb_dataBasep; /* Address of the start of data buffer memory */
 uint16_t *tcb_slotsTab; /* Address of the start of sibling array of sizes */
 uint32_t tcb_dataSize; /* Selectable length of the buffer memory */
 /* frozen after the buffer has been initialised */
 uint32_t tcb_dataTail; /* Offset from dataBasep where to append the next */
 /* data chunk: first free when dataTail!=dataHead */
 uint32_t tcb_dataHead; /* offset from dataBasep where oldest chunk has */
 /* been saved: start of first busy chunk */
 uint16_t tcb_slotsMax; /* Selectable maximum # of slots in buffer */
 /* frozen after the buffer has been initialised */
 uint16_t tcb_slotsTail; /* Equiv. of dataTail inside the array of sizes */
 uint16_t tcb_slotsHead; /* Equiv. of dataHead inside the array of sizes */
} tmon_circ_buf_t;

/*
 * Module interface routines
 */
tmon_circ_buf_t *TmonCircBufCreate(int32_t, int16_t, void *(*)(size_t));
int32_t TmonCircBufFreeSize(tmon_circ_buf_t*);
int16_t TmonCircBufFreeSlots(tmon_circ_buf_t*);
int TmonCircBufIsFull(tmon_circ_buf_t*, int32_t, int16_t);
int TmonCircBufIsEmpty(tmon_circ_buf_t*, int16_t);
int TmonCircBufNoSlotUsed(tmon_circ_buf_t*);
int TmonCircBufAppend(tmon_circ_buf_t*, int16_t, const void*);
int TmonCircBufUnAppend(tmon_circ_buf_t*);
int16_t TmonCircBufNextSize(tmon_circ_buf_t*);
int16_t TmonCircBufNext(tmon_circ_buf_t*, int16_t, void*);

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 95/248

2.4.5 Hash Table
MODULE:

tmon_hash.h + tmon_core.h / tmon_hash.c

/*
 * Generic hash table data structure where entries are doubly-linked lists
 * of elements.
 *
 * Elements are remembered in anchor structures, starting with two pointers
 * (next and prev), that are part of doubly-linked list for a same hash value.
 *
 * The table itself is just an array of such anchors: pairs of pointers to
 * first and last of the list of elements with same hash key, fake elt pointer
 * indicating the main handle of the hash table data structure itself.
 *
 * Its size is a power of two, whose exponent value is assigned at creation
 * time and stored in a header structure together with the table anchor.
 *
 * The hash function is expected to return an array of bytes (max. 2) long
 * enough to cover the number of bits == power of table size, so the the index
 * is obtained by masking and shifting inside a uint16_t.
 *
 * Inside the doubly linked list, elements are kept in ascending order.
 * In a table slot, anchor of a list:
 * + nextp points to the head of list, nextp->prevp points to the table slot
 * + prevp points to the tail of list, prevp->nextp points to the table slot
 * + eltp ponts to the anchor heading structure of the hash data structure
 * itself.
 * Therefore, being given the handle of the hash and any element, it is
 * possible to find its predecessor (either previous in list or tail of
 * previous non-empty slot with lower hash value) or successor (next in list
 * or head of next non-empty slot with higher hash value)
 * So an exhaustive travel (only partly ordered) is possible, asking for
 * predecessor of successor of a retrieved element.
 */

/*
 * Hash table anchor
 */
typedef struct tmon_hash {
 tmon_hashelt_t *hash_tab; /* The actual hash table:
 * nextp is the head of list
 * prevp is the tail of list
 * When list is EMPTY, both pointers
 * contain the ADDRESS OF THEIR OWN ANCHOR
 * eltp points to the tmon_hash_t itself.
 */
 int (*cmp)(void*,void*);/* Comparison routine
 * defining elts order relationship
 */
 uint8_t *(*hash)(void*); /* Hash function:
 * Being given the address of an element,
 * returns an array of bytes whose
 * N leftmost bits are used as index
 * in the hash table (N is the exponent

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 96/248

 * of the table size, saved in hash_bits
 */
 unsigned int eltCnt; /* Number of stored elements */
 uint16_t size; /* Number of slots in hash_tab */
 /* == 1 << hash_bits */
 uint8_t hash_bits; /*
 * Number of bits used from hash function
 * result.
 * The hash table is 2^hash_bits long.
 * MUST BE AT MOST 16 (max.2 bytes of hash,
 * => hash table of max. 65536 slots)
 */
} tmon_hash_t;
/*
 * Generic starting content of element in the data structure
 */
typedef struct tmon_hashelt {
 struct tmon_hashelt *nextp;
 struct tmon_hashelt *prevp;
 void *eltp;
 /*
 * The actual user element.
 * For slots in the actual hash table (array), eltp points to
 * the heading tmon_hash_t of the data structure (handle)
 */
} tmon_hashelt_t;

Typical way of use:

/*
 * typedef struct my_element {
 * char myKey[YYY]
 * char myData[ZZZ]
 * } my_element_t;
 * . . .
 * {
 * my_element_t myKey;
 * my_element_t *foundp;
 * my_element_t *newOrNotp;
 * tmon_hashelt_t *anchorp;
 * tmon_hash_t *myHashp;
 * uint8_t myHashBits = 8; // one byte hash, 256 hash table slots
 * void (*myfree)(void*) = free; // de-allocate an element
 *
 * // Init
 * myHashp = TmonHashCreate(myHashBits, myCmp, myHashFun);
 * ...
 *
 * // Retrieve or not found
 * myKey.myKey = ...
 *
 * found = TmonHashFind(&myKey, myHashp);
 * if(found) {
 * ... found->myData[...] ...; // consume stored data
 * }
 * ...
 *
 * // Retrieve or insert

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 97/248

 * newOrNotp = malloc(sizeof(my_element_t));
 * if(!newOrNotp) exit(2);
 *
 * newOrNotp->myKey = ...;
 *
 * foundp = (my_element_t*)TmonHashSearch(newOrNotp, myHashp);
 * if(foundp != newOrNotp) { // was already stored
 * free(newOrNotp);
 * ... foundp->myData[...] ...; // consume stored data
 * } else {
 * newOrNotp->myData[...] = ...; // data to be remembered with key;
 * ...
 * }
 * ...
 *
 * // Read-only travel
 * for(anchorp = (my_element_t*)TmonHasNext(NULL, myHashp, 0, NULL);
 * anchorp;
 * anchorp = (my_element_t*)TmonHasNext(foundp, myHashp, 0, NULL);
 * foundp = anchorp->eltp;
 * ...
 * }
 * ...
 *
 * // Travel with selective removal
 * anchorp = (my_element_t*)TmonHasNext(NULL, myHashp, 0, NULL);
 * while(anchorp) {
 * foundp = anchorp->eltp;
 * if(... foundp->myData[...] ...) {
 *
 * // found element must be EXTRACTED BUT NOT RELEASED
 * anchorp = (my_element_t*)TmonHasNext(anchorp, myHashp, 1, NULL);
 *
 * } else if(... foundp->myData[...] ...) {
 *
 * // found element must be EXTRACTED AND RELEASED
 * anchorp = (my_element_t*)TmonHasNext(anchorp, myHashp, 1, myfree);
 *
 * } else {
 * // found element must be KEPT
 * anchorp = (my_element_t*)TmonHasNext(anchorp, myHashp, 0, 0);
 * }
 * }
 * }
 */

2.4.6 Timers
MODULE:

tmon_timer.h + tmon_core.h / tmon_timer.c

Use of signal based timers in a C program is often annoying as the timeout routine
executes by breaking the main program progress at any, potentially unstable, point. This

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 98/248

could induce parallelism in mono-thread program, hence the need to heavily protect critical
sections against timeout routine potential intrusive impact.

Hence the generic tmon_timer module is always invoked in pure synchronism by the
main program, which has to explicitly poll the the time advance at quite regular but fully
controlled stable points in the code (inside the main loop).

A timer is made of a pointer to the call-back timeout routine, an opaque argument and a
delay in milliseconds. When launched, the timer provides a handle that can be used to
deactivate it before time exhaustion.

/*
 * DEFAULT max number of concurrent timeout
 * used only when argument of TmonTimerInit() is negative or null
 */
#ifndef TMON_TIMER_POOL_SZ
#define TMON_TIMER_POOL_SZ 1000
#endif /*TMON_TIMER_POOL_SZ*/

/*
 * structure used to implement a list of
 * functions to be run in variable delays
 */
typedef struct tmon_timer {
 struct timeval tTimerDelay; /* absolute timeout stamp */
 int tTimerId; /* entry id in the list */
 void *tTimerFunArgs; /* argument to routine */
 void (*tTimerFunc)(void*); /* timeout routine */
 struct tmon_timer *tTimerNext;
 } tmon_timer_t;
/*
 * Timeout list entry point:
 * The list is ordered by growing timeout values.
 * Each entry delay is the absolute stamp as a struct timeval.
 * The entry also stores the function called at timeout, and its
 * argument, and an identifier to remove it.
 */
tmon_timer_t timerFirst; /* entry point of the list of active timers */

static tmon_timer_t *timerPool =0; /* array of timeout entries */
static tmon_timer_t *timerFree =0; /* free list of timeout entries */

/*
 * Generic timeout routine: asserts the flag pointed to by the argument
 * passed at timer arm time, so that the user
 * can easilly test whether the timer has already
 * fired or not
 */
void TmonTimerSetFlag(void *flagp);

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 99/248

3. TRAFMON DATABASE PROCESSING AND
REPORTING

3.1 DATABASE SCHEMA
For experimented performance reasons, the MySQL database management system
(DBMS) has been selected instead of PostgreSQL (used in previous TrafMon). Selected
version is 5.6.31 which correctly implements two key features:

• Tables partitioning: permits to split a logical long table in several physical
partitions, each being assigned a range of possible values for a key column field
(e.g. one day of a DATETIME key field). This permits efficiently work on data
belonging to a given period of time (especially the continuously updated current
day) and also to efficiently DROP an aged-out daily data set all at once, without
need to resort to rather slow selective DELETE operations.

• Fractional DATETIME timestamps: the granularity of trafMon observations is the
millisecond.

MySQL allows to connect securely using SSL but at this time the database regular loading
script use a UNIX socket preventing network utilization and the BIRT reporting tool
(running locally) connects through a TCP connection to the server, only listening to
localhost.

Different levels of logging are enabled in MySQL:

The detailed logging of the DBMS activity, including user denied and full dump of the “as
executed” SQL statements is called general log:

• System Variable general_log is a Boolean that dynamically controls whether
such logging is enabled/disabled

• System Variable general_log file is the full pathname of the general log
file.

Error logging give information about errors that occur while the server is running (also
server start and stop):

• System Variable ‘log_error_verbosity’ variable allows tuning of verbosity
levels: errors only, errors and warnings and errors, warnings, notes.

Slow queries can also been detected and logged (see section 3.6.2 below).

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_general_log
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_general_log

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 100/248

The database, trafMon by default, or any one whose name starts with the prefix, is made
of several tables, some being fixed, others being instantiated per aggregated time scale
(minute, hour, day).

At their finest granularity (1m), those persistent measurements table are physically
partitioned on a daily basis: this permits to cluster those data that are naturally close to
each order, enhancing retrieval performances; and especially, this permits to efficiently
drop aged-out detailed data chunks. But tables with coarser granularity are also
partitioned: 8 days chunks for 1h, 31 days chunks for 1d. Every partition is named
“pYYYYMMDD”, except the last one, called pFuture, which should always be empty, but
would receive data inserted, for any reason, about dates after the theoretical upper bound
of the last dynamically created.

During the regular data loading (trafMon_loader.py see section 3.4.2), temporary
tables are created for the bulk loading of fresh data: the sampled output log files from the
collector (and the pre-processed optional NetFlow data).

Being persistent or temporary, all tables have their template counterpart in the
trafMon_template separate pre-defined database. This database also contains all
trafMon stored procedures, and the table assigning a service name to known TCP/UDP
port number (with optional precedence). This last can be updated by the trafMon tool
administrator.

After those bulk loads which imports data for a new day, corresponding new day partitions
are created in the corresponding persistent tables (those at one minute or those with
individual data records – tcp connections, file transfers).

The counters data are first aggregated in the temporary tables, whose templates are
named xxx_aggr_tmp_template. When needed, the database and target persistent
tables are automatically created, based on their template schema from
trafMon_template.xxx_aggr_template.

The aggregate tables globally provide a population and, for each measurement field,
the _sum, _sumSquare, _min and _max. This allows for further aggregating the data over
longer time period without losing the statistical representation (average and variance).

Distinction must be made between measurement by time unit (accumulated counter over a
fixed time interval) and aggregation of individually measured values (as is the case for
2way delays).

For delays, the population is the number of individual measurements made over the
interval. Therefore:

• the average for a given histogram slice and time interval is such that
_average = _sum / population

• the standard deviation (whatever it means in case of Poisson distribution) is also
based on population:
_sigma = SQRT(((population * _sumSquare) - (_sum * _sum))
 / (population * (population-1)))

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 101/248

The 95 percentile for could be approximated by

[_min .. _average+2*_sigma]

For counters, the population is the number of 1min intervals during which one of the
counter in the table has actually been incremented (traffic has actually been observed).
Hence the population relative to the aggregated time interval (e.g. 60 minutes for hourly
aggregation) gives an idea of the representativeness of the reported counter metric:
observed only over 100*(population/interval) % of the reported time. The total population,
for which to report the average, is the total duration of the reported time interval:

• the covered % of reported time period
coverage = 100 * population / interval

• the average for a time interval is such that
_average = _sum / interval

• the standard deviation (whatever it means in case of Poisson distribution – see) is
also based on population:
_sigma = SQRT(((interval * _sumSquare) - (_sum * _sum))
 / (interval * (interval -1)))

The 95 percentile is approximated by

[_average*_sigma .. _average+2*_sigma]

3.1.1 Persistent Tables Templates
The structure of the several persistent tables is given below:

--
-- Table structure for table `aggr_exists_template`
--

DROP TABLE IF EXISTS `aggr_exists_template`;
CREATE TABLE IF NOT EXISTS `aggr_exists_template` (
 `flowID` varchar(200) NOT NULL,
 `ipctAggr` bit(1) NOT NULL DEFAULT b'0',
 `tcpctAggr` bit(1) NOT NULL DEFAULT b'0',
 `udpctAggr` bit(1) NOT NULL DEFAULT b'0',
 `ftpctAggr` bit(1) NOT NULL DEFAULT b'0',
 `icmpctAggr` bit(1) NOT NULL DEFAULT b'0',
 `ipszAggr` bit(1) NOT NULL DEFAULT b'0',
 `tcpcon` bit(1) NOT NULL DEFAULT b'0',
 `ftpxfr` bit(1) NOT NULL DEFAULT b'0',
 `twoway` bit(1) NOT NULL DEFAULT b'0',
 `oneway` bit(1) NOT NULL DEFAULT b'0',
 `lossctAggr` bit(1) NOT NULL DEFAULT b'0',
 PRIMARY KEY (`flowID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 102/248

--
-- Table structure for table `eventtable_template`
--

DROP TABLE IF EXISTS `eventtable_template`;
CREATE TABLE IF NOT EXISTS `eventtable_template` (
 `time` datetime NOT NULL,
 `type` varchar(100) DEFAULT NULL,
 `severity` varchar(20) DEFAULT NULL,
 `entity` varchar(20) NOT NULL,
 `probeInterface` varchar(50) DEFAULT NULL,
 `flowName` varchar(200) DEFAULT NULL,
 `eventMessage` varchar(200) DEFAULT NULL,
 PRIMARY KEY (`time`,`entity`),
 KEY `time` (`time`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `eventtable_fix_template`
--

DROP TABLE IF EXISTS `eventtable_fix_template`;
CREATE TABLE IF NOT EXISTS `eventtable_fix_template` (
 `time` datetime NOT NULL,
 `type` varchar(100) DEFAULT NULL,
 `severity` varchar(20) DEFAULT NULL,
 `entity` varchar(20) NOT NULL,
 `probeInterface` varchar(50) DEFAULT NULL,
 `flowName` varchar(200) DEFAULT NULL,
 `eventMessage` varchar(200) DEFAULT NULL,
 PRIMARY KEY (`time`,`entity`),
 KEY `time` (`time`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(time)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `flowtable_template`
--

DROP TABLE IF EXISTS `flowtable_template`;
CREATE TABLE IF NOT EXISTS `flowtable_template` (
 `flowID` varchar(200) NOT NULL,
 `address1` varchar(18) NOT NULL,
 `address2` varchar(18) DEFAULT NULL,
 `port1` smallint(5) unsigned DEFAULT NULL,
 `port2` smallint(5) unsigned DEFAULT NULL,
 `protocol` enum('tcp','udp','icmp') DEFAULT NULL,
 `direction` enum('<','>','=') NOT NULL,
 `size` int(10) unsigned DEFAULT NULL,
 `ToSType` tinyint(3) unsigned DEFAULT NULL,
 `ToSValue` tinyint(3) unsigned DEFAULT NULL,
 `TimeToLive` tinyint(3) unsigned DEFAULT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 103/248

 `DontFragment` bit(1) DEFAULT NULL,
 `MoreFragment` bit(1) DEFAULT NULL,
 `fragmentNumber` int(10) unsigned DEFAULT NULL,
 `fragmentOffset` int(10) unsigned DEFAULT NULL,
 `icmpType` int(10) unsigned DEFAULT NULL,
 `tcpType` int(10) unsigned DEFAULT NULL,
 `probeInterface` varchar(30) DEFAULT NULL,
 `comment` varchar(100) DEFAULT NULL,
 PRIMARY KEY (`flowID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `ftpcttable_aggr_template`
--

DROP TABLE IF EXISTS `ftpcttable_aggr_template`;
CREATE TABLE IF NOT EXISTS `ftpcttable_aggr_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(10) unsigned NOT NULL,
 `startedSessions_sum` float unsigned NOT NULL,
 `startedSessions_sumSquare` float unsigned NOT NULL,
 `startedSessions_min` int(10) unsigned NOT NULL,
 `startedSessions_max` int(10) unsigned NOT NULL,
 `cleanClosedSession_sum` float unsigned NOT NULL,
 `cleanClosedSession_sumSquare` float unsigned NOT NULL,
 `cleanClosedSession_min` int(10) unsigned NOT NULL,
 `cleanClosedSession_max` int(10) unsigned NOT NULL,
 `dirtyClosedSessions_sum` float unsigned NOT NULL,
 `dirtyClosedSessions_sumSquare` float unsigned NOT NULL,
 `dirtyClosedSessions_min` int(10) unsigned NOT NULL,
 `dirtyClosedSessions_max` int(10) unsigned NOT NULL,
 `encryptedSessions_sum` float unsigned NOT NULL,
 `encryptedSessions_sumSquare` float unsigned NOT NULL,
 `encryptedSessions_min` int(10) unsigned NOT NULL,
 `encryptedSessions_max` int(10) unsigned NOT NULL,
 `noLoginSessions_sum` float unsigned NOT NULL,
 `noLoginSessions_sumSquare` float unsigned NOT NULL,
 `noLoginSessions_min` int(10) unsigned NOT NULL,
 `noLoginSessions_max` int(10) unsigned NOT NULL,
 `noCmdSessions_sum` float unsigned NOT NULL,
 `noCmdSessions_sumSquare` float unsigned NOT NULL,
 `noCmdSessions_min` int(10) unsigned NOT NULL,
 `noCmdSessions_max` int(10) unsigned NOT NULL,
 `noFileXferSessions_sum` float unsigned NOT NULL,
 `noFileXferSessions_sumSquare` float unsigned NOT NULL,
 `noFileXferSessions_min` int(10) unsigned NOT NULL,
 `noFileXferSessions_max` int(10) unsigned NOT NULL,
 `fileXferSessions_sum` float unsigned NOT NULL,
 `fileXferSessions_sumSquare` float unsigned NOT NULL,
 `fileXferSessions_min` int(10) unsigned NOT NULL,
 `fileXferSessions_max` int(10) unsigned NOT NULL,
 `activeConnections_sum` float unsigned NOT NULL,
 `activeConnections_sumSquare` float unsigned NOT NULL,
 `activeConnections_min` int(10) unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 104/248

 `activeConnections_max` int(10) unsigned NOT NULL,
 `passiveConnections_sum` float unsigned NOT NULL,
 `passiveConnections_sumSquare` float unsigned NOT NULL,
 `passiveConnections_min` int(10) unsigned NOT NULL,
 `passiveConnections_max` int(10) unsigned NOT NULL,
 `dirListCount_sum` float unsigned NOT NULL,
 `dirListCount_sumSquare` float unsigned NOT NULL,
 `dirListCount_min` int(10) unsigned NOT NULL,
 `dirListCount_max` int(10) unsigned NOT NULL,
 `fileGetOK_sum` float unsigned NOT NULL,
 `fileGetOK_sumSquare` float unsigned NOT NULL,
 `fileGetOK_min` int(10) unsigned NOT NULL,
 `fileGetOK_max` int(10) unsigned NOT NULL,
 `filePutOK_sum` float unsigned NOT NULL,
 `filePutOK_sumSquare` float unsigned NOT NULL,
 `filePutOK_min` int(10) unsigned NOT NULL,
 `filePutOK_max` int(10) unsigned NOT NULL,
 `fileGetFailures_sum` float unsigned NOT NULL,
 `fileGetFailures_sumSquare` float unsigned NOT NULL,
 `fileGetFailures_min` int(10) unsigned NOT NULL,
 `fileGetFailures_max` int(10) unsigned NOT NULL,
 `filePutFailures_sum` float unsigned NOT NULL,
 `filePutFailures_sumSquare` float unsigned NOT NULL,
 `filePutFailures_min` int(10) unsigned NOT NULL,
 `filePutFailures_max` int(10) unsigned NOT NULL,
 `xferRestarts_sum` float unsigned NOT NULL,
 `xferRestarts_sumSquare` float unsigned NOT NULL,
 `xferRestarts_min` int(10) unsigned NOT NULL,
 `xferRestarts_max` int(10) unsigned NOT NULL,
 `xferAborts_sum` float unsigned NOT NULL,
 `xferAborts_sumSquare` float unsigned NOT NULL,
 `xferAborts_min` int(10) unsigned NOT NULL,
 `xferAborts_max` int(10) unsigned NOT NULL,
 `failedLogins_sum` float unsigned NOT NULL,
 `failedLogins_sumSquare` float unsigned NOT NULL,
 `failedLogins_min` int(10) unsigned NOT NULL,
 `failedLogins_max` int(10) unsigned NOT NULL,
 `cipherFailures_sum` float unsigned NOT NULL,
 `cipherFailures_sumSquare` float unsigned NOT NULL,
 `cipherFailures_min` int(10) unsigned NOT NULL,
 `cipherFailures_max` int(10) unsigned NOT NULL,
 `commandFailures_sum` float unsigned NOT NULL,
 `commandFailures_sumSquare` float unsigned NOT NULL,
 `commandFailures_min` int(10) unsigned NOT NULL,
 `commandFailures_max` int(10) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`),
 KEY `rangeStart` (`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `ftpcttable_template`
--

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 105/248

DROP TABLE IF EXISTS `ftpcttable_template`;
CREATE TABLE IF NOT EXISTS `ftpcttable_template` (
 `flowID` varchar(200) NOT NULL,
 `ftpTimestamp` datetime NOT NULL,
 `ftpInterval` int(10) unsigned NOT NULL,
 `startedSessions` int(10) unsigned NOT NULL,
 `cleanClosedSession` int(10) unsigned NOT NULL,
 `dirtyClosedSessions` int(10) unsigned NOT NULL,
 `encryptedSessions` int(10) unsigned NOT NULL,
 `noLoginSessions` int(10) unsigned NOT NULL,
 `noCmdSessions` int(10) unsigned NOT NULL,
 `noFileXferSessions` int(10) unsigned NOT NULL,
 `fileXferSessions` int(10) unsigned NOT NULL,
 `activeConnections` int(10) unsigned NOT NULL,
 `passiveConnections` int(10) unsigned NOT NULL,
 `dirListCount` int(10) unsigned NOT NULL,
 `fileGetOK` int(10) unsigned NOT NULL,
 `filePutOK` int(10) unsigned NOT NULL,
 `fileGetFailures` int(10) unsigned NOT NULL,
 `filePutFailures` int(10) unsigned NOT NULL,
 `xferRestarts` int(10) unsigned NOT NULL,
 `xferAborts` int(10) unsigned NOT NULL,
 `failedLogins` int(10) unsigned NOT NULL,
 `cipherFailures` int(10) unsigned NOT NULL,
 `commandFailures` int(10) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`ftpTimestamp`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `ftpxfrtable_template`
--

DROP TABLE IF EXISTS `ftpxfrtable_template`;
CREATE TABLE IF NOT EXISTS `ftpxfrtable_template` (
 `flowID` varchar(200) NOT NULL,
 `firstSeenTime` datetime NOT NULL,
 `duration` int(11) unsigned NOT NULL,
 `ctlSessionTime` datetime NOT NULL,
 `clientAddress` varchar(15) NOT NULL,
 `clientDataPort` smallint(5) unsigned NOT NULL,
 `clientControlPort` smallint(5) unsigned NOT NULL,
 `serverAddress` varchar(15) NOT NULL,
 `serverDataPort` smallint(5) unsigned NOT NULL,
 `serverControlPort` smallint(5) unsigned NOT NULL,
 `fileDirection` enum('GET','PUT') DEFAULT NULL,
 `fileName` varchar(300) NOT NULL,
 `workDir` varchar(300) NOT NULL,
 `skippedFileOffset` bigint(20) unsigned NOT NULL,
 `fileSize` bigint(20) unsigned NOT NULL,
 `payloadBytes` bigint(20) unsigned NOT NULL,
 `transfertType` enum('ASCII','BINARY','EBCDIC') DEFAULT NULL,
 `transfertMode` enum('Stream','Block','CompressedBlock') DEFAULT NULL,
 `connectionMode` enum('Active','Passive') DEFAULT NULL,
 `userName` varchar(20) NOT NULL,
 `connectionState` enum('SYN','DATA','FIN','CLOSED') DEFAULT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 106/248

 `probeInterface` varchar(50) NOT NULL,
 `interfaceDescription` varchar(255) NOT NULL,
 PRIMARY KEY
(`flowID`,`firstSeenTime`,`clientAddress`,`clientDataPort`,`serverAddress`,`serv
erDataPort`,`probeInterface`),
 KEY `firstSeenTime` (`firstSeenTime`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `ftpxfrtable_fix_template`
--

DROP TABLE IF EXISTS `ftpxfrtable_fix_template`;
CREATE TABLE IF NOT EXISTS `ftpxfrtable_fix_template` (
 `flowID` varchar(200) NOT NULL,
 `firstSeenTime` datetime NOT NULL,
 `duration` int(11) unsigned NOT NULL,
 `ctlSessionTime` datetime NOT NULL,
 `clientAddress` varchar(15) NOT NULL,
 `clientDataPort` smallint(5) unsigned NOT NULL,
 `clientControlPort` smallint(5) unsigned NOT NULL,
 `serverAddress` varchar(15) NOT NULL,
 `serverDataPort` smallint(5) unsigned NOT NULL,
 `serverControlPort` smallint(5) unsigned NOT NULL,
 `fileDirection` enum('GET','PUT') DEFAULT NULL,
 `fileName` varchar(300) NOT NULL,
 `workDir` varchar(300) NOT NULL,
 `skippedFileOffset` bigint(20) unsigned NOT NULL,
 `fileSize` bigint(20) unsigned NOT NULL,
 `payloadBytes` bigint(20) unsigned NOT NULL,
 `transfertType` enum('ASCII','BINARY','EBCDIC') DEFAULT NULL,
 `transfertMode` enum('Stream','Block','CompressedBlock') DEFAULT NULL,
 `connectionMode` enum('Active','Passive') DEFAULT NULL,
 `userName` varchar(20) NOT NULL,
 `connectionState` enum('SYN','DATA','FIN','CLOSED') DEFAULT NULL,
 `probeInterface` varchar(50) NOT NULL,
 `interfaceDescription` varchar(255) NOT NULL,
 PRIMARY KEY
(`flowID`,`firstSeenTime`,`clientAddress`,`clientDataPort`,`serverAddress`,`serv
erDataPort`,`probeInterface`),
 KEY `firstSeenTime` (`firstSeenTime`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(firstSeenTime)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `ftp_filesxfr_template`
--

DROP TABLE IF EXISTS `ftp_filesxfr_template`;
CREATE TABLE IF NOT EXISTS `ftp_filesxfr_template` (
 `firstSeenTime` datetime NOT NULL,
 `serverAddress` varchar(15) NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 107/248

 `location` varchar(100) DEFAULT 'N/A',
 `activity` varchar(100) DEFAULT 'N/A',
 `country` varchar(100) DEFAULT 'N/A',
 `fileName` varchar(300) NOT NULL,
 `fileSize` bigint(20) unsigned NOT NULL DEFAULT '0',
 `nbOfTranfers` bigint(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (`firstSeenTime`,`serverAddress`,`fileName`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(firstSeenTime)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `hopstable_template`
--

DROP TABLE IF EXISTS `hopstable_template`;
CREATE TABLE IF NOT EXISTS `hopstable_template` (
 `classID` int(10) unsigned NOT NULL,
 `className` varchar(30) NOT NULL,
 `classDesc` varchar(100) NOT NULL,
 `timestamp` datetime NOT NULL,
 `cfgVersion` smallint(10) unsigned NOT NULL,
 `cfgStart` datetime NOT NULL,
 `hopCount` tinyint(10) unsigned NOT NULL,
 `hop1Name` varchar(30) DEFAULT NULL,
 `hop2Name` varchar(30) DEFAULT NULL,
 `hop3Name` varchar(30) DEFAULT NULL,
 `hop4Name` varchar(30) DEFAULT NULL,
 `hop5Name` varchar(30) DEFAULT NULL,
 `hop6Name` varchar(30) DEFAULT NULL,
 `hop7Name` varchar(30) DEFAULT NULL,
 `hop8Name` varchar(30) DEFAULT NULL,
 `hop9Name` varchar(30) DEFAULT NULL,
 `hop10Name` varchar(30) DEFAULT NULL,
 PRIMARY KEY (`classID`,`cfgVersion`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `icmpcttable_aggr_template`
--

DROP TABLE IF EXISTS `icmpcttable_aggr_template`;
CREATE TABLE IF NOT EXISTS `icmpcttable_aggr_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_sum` float unsigned NOT NULL,
 `probeChecksumFailures_sumSquare` float unsigned NOT NULL,
 `probeChecksumFailures_min` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_max` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped_sum` float unsigned NOT NULL,
 `probeChecksumSkipped_sumSquare` float unsigned NOT NULL,
 `probeChecksumSkipped_min` bigint(20) unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 108/248

 `probeChecksumSkipped_max` bigint(20) unsigned NOT NULL,
 `echoRequests_sum` float unsigned NOT NULL,
 `echoRequests_sumSquare` float unsigned NOT NULL,
 `echoRequests_min` bigint(20) unsigned NOT NULL,
 `echoRequests_max` bigint(20) unsigned NOT NULL,
 `echoReplies_sum` float unsigned NOT NULL,
 `echoReplies_sumSquare` float unsigned NOT NULL,
 `echoReplies_min` bigint(20) unsigned NOT NULL,
 `echoReplies_max` bigint(20) unsigned NOT NULL,
 `fragmentationNeeded_sum` float unsigned NOT NULL,
 `fragmentationNeeded_sumSquare` float unsigned NOT NULL,
 `fragmentationNeeded_min` bigint(20) unsigned NOT NULL,
 `fragmentationNeeded_max` bigint(20) unsigned NOT NULL,
 `sourceQuench_sum` float unsigned NOT NULL,
 `sourceQuench_sumSquare` float unsigned NOT NULL,
 `sourceQuench_min` bigint(20) unsigned NOT NULL,
 `sourceQuench_max` bigint(20) unsigned NOT NULL,
 `timeToLiveExpired_sum` float unsigned NOT NULL,
 `timeToLiveExpired_sumSquare` float unsigned NOT NULL,
 `timeToLiveExpired_min` bigint(20) unsigned NOT NULL,
 `timeToLiveExpired_max` bigint(20) unsigned NOT NULL,
 `reassemblyTimeout_sum` float unsigned NOT NULL,
 `reassemblyTimeout_sumSquare` float unsigned NOT NULL,
 `reassemblyTimeout_min` bigint(20) unsigned NOT NULL,
 `reassemblyTimeout_max` bigint(20) unsigned NOT NULL,
 `unReached_sum` float unsigned NOT NULL,
 `unReached_sumSquare` float unsigned NOT NULL,
 `unReached_min` bigint(20) unsigned NOT NULL,
 `unReached_max` bigint(20) unsigned NOT NULL,
 `redirect_sum` float unsigned NOT NULL,
 `redirect_sumSquare` float unsigned NOT NULL,
 `redirect_min` bigint(20) unsigned NOT NULL,
 `redirect_max` bigint(20) unsigned NOT NULL,
 `otherIcmpErrors_sum` float unsigned NOT NULL,
 `otherIcmpErrors_sumSquare` float unsigned NOT NULL,
 `otherIcmpErrors_min` bigint(20) unsigned NOT NULL,
 `otherIcmpErrors_max` bigint(20) unsigned NOT NULL,
 `otherIcmpInfoPackets_sum` float unsigned NOT NULL,
 `otherIcmpInfoPackets_sumSquare` float unsigned NOT NULL,
 `otherIcmpInfoPackets_min` bigint(20) unsigned NOT NULL,
 `otherIcmpInfoPackets_max` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `icmpcttable_template`
--

DROP TABLE IF EXISTS `icmpcttable_template`;
CREATE TABLE IF NOT EXISTS `icmpcttable_template` (
 `flowID` varchar(200) NOT NULL,
 `icmpTimestamp` datetime NOT NULL,
 `icmpInterval` int(10) unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 109/248

 `probeChecksumFailures` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped` bigint(20) unsigned NOT NULL,
 `echoRequests` bigint(20) unsigned NOT NULL,
 `echoReplies` bigint(20) unsigned NOT NULL,
 `fragmentationNeeded` bigint(20) unsigned NOT NULL,
 `sourceQuench` bigint(20) unsigned NOT NULL,
 `timeToLiveExpired` bigint(20) unsigned NOT NULL,
 `reassemblyTimeout` bigint(20) unsigned NOT NULL,
 `unReached` bigint(20) unsigned NOT NULL,
 `redirect` bigint(20) unsigned NOT NULL,
 `otherIcmpErrors` bigint(20) unsigned NOT NULL,
 `otherIcmpInfoPackets` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`icmpTimestamp`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `ipcttable_aggr_template`
--

DROP TABLE IF EXISTS `ipcttable_aggr_template`;
CREATE TABLE IF NOT EXISTS `ipcttable_aggr_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `totalBytes_sum` float unsigned NOT NULL,
 `totalBytes_sumSquare` float unsigned NOT NULL,
 `totalBytes_min` bigint(20) unsigned NOT NULL,
 `totalBytes_max` bigint(20) unsigned NOT NULL,
 `probeReassemblyTimeout_sum` float unsigned NOT NULL,
 `probeReassemblyTimeout_sumSquare` float unsigned NOT NULL,
 `probeReassemblyTimeout_min` bigint(20) unsigned NOT NULL,
 `probeReassemblyTimeout_max` bigint(20) unsigned NOT NULL,
 `probeFragmentOverlap_sum` float unsigned NOT NULL,
 `probeFragmentOverlap_sumSquare` float unsigned NOT NULL,
 `probeFragmentOverlap_min` bigint(20) unsigned NOT NULL,
 `probeFragmentOverlap_max` bigint(20) unsigned NOT NULL,
 `icmpCount_sum` float unsigned NOT NULL,
 `icmpCount_sumSquare` float unsigned NOT NULL,
 `icmpCount_min` bigint(20) unsigned NOT NULL,
 `icmpCount_max` bigint(20) unsigned NOT NULL,
 `udpCount_sum` float unsigned NOT NULL,
 `udpCount_sumSquare` float unsigned NOT NULL,
 `udpCount_min` bigint(20) unsigned NOT NULL,
 `udpCount_max` bigint(20) unsigned NOT NULL,
 `tcpCount_sum` float unsigned NOT NULL,
 `tcpCount_sumSquare` float unsigned NOT NULL,
 `tcpCount_min` bigint(20) unsigned NOT NULL,
 `tcpCount_max` bigint(20) unsigned NOT NULL,
 `otherProtocolCount_sum` float unsigned NOT NULL,
 `otherProtocolCount_sumSquare` float unsigned NOT NULL,
 `otherProtocolCount_min` bigint(20) unsigned NOT NULL,
 `otherProtocolCount_max` bigint(20) unsigned NOT NULL,
 `bitrate` float unsigned NOT NULL DEFAULT '0',
 `ftpPassiveEstimatedBytes` float unsigned NOT NULL DEFAULT '0',
 PRIMARY KEY (`flowID`,`rangeStart`),

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 110/248

 KEY `rangeStart` (`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `ipcttable_template`
--

DROP TABLE IF EXISTS `ipcttable_template`;
CREATE TABLE IF NOT EXISTS `ipcttable_template` (
 `flowID` varchar(200) NOT NULL,
 `ipctTimestamp` datetime NOT NULL,
 `ipctInterval` int(10) unsigned NOT NULL,
 `perDatagram` char(1) NOT NULL,
 `totalBytes` float unsigned NOT NULL,
 `sizeBucketCount` int(10) unsigned NOT NULL,
 `probeReassemblyTimeout` bigint(20) unsigned NOT NULL,
 `probeFragmentOverlap` bigint(20) unsigned NOT NULL,
 `icmpCount` bigint(20) unsigned NOT NULL,
 `udpCount` bigint(20) unsigned NOT NULL,
 `tcpCount` bigint(20) unsigned NOT NULL,
 `otherProtocolCount` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`ipctTimestamp`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `ipinfotable_template`
--

DROP TABLE IF EXISTS `ipinfotable_template`;
CREATE TABLE IF NOT EXISTS `ipinfotable_template` (
 `IP` varchar(18) NOT NULL,
 `location` varchar(100) DEFAULT NULL,
 `activity` varchar(100) DEFAULT NULL,
 `country` varchar(100) DEFAULT 'Unknown',
 `city` varchar(100) DEFAULT 'Unknown',
 `ASN` varchar(200) DEFAULT '',
 `DNS` varchar(200) DEFAULT 'Unknown',
 `comments` varchar(200) DEFAULT '',
 PRIMARY KEY (`IP`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `ipsztable_aggr_template`
--

DROP TABLE IF EXISTS `ipsztable_aggr_template`;
CREATE TABLE IF NOT EXISTS `ipsztable_aggr_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 111/248

 `lower` smallint(5) unsigned NOT NULL,
 `upper` smallint(5) unsigned NOT NULL,
 `minimum` smallint(5) unsigned NOT NULL,
 `maximum` smallint(5) unsigned NOT NULL,
 `average` float unsigned NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `sum` float unsigned NOT NULL,
 `sumOfSquares` float unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`,`lower`,`upper`),
 KEY `rangeStart` (`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `ipsztable_template`
--

DROP TABLE IF EXISTS `ipsztable_template`;
CREATE TABLE IF NOT EXISTS `ipsztable_template` (
 `flowID` varchar(200) NOT NULL,
 `ipszTimestamp` datetime NOT NULL,
 `ipszInterval` int(10) unsigned NOT NULL,
 `perDatagram` char(1) NOT NULL,
 `lower` smallint(5) unsigned NOT NULL,
 `upper` smallint(5) unsigned NOT NULL,
 `minimum` smallint(5) unsigned NOT NULL,
 `maximum` smallint(5) unsigned NOT NULL,
 `average` float unsigned NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `sum` bigint(20) unsigned NOT NULL,
 `sumOfSquares` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`ipszTimestamp`,`lower`,`upper`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `matchingtable_template`
--

DROP TABLE IF EXISTS `matchingtable_template`;
CREATE TABLE IF NOT EXISTS `matchingtable_template` (
 `collectorFlowID` varchar(200) NOT NULL,
 `flowID` varchar(200) NOT NULL,
 PRIMARY KEY (`collectorFlowID`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `metrictable_template`
--

DROP TABLE IF EXISTS `metrictable_template`;

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 112/248

CREATE TABLE IF NOT EXISTS `metrictable_template` (
 `flowID` varchar(200) NOT NULL,
 `metrictype` varchar(11) NOT NULL,
 `metricSubType` varchar(20) NOT NULL,
 `sliceNum` tinyint(3) unsigned NOT NULL,
 `lower` int(11) NOT NULL,
 `upper` int(11) NOT NULL,
 PRIMARY KEY (`flowID`,`metrictype`,`metricSubType`,`sliceNum`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `activityvolumetable_aggr_template`
--

DROP TABLE IF EXISTS `activityvolumetable_aggr_template`;
CREATE TABLE IF NOT EXISTS `activityvolumetable_aggr_template` (
 `rangeStart` datetime NOT NULL,
 `address1` varchar(18) CHARACTER SET latin1 NOT NULL DEFAULT '',
 `address2` varchar(18) CHARACTER SET latin1 NOT NULL DEFAULT '',
 `sPro` varchar(50) COLLATE latin1_general_ci NOT NULL DEFAULT 'No Match',
 `pro` varchar(5) CHARACTER SET latin1 NOT NULL,
 `in_bytes` bigint(20) unsigned DEFAULT '0',
 `out_bytes` bigint(20) unsigned DEFAULT '0',
 `in_bitRate` double unsigned DEFAULT '0',
 `out_bitRate` double unsigned DEFAULT '0',
 `in_ipBytes` bigint(20) unsigned DEFAULT '0',
 `out_ipBytes` bigint(20) unsigned DEFAULT '0',
 `in_payloadBytes` bigint(20) unsigned DEFAULT '0',
 `out_payloadBytes` bigint(20) unsigned DEFAULT '0',
 `in_firstSegmentsPayload` bigint(20) unsigned DEFAULT '0',
 `out_firstSegmentsPayload` bigint(20) unsigned DEFAULT '0',
 `in_retransmittedPayloadBytes` bigint(20) unsigned DEFAULT '0',
 `out_retransmittedPayloadBytes` bigint(20) unsigned DEFAULT '0',
 `in_effectivePayload` decimal(65,4) unsigned DEFAULT '0.0000',
 `out_effectivePayload` decimal(65,4) unsigned DEFAULT '0.0000',
 `protocolEfficiency` decimal(65,4) unsigned DEFAULT '0.0000',
 `in_avgLastWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `out_avgLastWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `in_avgMaxWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `out_avgMaxWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `in_maxLastWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `out_maxLastWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `failedLogins_sum` bigint(20) unsigned DEFAULT '0',
 `noLoginSessions_sum` bigint(20) unsigned DEFAULT '0',
 `noCmdSessions_sum` bigint(20) unsigned DEFAULT '0',
 `noFileXferSessions_sum` bigint(20) unsigned DEFAULT '0',
 `fileXferSessions_sum` bigint(20) unsigned DEFAULT '0',
 `commandFailures_sum` bigint(20) unsigned DEFAULT '0',
 `encryptedSessions_sum` bigint(20) unsigned DEFAULT '0',
 `dirListCount_sum` bigint(20) unsigned DEFAULT '0',
 `fileGetOK_sum` bigint(20) unsigned DEFAULT '0',
 `filePutOK_sum` bigint(20) unsigned DEFAULT '0',
 `fileGetFailures_sum` bigint(20) unsigned DEFAULT '0',
 `filePutFailures_sum` bigint(20) unsigned DEFAULT '0',
 `activity1` varchar(100) COLLATE latin1_general_ci NOT NULL DEFAULT 'N/A',

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 113/248

 `location1` varchar(100) COLLATE latin1_general_ci DEFAULT 'N/A',
 `country1` varchar(100) COLLATE latin1_general_ci DEFAULT 'N/A',
 `activity2` varchar(100) COLLATE latin1_general_ci NOT NULL DEFAULT 'N/A',
 `location2` varchar(100) COLLATE latin1_general_ci DEFAULT 'N/A',
 `country2` varchar(100) COLLATE latin1_general_ci DEFAULT 'N/A',
 `dns1` varchar(200) COLLATE latin1_general_ci DEFAULT 'N/A',
 `dns2` varchar(200) COLLATE latin1_general_ci DEFAULT 'N/A',
 PRIMARY KEY (`rangeStart`,`address1`,`address2`,`sPro`,`pro`),
 KEY `rangeStart` (`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `activityvolumetable_netflow_aggr_template`
--

DROP TABLE IF EXISTS `activityvolumetable_netflow_aggr_template`;
CREATE TABLE IF NOT EXISTS `activityvolumetable_netflow_aggr_template` (
 `rangeStart` datetime NOT NULL,
 `address1` varchar(18) CHARACTER SET latin1 NOT NULL DEFAULT '',
 `address2` varchar(18) CHARACTER SET latin1 NOT NULL DEFAULT '',
 `sPro` varchar(50) COLLATE latin1_general_ci NOT NULL DEFAULT 'No Match',
 `pro` varchar(5) CHARACTER SET latin1 NOT NULL,
 `in_bytes` bigint(20) unsigned DEFAULT '0',
 `out_bytes` bigint(20) unsigned DEFAULT '0',
 `in_bitRate` double unsigned DEFAULT '0',
 `out_bitRate` double unsigned DEFAULT '0',
 `in_ipBytes` bigint(20) unsigned DEFAULT '0',
 `out_ipBytes` bigint(20) unsigned DEFAULT '0',
 `in_payloadBytes` bigint(20) unsigned DEFAULT '0',
 `out_payloadBytes` bigint(20) unsigned DEFAULT '0',
 `in_firstSegmentsPayload` bigint(20) unsigned DEFAULT '0',
 `out_firstSegmentsPayload` bigint(20) unsigned DEFAULT '0',
 `in_retransmittedPayloadBytes` bigint(20) unsigned DEFAULT '0',
 `out_retransmittedPayloadBytes` bigint(20) unsigned DEFAULT '0',
 `in_effectivePayload` decimal(65,4) unsigned DEFAULT '0.0000',
 `out_effectivePayload` decimal(65,4) unsigned DEFAULT '0.0000',
 `protocolEfficiency` decimal(65,4) unsigned DEFAULT '0.0000',
 `in_avgLastWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `out_avgLastWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `in_avgMaxWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `out_avgMaxWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `in_maxLastWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `out_maxLastWindow` decimal(65,4) unsigned DEFAULT '0.0000',
 `failedLogins_sum` bigint(20) unsigned DEFAULT '0',
 `noLoginSessions_sum` bigint(20) unsigned DEFAULT '0',
 `noCmdSessions_sum` bigint(20) unsigned DEFAULT '0',
 `noFileXferSessions_sum` bigint(20) unsigned DEFAULT '0',
 `fileXferSessions_sum` bigint(20) unsigned DEFAULT '0',
 `commandFailures_sum` bigint(20) unsigned DEFAULT '0',
 `encryptedSessions_sum` bigint(20) unsigned DEFAULT '0',
 `dirListCount_sum` bigint(20) unsigned DEFAULT '0',
 `fileGetOK_sum` bigint(20) unsigned DEFAULT '0',
 `filePutOK_sum` bigint(20) unsigned DEFAULT '0',

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 114/248

 `fileGetFailures_sum` bigint(20) unsigned DEFAULT '0',
 `filePutFailures_sum` bigint(20) unsigned DEFAULT '0',
 `activity1` varchar(100) COLLATE latin1_general_ci NOT NULL DEFAULT 'N/A',
 `location1` varchar(100) COLLATE latin1_general_ci DEFAULT 'N/A',
 `country1` varchar(100) COLLATE latin1_general_ci DEFAULT 'N/A',
 `activity2` varchar(100) COLLATE latin1_general_ci NOT NULL DEFAULT 'N/A',
 `location2` varchar(100) COLLATE latin1_general_ci DEFAULT 'N/A',
 `country2` varchar(100) COLLATE latin1_general_ci DEFAULT 'N/A',
 `dns1` varchar(200) COLLATE latin1_general_ci DEFAULT 'N/A',
 `dns2` varchar(200) COLLATE latin1_general_ci DEFAULT 'N/A',
 PRIMARY KEY (`rangeStart`,`address1`,`address2`,`sPro`,`pro`),
 KEY `rangeStart` (`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `netflowtable_aggr_template`
--

DROP TABLE IF EXISTS `netflowtable_aggr_template`;
CREATE TABLE IF NOT EXISTS `netflowtable_aggr_template` (
 `interface_` int(11) NOT NULL,
 `sIP` varchar(18) NOT NULL,
 `dIP` varchar(18) NOT NULL,
 `pro` varchar(20) NOT NULL,
 `sPort` int(10) NOT NULL,
 `dPort` int(10) NOT NULL,
 `bitRate` float unsigned NOT NULL,
 `packets` int(10) unsigned DEFAULT NULL,
 `bytes` bigint(20) unsigned DEFAULT NULL,
 `rangeStart` datetime NOT NULL,
 PRIMARY KEY (`interface_`,`sIP`,`dIP`,`pro`,`sPort`,`dPort`,`rangeStart`),
 KEY `sPort` (`sPort`,`dPort`),
 KEY `rangeStart` (`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `netflowtable_template`
--

DROP TABLE IF EXISTS `netflowtable_template`;
CREATE TABLE IF NOT EXISTS `netflowtable_template` (
 `idx` int(11) NOT NULL AUTO_INCREMENT,
 `sIP` varchar(18) NOT NULL,
 `dIP` varchar(18) NOT NULL,
 `sPort` smallint(5) unsigned NOT NULL,
 `dPort` smallint(5) unsigned NOT NULL,
 `pro` varchar(20) NOT NULL,
 `packets` int(10) unsigned DEFAULT NULL,
 `bytes` bigint(20) unsigned DEFAULT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 115/248

 `sTime` datetime NOT NULL,
 `eTime` datetime NOT NULL,
 `durat` float unsigned NOT NULL DEFAULT '0',
 `sen` smallint(5) unsigned NOT NULL,
 PRIMARY KEY (`idx`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

-- --

--
-- Table structure for table `onewaycttable_aggr_template`
--

DROP TABLE IF EXISTS `onewaycttable_aggr_template`;
CREATE TABLE IF NOT EXISTS `onewaycttable_aggr_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `lost_sum` float unsigned NOT NULL,
 `lost_sumSquare` float unsigned NOT NULL,
 `lost_min` bigint(20) unsigned NOT NULL,
 `lost_max` bigint(20) unsigned NOT NULL,
 `partlyMissed_sum` float unsigned NOT NULL,
 `partlyMissed_sumSquare` float unsigned NOT NULL,
 `partlyMissed_min` bigint(20) unsigned NOT NULL,
 `partlyMissed_max` bigint(20) unsigned NOT NULL,
 `dropped_sum` float unsigned NOT NULL,
 `dropped_sumSquare` float unsigned NOT NULL,
 `dropped_min` bigint(20) unsigned NOT NULL,
 `dropped_max` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `onewaycttable_template`
--

DROP TABLE IF EXISTS `onewaycttable_template`;
CREATE TABLE IF NOT EXISTS `onewaycttable_template` (
 `flowID` varchar(200) NOT NULL,
 `oneWayTimestamp` datetime NOT NULL,
 `interval` int(11) NOT NULL,
 `lost` bigint(20) unsigned NOT NULL,
 `partlyMissed` bigint(20) unsigned NOT NULL,
 `dropped` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`oneWayTimestamp`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `onewaydelaytable_template`
--

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 116/248

DROP TABLE IF EXISTS `onewaydelaytable_template`;
CREATE TABLE IF NOT EXISTS `onewaydelaytable_template` (
 `flowID` varchar(200) NOT NULL,
 `timestamp` datetime NOT NULL,
 `flowClass` mediumint(8) unsigned NOT NULL,
 `signature` varchar(20) NOT NULL,
 `size` int(10) unsigned NOT NULL,
 `fragmentNumber` int(10) unsigned NOT NULL,
 `hop1FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop1LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop2FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop2LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop3FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop3LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop4FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop4LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop5FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop5LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop6FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop6LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop7FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop7LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop8FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop8LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop9FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop9LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop10FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop10LastMSec` bigint(20) unsigned DEFAULT NULL,
 `packetID` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`packetID`,`timestamp`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1
/*!50500 PARTITION BY RANGE COLUMNS(timestamp)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `onewaylatencytable_aggr_template`
--

DROP TABLE IF EXISTS `onewaylatencytable_aggr_template`;
CREATE TABLE IF NOT EXISTS `onewaylatencytable_aggr_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `perDatagram` char(1) NOT NULL,
 `sliceNum` tinyint(3) unsigned NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `minimum` int(10) NOT NULL,
 `maximum` int(10) NOT NULL,
 `average` float NOT NULL,
 `sum` float NOT NULL,
 `sumOfSquares` float NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`,`sliceNum`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 117/248

-- --

--
-- Table structure for table `onewaylatencytable_template`
--

DROP TABLE IF EXISTS `onewaylatencytable_template`;
CREATE TABLE IF NOT EXISTS `onewaylatencytable_template` (
 `flowID` varchar(200) NOT NULL,
 `timestamp` datetime NOT NULL,
 `interval` int(11) NOT NULL,
 `perDatagram` char(1) NOT NULL,
 `sliceNum` tinyint(3) unsigned NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `minimum` int(10) NOT NULL,
 `maximum` int(10) NOT NULL,
 `average` float NOT NULL,
 `sum` float NOT NULL,
 `sumOfSquares` float NOT NULL,
 PRIMARY KEY (`flowID`,`timestamp`,`sliceNum`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `onewaylosttable_template`
--

DROP TABLE IF EXISTS `onewaylosttable_template`;
CREATE TABLE IF NOT EXISTS `onewaylosttable_template` (
 `flowID` varchar(200) NOT NULL,
 `timestamp` datetime NOT NULL,
 `flowClass` mediumint(8) unsigned NOT NULL,
 `signature` varchar(20) NOT NULL,
 `size` int(10) unsigned NOT NULL,
 `fragmentNumber` int(10) unsigned NOT NULL,
 `hop1FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop1LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop2FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop2LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop3FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop3LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop4FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop4LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop5FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop5LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop6FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop6LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop7FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop7LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop8FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop8LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop9FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop9LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop10FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop10LastMSec` bigint(20) unsigned DEFAULT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 118/248

 `packetID` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`packetID`,`timestamp`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1
/*!50500 PARTITION BY RANGE COLUMNS(timestamp)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `onewaymisstable_template`
--

DROP TABLE IF EXISTS `onewaymisstable_template`;
CREATE TABLE IF NOT EXISTS `onewaymisstable_template` (
 `flowID` varchar(200) NOT NULL,
 `timestamp` datetime NOT NULL,
 `flowClass` mediumint(8) unsigned NOT NULL,
 `signature` varchar(20) NOT NULL,
 `size` int(10) unsigned NOT NULL,
 `fragmentNumber` int(10) unsigned NOT NULL,
 `hop1FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop1LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop2FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop2LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop3FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop3LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop4FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop4LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop5FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop5LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop6FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop6LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop7FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop7LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop8FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop8LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop9FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop9LastMSec` bigint(20) unsigned DEFAULT NULL,
 `hop10FirstMSec` bigint(20) unsigned DEFAULT NULL,
 `hop10LastMSec` bigint(20) unsigned DEFAULT NULL,
 `packetID` bigint(20) unsigned NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (`packetID`,`timestamp`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1
/*!50500 PARTITION BY RANGE COLUMNS(timestamp)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `tcpcontable_aggr_counters_template`
--

DROP TABLE IF EXISTS `tcpcontable_aggr_counters_template`;
CREATE TABLE IF NOT EXISTS `tcpcontable_aggr_counters_template` (
 `flowID` varchar(200) NOT NULL,
 `firstSeenTime` datetime NOT NULL,
 `ipBytesAB` bigint(20) DEFAULT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 119/248

 `ipBytesBA` bigint(20) DEFAULT NULL,
 `payloadBytesAB` bigint(20) DEFAULT NULL,
 `payloadBytesBA` bigint(20) DEFAULT NULL,
 `firstSegmentsPayloadAB` bigint(20) DEFAULT NULL,
 `firstSegmentsPayloadBA` bigint(20) DEFAULT NULL,
 `retransmittedPayloadBytesAB` bigint(20) DEFAULT NULL,
 `retransmittedPayloadBytesBA` bigint(20) DEFAULT NULL,
 `effectivePayloadAB` float DEFAULT NULL,
 `effectivePayloadBA` float DEFAULT NULL,
 `avgLastWindowAB` float DEFAULT NULL,
 `avgLastWindowBA` float DEFAULT NULL,
 `avgMaxWindowAB` float unsigned NOT NULL DEFAULT '0',
 `avgMaxWindowBA` float unsigned NOT NULL DEFAULT '0',
 `maxLastWindowAB` float DEFAULT NULL,
 `maxLastWindowBA` float DEFAULT NULL,
 PRIMARY KEY (`flowID`,`firstSeenTime`),
 KEY `firstSeenTime` (`firstSeenTime`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(firstSeenTime)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `tcpcontable_template`
--

DROP TABLE IF EXISTS `tcpcontable_template`;
CREATE TABLE IF NOT EXISTS `tcpcontable_template` (
 `flowID` varchar(200) NOT NULL,
 `firstSeenTime` datetime NOT NULL,
 `addressA` varchar(15) NOT NULL DEFAULT '',
 `portA` smallint(5) unsigned NOT NULL,
 `addressB` varchar(15) NOT NULL DEFAULT '',
 `portB` smallint(5) unsigned NOT NULL,
 `state` enum('SYN','DATA','FIN','CLOSED') DEFAULT NULL,
 `initiator` enum('A','B') DEFAULT NULL,
 `terminator` enum('A','B') DEFAULT NULL,
 `reset` enum('no','A','B','A+B') DEFAULT NULL,
 `tcpOptions` varchar(255) DEFAULT NULL,
 `probeInterface` varchar(100) NOT NULL DEFAULT '',
 `interfaceDescription` varchar(255) DEFAULT NULL,
 `segmentsAB` int(10) unsigned NOT NULL,
 `ipBytesAB` bigint(20) unsigned NOT NULL,
 `payloadBytesAB` bigint(20) unsigned NOT NULL,
 `firstSegmentsAB` int(10) unsigned NOT NULL,
 `firstSegmentsPayloadAB` bigint(20) unsigned NOT NULL,
 `retransmittedSegmentsAB` int(10) unsigned NOT NULL,
 `retransmittedPayloadBytesAB` int(10) unsigned NOT NULL,
 `emptyAckAB` int(10) unsigned NOT NULL,
 `wouldAckNextAB` int(10) unsigned NOT NULL,
 `firstWindowAB` smallint(5) unsigned NOT NULL,
 `lastWindowAB` int(10) unsigned NOT NULL,
 `maxWindowAB` int(10) unsigned NOT NULL,
 `lastSeenAB` datetime DEFAULT NULL,
 `durationAB` int(10) DEFAULT NULL,
 `segmentsBA` int(10) unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 120/248

 `ipBytesBA` bigint(20) unsigned NOT NULL,
 `payloadBytesBA` bigint(20) unsigned NOT NULL,
 `firstSegmentsBA` int(10) unsigned NOT NULL,
 `firstSegmentsPayloadBA` bigint(20) unsigned NOT NULL,
 `retransmittedSegmentsBA` int(10) unsigned NOT NULL,
 `retransmittedPayloadBytesBA` int(10) unsigned NOT NULL,
 `emptyAckBA` int(10) unsigned NOT NULL,
 `wouldAckNextBA` int(10) unsigned NOT NULL,
 `firstWindowBA` smallint(5) unsigned NOT NULL,
 `lastWindowBA` int(10) unsigned NOT NULL,
 `maxWindowBA` int(10) unsigned NOT NULL,
 `lastSeenBA` datetime DEFAULT NULL,
 `durationBA` int(10) DEFAULT NULL,
 PRIMARY KEY
(`flowID`,`firstSeenTime`,`addressA`,`portA`,`addressB`,`portB`,`probeInterface`
)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `tcpcontable_fix_template`
--

DROP TABLE IF EXISTS `tcpcontable_fix_template`;
CREATE TABLE IF NOT EXISTS `tcpcontable_fix_template` (
 `flowID` varchar(200) NOT NULL,
 `firstSeenTime` datetime NOT NULL,
 `addressA` varchar(15) NOT NULL DEFAULT '',
 `portA` smallint(5) unsigned NOT NULL,
 `addressB` varchar(15) NOT NULL DEFAULT '',
 `portB` smallint(5) unsigned NOT NULL,
 `state` enum('SYN','DATA','FIN','CLOSED') DEFAULT NULL,
 `initiator` enum('A','B') DEFAULT NULL,
 `terminator` enum('A','B') DEFAULT NULL,
 `reset` enum('no','A','B','A+B') DEFAULT NULL,
 `tcpOptions` varchar(255) DEFAULT NULL,
 `probeInterface` varchar(100) NOT NULL DEFAULT '',
 `interfaceDescription` varchar(255) DEFAULT NULL,
 `segmentsAB` int(10) unsigned NOT NULL,
 `ipBytesAB` bigint(20) unsigned NOT NULL,
 `payloadBytesAB` bigint(20) unsigned NOT NULL,
 `firstSegmentsAB` int(10) unsigned NOT NULL,
 `firstSegmentsPayloadAB` bigint(20) unsigned NOT NULL,
 `retransmittedSegmentsAB` int(10) unsigned NOT NULL,
 `retransmittedPayloadBytesAB` int(10) unsigned NOT NULL,
 `emptyAckAB` int(10) unsigned NOT NULL,
 `wouldAckNextAB` int(10) unsigned NOT NULL,
 `firstWindowAB` smallint(5) unsigned NOT NULL,
 `lastWindowAB` int(10) unsigned NOT NULL,
 `maxWindowAB` int(10) unsigned NOT NULL,
 `lastSeenAB` datetime DEFAULT NULL,
 `durationAB` int(10) DEFAULT NULL,
 `segmentsBA` int(10) unsigned NOT NULL,
 `ipBytesBA` bigint(20) unsigned NOT NULL,
 `payloadBytesBA` bigint(20) unsigned NOT NULL,
 `firstSegmentsBA` int(10) unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 121/248

 `firstSegmentsPayloadBA` bigint(20) unsigned NOT NULL,
 `retransmittedSegmentsBA` int(10) unsigned NOT NULL,
 `retransmittedPayloadBytesBA` int(10) unsigned NOT NULL,
 `emptyAckBA` int(10) unsigned NOT NULL,
 `wouldAckNextBA` int(10) unsigned NOT NULL,
 `firstWindowBA` smallint(5) unsigned NOT NULL,
 `lastWindowBA` int(10) unsigned NOT NULL,
 `maxWindowBA` int(10) unsigned NOT NULL,
 `lastSeenBA` datetime DEFAULT NULL,
 `durationBA` int(10) DEFAULT NULL,
 PRIMARY KEY
(`flowID`,`firstSeenTime`,`addressA`,`portA`,`addressB`,`portB`,`probeInterface`
)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(firstSeenTime)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `tcpcttable_aggr_template`
--

DROP TABLE IF EXISTS `tcpcttable_aggr_template`;
CREATE TABLE IF NOT EXISTS `tcpcttable_aggr_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_sum` float unsigned NOT NULL,
 `probeChecksumFailures_sumSquare` float unsigned NOT NULL,
 `probeChecksumFailures_min` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_max` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped_sum` float unsigned NOT NULL,
 `probeChecksumSkipped_sumSquare` float unsigned NOT NULL,
 `probeChecksumSkipped_min` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped_max` bigint(20) unsigned NOT NULL,
 `retransmits_sum` float unsigned NOT NULL,
 `retransmits_sumSquare` float unsigned NOT NULL,
 `retransmits_min` bigint(20) unsigned NOT NULL,
 `retransmits_max` bigint(20) unsigned NOT NULL,
 `latePackets_sum` float unsigned NOT NULL,
 `latePackets_sumSquare` float unsigned NOT NULL,
 `latePackets_min` int(10) unsigned NOT NULL,
 `latePackets_max` int(10) unsigned NOT NULL,
 `connectionStartCount_sum` float unsigned NOT NULL,
 `connectionStartCount_sumSquare` float unsigned NOT NULL,
 `connectionStartCount_min` int(10) unsigned NOT NULL,
 `connectionStartCount_max` int(10) unsigned NOT NULL,
 `connectionCleanCloseCount_sum` float unsigned NOT NULL,
 `connectionCleanCloseCount_sumSquare` float unsigned NOT NULL,
 `connectionCleanCloseCount_min` int(10) unsigned NOT NULL,
 `connectionCleanCloseCount_max` int(10) unsigned NOT NULL,
 `connectionDirtyCloseCount_sum` float unsigned NOT NULL,
 `connectionDirtyCloseCount_sumSquare` float unsigned NOT NULL,
 `connectionDirtyCloseCount_min` int(10) unsigned NOT NULL,
 `connectionDirtyCloseCount_max` int(10) unsigned NOT NULL,
 `ftpControlConnections_sum` float unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 122/248

 `ftpControlConnections_sumSquare` float unsigned NOT NULL,
 `ftpControlConnections_min` int(10) unsigned NOT NULL,
 `ftpControlConnections_max` int(10) unsigned NOT NULL,
 `ftpFileTransfers_sum` float unsigned NOT NULL,
 `ftpFileTransfers_sumSquare` float unsigned NOT NULL,
 `ftpFileTransfers_min` int(10) unsigned NOT NULL,
 `ftpFileTransfers_max` int(10) unsigned NOT NULL,
 `httpFileTransfers_sum` float unsigned NOT NULL,
 `httpFileTransfers_sumSquare` float unsigned NOT NULL,
 `httpFileTransfers_min` int(10) unsigned NOT NULL,
 `httpFileTransfers_max` int(10) unsigned NOT NULL,
 `otherConnections_sum` float unsigned NOT NULL,
 `otherConnections_sumSquare` float unsigned NOT NULL,
 `otherConnections_min` int(10) unsigned NOT NULL,
 `otherConnections_max` int(10) unsigned NOT NULL,
 `synPackets_sum` float unsigned NOT NULL,
 `synPackets_sumSquare` float unsigned NOT NULL,
 `synPackets_min` int(10) unsigned NOT NULL,
 `synPackets_max` int(10) unsigned NOT NULL,
 `synAckPackets_sum` float unsigned NOT NULL,
 `synAckPackets_sumSquare` float unsigned NOT NULL,
 `synAckPackets_min` int(10) unsigned NOT NULL,
 `synAckPackets_max` int(10) unsigned NOT NULL,
 `finPackets_sum` float unsigned NOT NULL,
 `finPackets_sumSquare` float unsigned NOT NULL,
 `finPackets_min` int(10) unsigned NOT NULL,
 `finPackets_max` int(10) unsigned NOT NULL,
 `resetPackets_sum` float unsigned NOT NULL,
 `resetPackets_sumSquare` float unsigned NOT NULL,
 `resetPackets_min` int(10) unsigned NOT NULL,
 `resetPackets_max` int(10) unsigned NOT NULL,
 `ftpCtlPacket_sum` float unsigned NOT NULL,
 `ftpCtlPacket_sumSquare` float unsigned NOT NULL,
 `ftpCtlPacket_min` int(10) unsigned NOT NULL,
 `ftpCtlPacket_max` int(10) unsigned NOT NULL,
 `ftpFileXferPacket_sum` float unsigned NOT NULL,
 `ftpFileXferPacket_sumSquare` float unsigned NOT NULL,
 `ftpFileXferPacket_min` int(10) unsigned NOT NULL,
 `ftpFileXferPacket_max` int(10) unsigned NOT NULL,
 `ftpDirListPackets_sum` float unsigned NOT NULL,
 `ftpDirListPackets_sumSquare` float unsigned NOT NULL,
 `ftpDirListPackets_min` int(10) unsigned NOT NULL,
 `ftpDirListPackets_max` int(10) unsigned NOT NULL,
 `httpPackets_sum` float unsigned NOT NULL,
 `httpPackets_sumSquare` float unsigned NOT NULL,
 `httpPackets_min` int(10) unsigned NOT NULL,
 `httpPackets_max` int(10) unsigned NOT NULL,
 `otherProtoPackets_sum` float unsigned NOT NULL,
 `otherProtoPackets_sumSquare` float unsigned NOT NULL,
 `otherProtoPackets_min` int(10) unsigned NOT NULL,
 `otherProtoPackets_max` int(10) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 123/248

--
-- Table structure for table `tcpcttable_template`
--

DROP TABLE IF EXISTS `tcpcttable_template`;
CREATE TABLE IF NOT EXISTS `tcpcttable_template` (
 `flowID` varchar(200) NOT NULL,
 `tcpTimestamp` datetime NOT NULL,
 `tcpInterval` int(10) unsigned NOT NULL,
 `probeChecksumFailures` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped` bigint(20) unsigned NOT NULL,
 `retransmits` bigint(20) unsigned NOT NULL,
 `latePackets` int(10) unsigned NOT NULL,
 `connectionStartCount` int(10) unsigned NOT NULL,
 `connectionCleanCloseCount` int(10) unsigned NOT NULL,
 `connectionDirtyCloseCount` int(10) unsigned NOT NULL,
 `ftpControlConnections` int(10) unsigned NOT NULL,
 `ftpFileTransfers` int(10) unsigned NOT NULL,
 `httpFileTransfers` int(10) unsigned NOT NULL,
 `otherConnections` int(10) unsigned NOT NULL,
 `synPackets` int(10) unsigned NOT NULL,
 `synAckPackets` int(10) unsigned NOT NULL,
 `finPackets` int(10) unsigned NOT NULL,
 `resetPackets` int(10) unsigned NOT NULL,
 `ftpCtlPacket` int(10) unsigned NOT NULL,
 `ftpFileXferPacket` int(10) unsigned NOT NULL,
 `ftpDirListPackets` int(10) unsigned NOT NULL,
 `httpPackets` int(10) unsigned NOT NULL,
 `otherProtoPackets` int(10) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`tcpTimestamp`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `twowaydelaytable_aggr_template`
--

DROP TABLE IF EXISTS `twowaydelaytable_aggr_template`;
CREATE TABLE IF NOT EXISTS `twowaydelaytable_aggr_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `withInitiator` char(1) NOT NULL,
 `sliceNum` tinyint(3) unsigned NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `minimum` int(10) NOT NULL,
 `maximum` int(10) NOT NULL,
 `average` float NOT NULL,
 `sum` float NOT NULL,
 `sumOfSquares` float NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`,`withInitiator`,`sliceNum`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 124/248

--
-- Table structure for table `twowaydelaytable_template`
--

DROP TABLE IF EXISTS `twowaydelaytable_template`;
CREATE TABLE IF NOT EXISTS `twowaydelaytable_template` (
 `flowID` varchar(200) NOT NULL,
 `timestamp` datetime NOT NULL,
 `interval` int(11) NOT NULL,
 `withInitiator` char(1) NOT NULL,
 `sliceNum` tinyint(3) unsigned NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `minimum` int(10) NOT NULL,
 `maximum` int(10) NOT NULL,
 `average` float NOT NULL,
 `sum` float NOT NULL,
 `sumOfSquares` float NOT NULL,
 PRIMARY KEY (`flowID`,`timestamp`,`withInitiator`,`sliceNum`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `udpcttable_aggr_template`
--

DROP TABLE IF EXISTS `udpcttable_aggr_template`;
CREATE TABLE IF NOT EXISTS `udpcttable_aggr_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_sum` float unsigned NOT NULL,
 `probeChecksumFailures_sumSquare` float unsigned NOT NULL,
 `probeChecksumFailures_min` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_max` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped_sum` float unsigned NOT NULL,
 `probeChecksumSkipped_sumSquare` float unsigned NOT NULL,
 `probeChecksumSkipped_min` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped_max` bigint(20) unsigned NOT NULL,
 `emptyDatagrams_sum` float unsigned NOT NULL,
 `emptyDatagrams_sumSquare` float unsigned NOT NULL,
 `emptyDatagrams_min` bigint(20) unsigned NOT NULL,
 `emptyDatagrams_max` bigint(20) unsigned NOT NULL,
 `snmpCount_sum` float unsigned NOT NULL,
 `snmpCount_sumSquare` float unsigned NOT NULL,
 `snmpCount_min` bigint(20) unsigned NOT NULL,
 `snmpCount_max` bigint(20) unsigned NOT NULL,
 `dnsCount_sum` float unsigned NOT NULL,
 `dnsCount_sumSquare` float unsigned NOT NULL,
 `dnsCount_min` bigint(20) unsigned NOT NULL,
 `dnsCount_max` bigint(20) unsigned NOT NULL,
 `ntpCount_sum` float unsigned NOT NULL,
 `ntpCount_sumSquare` float unsigned NOT NULL,
 `ntpCount_min` bigint(20) unsigned NOT NULL,
 `ntpCount_max` bigint(20) unsigned NOT NULL,
 `otherServiceCount_sum` float unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 125/248

 `otherServiceCount_sumSquare` float unsigned NOT NULL,
 `otherServiceCount_min` bigint(20) unsigned NOT NULL,
 `otherServiceCount_max` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE COLUMNS(rangeStart)
(PARTITION pFuture VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;

-- --

--
-- Table structure for table `udpcttable_template`
--

DROP TABLE IF EXISTS `udpcttable_template`;
CREATE TABLE IF NOT EXISTS `udpcttable_template` (
 `flowID` varchar(200) NOT NULL,
 `udpTimestamp` datetime NOT NULL,
 `udpInterval` int(10) unsigned NOT NULL,
 `probeChecksumFailures` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped` bigint(20) unsigned NOT NULL,
 `emptyDatagrams` bigint(20) unsigned NOT NULL,
 `snmpCount` bigint(20) unsigned NOT NULL,
 `dnsCount` bigint(20) unsigned NOT NULL,
 `ntpCount` bigint(20) unsigned NOT NULL,
 `otherServiceCount` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`udpTimestamp`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

3.1.2 Temporary Input Tables Templates
The template structure of the temporary input tables, for bulk load, is given below:

--
-- Table structure for table `ftpcttable_aggr_tmp_template`
--

DROP TABLE IF EXISTS `ftpcttable_aggr_tmp_template`;
CREATE TABLE IF NOT EXISTS `ftpcttable_aggr_tmp_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(10) unsigned NOT NULL,
 `startedSessions_sum` float unsigned NOT NULL,
 `startedSessions_sumSquare` float unsigned NOT NULL,
 `startedSessions_min` int(10) unsigned NOT NULL,
 `startedSessions_max` int(10) unsigned NOT NULL,
 `cleanClosedSession_sum` float unsigned NOT NULL,
 `cleanClosedSession_sumSquare` float unsigned NOT NULL,
 `cleanClosedSession_min` int(10) unsigned NOT NULL,
 `cleanClosedSession_max` int(10) unsigned NOT NULL,
 `dirtyClosedSessions_sum` float unsigned NOT NULL,
 `dirtyClosedSessions_sumSquare` float unsigned NOT NULL,
 `dirtyClosedSessions_min` int(10) unsigned NOT NULL,
 `dirtyClosedSessions_max` int(10) unsigned NOT NULL,
 `encryptedSessions_sum` float unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 126/248

 `encryptedSessions_sumSquare` float unsigned NOT NULL,
 `encryptedSessions_min` int(10) unsigned NOT NULL,
 `encryptedSessions_max` int(10) unsigned NOT NULL,
 `noLoginSessions_sum` float unsigned NOT NULL,
 `noLoginSessions_sumSquare` float unsigned NOT NULL,
 `noLoginSessions_min` int(10) unsigned NOT NULL,
 `noLoginSessions_max` int(10) unsigned NOT NULL,
 `noCmdSessions_sum` float unsigned NOT NULL,
 `noCmdSessions_sumSquare` float unsigned NOT NULL,
 `noCmdSessions_min` int(10) unsigned NOT NULL,
 `noCmdSessions_max` int(10) unsigned NOT NULL,
 `noFileXferSessions_sum` float unsigned NOT NULL,
 `noFileXferSessions_sumSquare` float unsigned NOT NULL,
 `noFileXferSessions_min` int(10) unsigned NOT NULL,
 `noFileXferSessions_max` int(10) unsigned NOT NULL,
 `fileXferSessions_sum` float unsigned NOT NULL,
 `fileXferSessions_sumSquare` float unsigned NOT NULL,
 `fileXferSessions_min` int(10) unsigned NOT NULL,
 `fileXferSessions_max` int(10) unsigned NOT NULL,
 `activeConnections_sum` float unsigned NOT NULL,
 `activeConnections_sumSquare` float unsigned NOT NULL,
 `activeConnections_min` int(10) unsigned NOT NULL,
 `activeConnections_max` int(10) unsigned NOT NULL,
 `passiveConnections_sum` float unsigned NOT NULL,
 `passiveConnections_sumSquare` float unsigned NOT NULL,
 `passiveConnections_min` int(10) unsigned NOT NULL,
 `passiveConnections_max` int(10) unsigned NOT NULL,
 `dirListCount_sum` float unsigned NOT NULL,
 `dirListCount_sumSquare` float unsigned NOT NULL,
 `dirListCount_min` int(10) unsigned NOT NULL,
 `dirListCount_max` int(10) unsigned NOT NULL,
 `fileGetOK_sum` float unsigned NOT NULL,
 `fileGetOK_sumSquare` float unsigned NOT NULL,
 `fileGetOK_min` int(10) unsigned NOT NULL,
 `fileGetOK_max` int(10) unsigned NOT NULL,
 `filePutOK_sum` float unsigned NOT NULL,
 `filePutOK_sumSquare` float unsigned NOT NULL,
 `filePutOK_min` int(10) unsigned NOT NULL,
 `filePutOK_max` int(10) unsigned NOT NULL,
 `fileGetFailures_sum` float unsigned NOT NULL,
 `fileGetFailures_sumSquare` float unsigned NOT NULL,
 `fileGetFailures_min` int(10) unsigned NOT NULL,
 `fileGetFailures_max` int(10) unsigned NOT NULL,
 `filePutFailures_sum` float unsigned NOT NULL,
 `filePutFailures_sumSquare` float unsigned NOT NULL,
 `filePutFailures_min` int(10) unsigned NOT NULL,
 `filePutFailures_max` int(10) unsigned NOT NULL,
 `xferRestarts_sum` float unsigned NOT NULL,
 `xferRestarts_sumSquare` float unsigned NOT NULL,
 `xferRestarts_min` int(10) unsigned NOT NULL,
 `xferRestarts_max` int(10) unsigned NOT NULL,
 `xferAborts_sum` float unsigned NOT NULL,
 `xferAborts_sumSquare` float unsigned NOT NULL,
 `xferAborts_min` int(10) unsigned NOT NULL,
 `xferAborts_max` int(10) unsigned NOT NULL,
 `failedLogins_sum` float unsigned NOT NULL,
 `failedLogins_sumSquare` float unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 127/248

 `failedLogins_min` int(10) unsigned NOT NULL,
 `failedLogins_max` int(10) unsigned NOT NULL,
 `cipherFailures_sum` float unsigned NOT NULL,
 `cipherFailures_sumSquare` float unsigned NOT NULL,
 `cipherFailures_min` int(10) unsigned NOT NULL,
 `cipherFailures_max` int(10) unsigned NOT NULL,
 `commandFailures_sum` float unsigned NOT NULL,
 `commandFailures_sumSquare` float unsigned NOT NULL,
 `commandFailures_min` int(10) unsigned NOT NULL,
 `commandFailures_max` int(10) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`),
 KEY `rangeStart` (`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `icmpcttable_aggr_tmp_template`
--

DROP TABLE IF EXISTS `icmpcttable_aggr_tmp_template`;
CREATE TABLE IF NOT EXISTS `icmpcttable_aggr_tmp_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_sum` float unsigned NOT NULL,
 `probeChecksumFailures_sumSquare` float unsigned NOT NULL,
 `probeChecksumFailures_min` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_max` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped_sum` float unsigned NOT NULL,
 `probeChecksumSkipped_sumSquare` float unsigned NOT NULL,
 `probeChecksumSkipped_min` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped_max` bigint(20) unsigned NOT NULL,
 `echoRequests_sum` float unsigned NOT NULL,
 `echoRequests_sumSquare` float unsigned NOT NULL,
 `echoRequests_min` bigint(20) unsigned NOT NULL,
 `echoRequests_max` bigint(20) unsigned NOT NULL,
 `echoReplies_sum` float unsigned NOT NULL,
 `echoReplies_sumSquare` float unsigned NOT NULL,
 `echoReplies_min` bigint(20) unsigned NOT NULL,
 `echoReplies_max` bigint(20) unsigned NOT NULL,
 `fragmentationNeeded_sum` float unsigned NOT NULL,
 `fragmentationNeeded_sumSquare` float unsigned NOT NULL,
 `fragmentationNeeded_min` bigint(20) unsigned NOT NULL,
 `fragmentationNeeded_max` bigint(20) unsigned NOT NULL,
 `sourceQuench_sum` float unsigned NOT NULL,
 `sourceQuench_sumSquare` float unsigned NOT NULL,
 `sourceQuench_min` bigint(20) unsigned NOT NULL,
 `sourceQuench_max` bigint(20) unsigned NOT NULL,
 `timeToLiveExpired_sum` float unsigned NOT NULL,
 `timeToLiveExpired_sumSquare` float unsigned NOT NULL,
 `timeToLiveExpired_min` bigint(20) unsigned NOT NULL,
 `timeToLiveExpired_max` bigint(20) unsigned NOT NULL,
 `reassemblyTimeout_sum` float unsigned NOT NULL,
 `reassemblyTimeout_sumSquare` float unsigned NOT NULL,
 `reassemblyTimeout_min` bigint(20) unsigned NOT NULL,
 `reassemblyTimeout_max` bigint(20) unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 128/248

 `unReached_sum` float unsigned NOT NULL,
 `unReached_sumSquare` float unsigned NOT NULL,
 `unReached_min` bigint(20) unsigned NOT NULL,
 `unReached_max` bigint(20) unsigned NOT NULL,
 `redirect_sum` float unsigned NOT NULL,
 `redirect_sumSquare` float unsigned NOT NULL,
 `redirect_min` bigint(20) unsigned NOT NULL,
 `redirect_max` bigint(20) unsigned NOT NULL,
 `otherIcmpErrors_sum` float unsigned NOT NULL,
 `otherIcmpErrors_sumSquare` float unsigned NOT NULL,
 `otherIcmpErrors_min` bigint(20) unsigned NOT NULL,
 `otherIcmpErrors_max` bigint(20) unsigned NOT NULL,
 `otherIcmpInfoPackets_sum` float unsigned NOT NULL,
 `otherIcmpInfoPackets_sumSquare` float unsigned NOT NULL,
 `otherIcmpInfoPackets_min` bigint(20) unsigned NOT NULL,
 `otherIcmpInfoPackets_max` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `ipcttable_aggr_tmp_template`
--

DROP TABLE IF EXISTS `ipcttable_aggr_tmp_template`;
CREATE TABLE IF NOT EXISTS `ipcttable_aggr_tmp_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `totalBytes_sum` float unsigned NOT NULL,
 `totalBytes_sumSquare` float unsigned NOT NULL,
 `totalBytes_min` bigint(20) unsigned NOT NULL,
 `totalBytes_max` bigint(20) unsigned NOT NULL,
 `probeReassemblyTimeout_sum` float unsigned NOT NULL,
 `probeReassemblyTimeout_sumSquare` float unsigned NOT NULL,
 `probeReassemblyTimeout_min` bigint(20) unsigned NOT NULL,
 `probeReassemblyTimeout_max` bigint(20) unsigned NOT NULL,
 `probeFragmentOverlap_sum` float unsigned NOT NULL,
 `probeFragmentOverlap_sumSquare` float unsigned NOT NULL,
 `probeFragmentOverlap_min` bigint(20) unsigned NOT NULL,
 `probeFragmentOverlap_max` bigint(20) unsigned NOT NULL,
 `icmpCount_sum` float unsigned NOT NULL,
 `icmpCount_sumSquare` float unsigned NOT NULL,
 `icmpCount_min` bigint(20) unsigned NOT NULL,
 `icmpCount_max` bigint(20) unsigned NOT NULL,
 `udpCount_sum` float unsigned NOT NULL,
 `udpCount_sumSquare` float unsigned NOT NULL,
 `udpCount_min` bigint(20) unsigned NOT NULL,
 `udpCount_max` bigint(20) unsigned NOT NULL,
 `tcpCount_sum` float unsigned NOT NULL,
 `tcpCount_sumSquare` float unsigned NOT NULL,
 `tcpCount_min` bigint(20) unsigned NOT NULL,
 `tcpCount_max` bigint(20) unsigned NOT NULL,
 `otherProtocolCount_sum` float unsigned NOT NULL,
 `otherProtocolCount_sumSquare` float unsigned NOT NULL,
 `otherProtocolCount_min` bigint(20) unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 129/248

 `otherProtocolCount_max` bigint(20) unsigned NOT NULL,
 `bitrate` float unsigned NOT NULL DEFAULT '0',
 `ftpPassiveEstimatedBytes` float unsigned NOT NULL DEFAULT '0',
 PRIMARY KEY (`flowID`,`rangeStart`),
 KEY `rangeStart` (`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `ipsztable_aggr_tmp_template`
--

DROP TABLE IF EXISTS `ipsztable_aggr_tmp_template`;
CREATE TABLE IF NOT EXISTS `ipsztable_aggr_tmp_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `lower` smallint(5) unsigned NOT NULL,
 `upper` smallint(5) unsigned NOT NULL,
 `minimum` smallint(5) unsigned NOT NULL,
 `maximum` smallint(5) unsigned NOT NULL,
 `average` float unsigned NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `sum` float unsigned NOT NULL,
 `sumOfSquares` float unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`,`lower`,`upper`),
 KEY `rangeStart` (`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `netflowtable_aggr_tmp_template`
--

DROP TABLE IF EXISTS `netflowtable_aggr_tmp_template`;
CREATE TABLE IF NOT EXISTS `netflowtable_aggr_tmp_template` (
 `interface_` int(11) NOT NULL,
 `sIP` varchar(18) NOT NULL,
 `dIP` varchar(18) NOT NULL,
 `pro` varchar(20) NOT NULL,
 `sPort` int(10) NOT NULL,
 `dPort` int(10) NOT NULL,
 `bitRate` float unsigned NOT NULL,
 `packets` int(10) unsigned DEFAULT NULL,
 `bytes` bigint(20) unsigned DEFAULT NULL,
 `rangeStart` datetime NOT NULL,
 PRIMARY KEY (`interface_`,`sIP`,`dIP`,`pro`,`sPort`,`dPort`,`rangeStart`),
 KEY `sPort` (`sPort`,`dPort`),
 KEY `rangeStart` (`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `onewaycttable_aggr_tmp_template`
--

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 130/248

DROP TABLE IF EXISTS `onewaycttable_aggr_tmp_template`;
CREATE TABLE IF NOT EXISTS `onewaycttable_aggr_tmp_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `lost_sum` float unsigned NOT NULL,
 `lost_sumSquare` float unsigned NOT NULL,
 `lost_min` bigint(20) unsigned NOT NULL,
 `lost_max` bigint(20) unsigned NOT NULL,
 `partlyMissed_sum` float unsigned NOT NULL,
 `partlyMissed_sumSquare` float unsigned NOT NULL,
 `partlyMissed_min` bigint(20) unsigned NOT NULL,
 `partlyMissed_max` bigint(20) unsigned NOT NULL,
 `dropped_sum` float unsigned NOT NULL,
 `dropped_sumSquare` float unsigned NOT NULL,
 `dropped_min` bigint(20) unsigned NOT NULL,
 `dropped_max` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `onewaylatencytable_aggr_tmp_template`
--

DROP TABLE IF EXISTS `onewaylatencytable_aggr_tmp_template`;
CREATE TABLE IF NOT EXISTS `onewaylatencytable_aggr_tmp_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `perDatagram` char(1) NOT NULL,
 `sliceNum` tinyint(3) unsigned NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `minimum` int(10) NOT NULL,
 `maximum` int(10) NOT NULL,
 `average` float NOT NULL,
 `sum` float NOT NULL,
 `sumOfSquares` float NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`,`sliceNum`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `tcpcontable_aggr_counters_tmp_template`
--

DROP TABLE IF EXISTS `tcpcontable_aggr_counters_tmp_template`;
CREATE TABLE IF NOT EXISTS `tcpcontable_aggr_counters_tmp_template` (
 `flowID` varchar(200) NOT NULL,
 `firstSeenTime` datetime NOT NULL,
 `ipBytesAB` bigint(20) DEFAULT NULL,
 `ipBytesBA` bigint(20) DEFAULT NULL,
 `payloadBytesAB` bigint(20) DEFAULT NULL,
 `payloadBytesBA` bigint(20) DEFAULT NULL,
 `firstSegmentsPayloadAB` bigint(20) DEFAULT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 131/248

 `firstSegmentsPayloadBA` bigint(20) DEFAULT NULL,
 `retransmittedPayloadBytesAB` bigint(20) DEFAULT NULL,
 `retransmittedPayloadBytesBA` bigint(20) DEFAULT NULL,
 `effectivePayloadAB` float DEFAULT NULL,
 `effectivePayloadBA` float DEFAULT NULL,
 `avgLastWindowAB` float DEFAULT NULL,
 `avgLastWindowBA` float DEFAULT NULL,
 `avgMaxWindowAB` float unsigned NOT NULL DEFAULT '0',
 `avgMaxWindowBA` float unsigned NOT NULL DEFAULT '0',
 `maxLastWindowAB` float DEFAULT NULL,
 `maxLastWindowBA` float DEFAULT NULL,
 PRIMARY KEY (`flowID`,`firstSeenTime`),
 KEY `firstSeenTime` (`firstSeenTime`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `udpcttable_aggr_tmp_template`
--

DROP TABLE IF EXISTS `udpcttable_aggr_tmp_template`;
CREATE TABLE IF NOT EXISTS `udpcttable_aggr_tmp_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_sum` float unsigned NOT NULL,
 `probeChecksumFailures_sumSquare` float unsigned NOT NULL,
 `probeChecksumFailures_min` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_max` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped_sum` float unsigned NOT NULL,
 `probeChecksumSkipped_sumSquare` float unsigned NOT NULL,
 `probeChecksumSkipped_min` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped_max` bigint(20) unsigned NOT NULL,
 `emptyDatagrams_sum` float unsigned NOT NULL,
 `emptyDatagrams_sumSquare` float unsigned NOT NULL,
 `emptyDatagrams_min` bigint(20) unsigned NOT NULL,
 `emptyDatagrams_max` bigint(20) unsigned NOT NULL,
 `snmpCount_sum` float unsigned NOT NULL,
 `snmpCount_sumSquare` float unsigned NOT NULL,
 `snmpCount_min` bigint(20) unsigned NOT NULL,
 `snmpCount_max` bigint(20) unsigned NOT NULL,
 `dnsCount_sum` float unsigned NOT NULL,
 `dnsCount_sumSquare` float unsigned NOT NULL,
 `dnsCount_min` bigint(20) unsigned NOT NULL,
 `dnsCount_max` bigint(20) unsigned NOT NULL,
 `ntpCount_sum` float unsigned NOT NULL,
 `ntpCount_sumSquare` float unsigned NOT NULL,
 `ntpCount_min` bigint(20) unsigned NOT NULL,
 `ntpCount_max` bigint(20) unsigned NOT NULL,
 `otherServiceCount_sum` float unsigned NOT NULL,
 `otherServiceCount_sumSquare` float unsigned NOT NULL,
 `otherServiceCount_min` bigint(20) unsigned NOT NULL,
 `otherServiceCount_max` bigint(20) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 132/248

-- --

--
-- Table structure for table `twowaydelaytable_aggr_tmp_template`
--

DROP TABLE IF EXISTS `twowaydelaytable_aggr_tmp_template`;
CREATE TABLE IF NOT EXISTS `twowaydelaytable_aggr_tmp_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `withInitiator` char(1) NOT NULL,
 `sliceNum` tinyint(3) unsigned NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `minimum` int(10) NOT NULL,
 `maximum` int(10) NOT NULL,
 `average` float NOT NULL,
 `sum` float NOT NULL,
 `sumOfSquares` float NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`,`withInitiator`,`sliceNum`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table `tcpcttable_aggr_tmp_template`
--

DROP TABLE IF EXISTS `tcpcttable_aggr_tmp_template`;
CREATE TABLE IF NOT EXISTS `tcpcttable_aggr_tmp_template` (
 `flowID` varchar(200) NOT NULL,
 `rangeStart` datetime NOT NULL,
 `population` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_sum` float unsigned NOT NULL,
 `probeChecksumFailures_sumSquare` float unsigned NOT NULL,
 `probeChecksumFailures_min` bigint(20) unsigned NOT NULL,
 `probeChecksumFailures_max` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped_sum` float unsigned NOT NULL,
 `probeChecksumSkipped_sumSquare` float unsigned NOT NULL,
 `probeChecksumSkipped_min` bigint(20) unsigned NOT NULL,
 `probeChecksumSkipped_max` bigint(20) unsigned NOT NULL,
 `retransmits_sum` float unsigned NOT NULL,
 `retransmits_sumSquare` float unsigned NOT NULL,
 `retransmits_min` bigint(20) unsigned NOT NULL,
 `retransmits_max` bigint(20) unsigned NOT NULL,
 `latePackets_sum` float unsigned NOT NULL,
 `latePackets_sumSquare` float unsigned NOT NULL,
 `latePackets_min` int(10) unsigned NOT NULL,
 `latePackets_max` int(10) unsigned NOT NULL,
 `connectionStartCount_sum` float unsigned NOT NULL,
 `connectionStartCount_sumSquare` float unsigned NOT NULL,
 `connectionStartCount_min` int(10) unsigned NOT NULL,
 `connectionStartCount_max` int(10) unsigned NOT NULL,
 `connectionCleanCloseCount_sum` float unsigned NOT NULL,
 `connectionCleanCloseCount_sumSquare` float unsigned NOT NULL,
 `connectionCleanCloseCount_min` int(10) unsigned NOT NULL,
 `connectionCleanCloseCount_max` int(10) unsigned NOT NULL,
 `connectionDirtyCloseCount_sum` float unsigned NOT NULL,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 133/248

 `connectionDirtyCloseCount_sumSquare` float unsigned NOT NULL,
 `connectionDirtyCloseCount_min` int(10) unsigned NOT NULL,
 `connectionDirtyCloseCount_max` int(10) unsigned NOT NULL,
 `ftpControlConnections_sum` float unsigned NOT NULL,
 `ftpControlConnections_sumSquare` float unsigned NOT NULL,
 `ftpControlConnections_min` int(10) unsigned NOT NULL,
 `ftpControlConnections_max` int(10) unsigned NOT NULL,
 `ftpFileTransfers_sum` float unsigned NOT NULL,
 `ftpFileTransfers_sumSquare` float unsigned NOT NULL,
 `ftpFileTransfers_min` int(10) unsigned NOT NULL,
 `ftpFileTransfers_max` int(10) unsigned NOT NULL,
 `httpFileTransfers_sum` float unsigned NOT NULL,
 `httpFileTransfers_sumSquare` float unsigned NOT NULL,
 `httpFileTransfers_min` int(10) unsigned NOT NULL,
 `httpFileTransfers_max` int(10) unsigned NOT NULL,
 `otherConnections_sum` float unsigned NOT NULL,
 `otherConnections_sumSquare` float unsigned NOT NULL,
 `otherConnections_min` int(10) unsigned NOT NULL,
 `otherConnections_max` int(10) unsigned NOT NULL,
 `synPackets_sum` float unsigned NOT NULL,
 `synPackets_sumSquare` float unsigned NOT NULL,
 `synPackets_min` int(10) unsigned NOT NULL,
 `synPackets_max` int(10) unsigned NOT NULL,
 `synAckPackets_sum` float unsigned NOT NULL,
 `synAckPackets_sumSquare` float unsigned NOT NULL,
 `synAckPackets_min` int(10) unsigned NOT NULL,
 `synAckPackets_max` int(10) unsigned NOT NULL,
 `finPackets_sum` float unsigned NOT NULL,
 `finPackets_sumSquare` float unsigned NOT NULL,
 `finPackets_min` int(10) unsigned NOT NULL,
 `finPackets_max` int(10) unsigned NOT NULL,
 `resetPackets_sum` float unsigned NOT NULL,
 `resetPackets_sumSquare` float unsigned NOT NULL,
 `resetPackets_min` int(10) unsigned NOT NULL,
 `resetPackets_max` int(10) unsigned NOT NULL,
 `ftpCtlPacket_sum` float unsigned NOT NULL,
 `ftpCtlPacket_sumSquare` float unsigned NOT NULL,
 `ftpCtlPacket_min` int(10) unsigned NOT NULL,
 `ftpCtlPacket_max` int(10) unsigned NOT NULL,
 `ftpFileXferPacket_sum` float unsigned NOT NULL,
 `ftpFileXferPacket_sumSquare` float unsigned NOT NULL,
 `ftpFileXferPacket_min` int(10) unsigned NOT NULL,
 `ftpFileXferPacket_max` int(10) unsigned NOT NULL,
 `ftpDirListPackets_sum` float unsigned NOT NULL,
 `ftpDirListPackets_sumSquare` float unsigned NOT NULL,
 `ftpDirListPackets_min` int(10) unsigned NOT NULL,
 `ftpDirListPackets_max` int(10) unsigned NOT NULL,
 `httpPackets_sum` float unsigned NOT NULL,
 `httpPackets_sumSquare` float unsigned NOT NULL,
 `httpPackets_min` int(10) unsigned NOT NULL,
 `httpPackets_max` int(10) unsigned NOT NULL,
 `otherProtoPackets_sum` float unsigned NOT NULL,
 `otherProtoPackets_sumSquare` float unsigned NOT NULL,
 `otherProtoPackets_min` int(10) unsigned NOT NULL,
 `otherProtoPackets_max` int(10) unsigned NOT NULL,
 PRIMARY KEY (`flowID`,`rangeStart`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 134/248

-- --

--
-- Table structure for table `flowtable_template`
--

3.2 DATABASE STORED PROCEDURES

3.2.1 Protocol Details Aggregates Update
Several SQL stored procedures are created to implement routines invoked by the loading
and aggregating script (see section 3.4 below).

Following routines, defined in the `trafMon_template` database, permit to aggregate
just loaded raw input data to update/complete the detailed per minute aggregate as well as
the further aggregates per hour and per day:

CREATE PROCEDURE `Aggr_ftpcttable_first_level`(IN `_dbName` VARCHAR(64))
CREATE PROCEDURE `Aggr_ftpcttable_next_level`(IN `_dbName` VARCHAR(64),
 IN `_srcTableSuffix` VARCHAR(25), IN `_dstTableSuffix` VARCHAR(25),
 IN `_aggrInterval` INT)
CREATE PROCEDURE `Aggr_icmpcttable_first_level`(IN `_dbName` VARCHAR(64))
CREATE PROCEDURE `Aggr_icmpcttable_next_level`(IN `_dbName` VARCHAR(64),
 IN `_srcTableSuffix` VARCHAR(25), IN `_dstTableSuffix` VARCHAR(25),
 IN `_aggrInterval` INT)
CREATE PROCEDURE `Aggr_ipcttable_first_level`(IN `_dbName` VARCHAR(64))
CREATE PROCEDURE `Aggr_ipcttable_next_level`(IN `_dbName` VARCHAR(64),
 IN `_srcTableSuffix` VARCHAR(25), IN `_dstTableSuffix` VARCHAR(25),
 IN `_aggrInterval` INT)
CREATE PROCEDURE `Aggr_ipsztable_first_level`(IN `_dbName` VARCHAR(64))
CREATE PROCEDURE `Aggr_ipsztable_next_level`(IN `_dbName` VARCHAR(64),
 IN `_srcTableSuffix` VARCHAR(25), IN `_dstTableSuffix` VARCHAR(25),
 IN `_aggrInterval` INT)
CREATE PROCEDURE `Aggr_onewaycttable _first_level`(IN `_dbName` VARCHAR(64))
CREATE PROCEDURE `Aggr_onewaycttable _next_level` (IN `_dbName` VARCHAR(64),
 IN `_srcTableSuffix` VARCHAR(25), IN `_dstTableSuffix` VARCHAR(25),
 IN `_aggrInterval` INT)
CREATE PROCEDURE `Aggr_onewaylatencytable_first_level`(IN `_dbName` VARCHAR(64))
CREATE PROCEDURE `Aggr_onewaylatencytable_next_level` (IN `_dbName` VARCHAR(64),
 IN `_srcTableSuffix` VARCHAR(25), IN `_dstTableSuffix` VARCHAR(25),
 IN `_aggrInterval` INT)
CREATE PROCEDURE `Aggr_tcpcontable_counters_first_level`(
 IN `_dbName` VARCHAR(64))
CREATE PROCEDURE `Aggr_tcpcontable_counters_next_level`(
 IN `_dbName` VARCHAR(64),IN `srcTableSuffix` VARCHAR(25),
 IN `dstTableSuffix` VARCHAR(25), IN `aggrInterval` INT)
CREATE PROCEDURE `Aggr_tcpcttable_first_level`(IN `_dbName` VARCHAR(64))

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 135/248

CREATE PROCEDURE `Aggr_tcpcttable_next_level`(IN `_dbName` VARCHAR(64),
 IN `_dbName` VARCHAR(64),IN `srcTableSuffix` VARCHAR(25),
 IN `dstTableSuffix` VARCHAR(25), IN `aggrInterval` INT)
CREATE PROCEDURE `Aggr_twowaydelaytable_first_level`(IN `_dbName` VARCHAR(64))
CREATE PROCEDURE `Aggr_twowaydelaytable_next_level`(IN `_dbName` VARCHAR(64),
 IN `_dbName` VARCHAR(64),IN `srcTableSuffix` VARCHAR(25),
 IN `dstTableSuffix` VARCHAR(25), IN `aggrInterval` INT)
CREATE PROCEDURE `Aggr_udpcttable_first_level`(IN `_dbName` VARCHAR(64))
CREATE PROCEDURE `Aggr_udpcttable_next_level`(IN `_dbName` VARCHAR(64),
 IN `_dbName` VARCHAR(64),IN `srcTableSuffix` VARCHAR(25),
 IN `dstTableSuffix` VARCHAR(25), IN `aggrInterval` INT)

PROCESS:

Those primary aggregation routines Aggr_xxxtable_first_level() perform a first
aggregation pass, at one minute granularity, from temporary table xxxtable_tmp into
temporary aggregate table xxxtable_aggr_1m_tmp.

It then UPDATE the records in permanent table xxxtable_aggr_1m that INNER JOINs
those in temporary aggregate table xxxtable_aggr_1m_tmp (same
FlowID/rangeStart).

After that, it INSERT the other records from temporary aggregate table
xxxtable_aggr_1m_tmp which do not exist yet (LEFT JOIN gives NULL for
corresponding FlowID/rangeStart), into permanent table xxxtable_aggr_1m.

Finally further aggregation is obtained (the same way) via

• CALL Aggr_ftpcttable_next_level('1m','1h',3600), for permanent table
ftpcttable_aggr_1h

• CALL Aggr_ftpcttable_next_level('1h','1d',3600), for permanent table
ftpcttable_aggr_1d

Note that for the optional NetFlow data, the process is slightly different:
As all the data about 1 hour (or successive hours) are systematically (re-)extracted
from the SiLK log files. Newly reported NetFlow records could provide flow volumes
over minute slots in the past that were not yet present, while the prior loaded data
are expected to be present again in the fresh data.

Hence the PROCEDURE `Aggr_netflowtable_first_level`(IN `_dbName`
VARCHAR(64)) performs a REPLACE INTO netflowtable_aggr_1m, overwriting pre-
aggregated data for the target 1 minute time slots.

And the next level PROCEDURE `Aggr_netflowtable_next_level`(IN `_dbName`
VARCHAR(64), IN `_dstTableSuffix` VARCHAR(25), IN `_aggrInterval`
INT) aggregates directly from the 1 minute TEMPORARY TABLE
netflowtable_tmp_aggr. Hence the lack of srcTableSuffix argument.

• Get_update_ip_info_address

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 136/248

CREATE PROCEDURE `Get_update_ip_info_Addresses`(IN `_dbName` VARCHAR(64))

This procedure retrieves the newly found IP addresses in order for the
trafMon_updateIpInfo.py script to query the DNS server and update only the new
addresses. It call was first migrated to trafMon_loader.py, to avoid locking and table
access timeout; then it has been replaced there by a more efficient code, focusing only at
the freshly loaded IP addresses.

3.2.2 Partitioning Process
During the aggregation process, a partition for the newly inserted data is also created if
needed. The period that a partition covers depends on the granularity of the table: 1m
aggregation tables have partitions for each day of data, 1h tables have partitions for each
8 days of data and 1d tables for each 31 days of data.

Each kind of aggregation table (1m, 1h and 1d) has its own stored procedure to create a
new partition: partition_create is used for the 1m tables, partition_create_1h for the 1h
tables and partition_create_1d for the 1d tables:

CREATE DEFINER=`root`@`localhost` PROCEDURE `partition_create`(`SCHEMANAME` VARC
HAR(64), `TABLENAME` VARCHAR(64), `REQUESTED_DATE` INT)
CREATE DEFINER=`root`@`localhost` PROCEDURE `partition_create_1h`(`SCHEMANAME` V
ARCHAR(64), `TABLENAME` VARCHAR(64), `REQUESTED_DATE` INT)
CREATE DEFINER=`root`@`localhost` PROCEDURE `partition_create_1d`(`SCHEMANAME` V
ARCHAR(64), `TABLENAME` VARCHAR(64), `REQUESTED_DATE` INT)

A stored procedure manages database clean-up by dropping partitions older than a given
number of days, using the following procedures:

CREATE DEFINER=`root`@`localhost` PROCEDURE `partition_drop`(`SCHEMANAME` VARCHA
R(64), `TABLENAME` VARCHAR(64), `NB_DAYS` INT)

3.2.3 Data Preparation Procedures
• Ipct_tcp_no_match_update

CREATE PROCEDURE `Ipct_tcp_no_match_update`(IN `_dbName` VARCHAR(64))

This procedure is now replaced by Update_ftp_data_in_ipcttable()

Maps volume of actual FTP data transfer connections to the flow corresponding to the FTP
control connections

• Update_ftp_data_in_ipcttable
CREATE PROCEDURE `update_ftp_data_in_ipcttable`(IN `_dbName` VARCHAR(64),
 `_rangeStart` VARCHAR(100), `_rangeEnd` VARCHAR(100))

Invoked by crontab, once per day just before Aggr_activityvolumetable_first_level(), to
count Passive data connections as part of their FTP flows.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 137/248

Sum-up the volume of FTP passive transfers as part of the corresponding FTP flow
identified by its control connection. This procedure is called to update a column,
ftpPassiveEstimatedBytes, in the ipcttable_aggr tables. This column contains, for each
flow, the quantity of bytes which belongs to FTP passive transfers.
This information is complex to obtain while generating a report, so it is calculated once per
day by this procedure and inserted in the corresponding tables to make sure the correct
amount of FTP bytes are reported in a fast and easy way.

• Aggr_ipcttable_activity
CREATE PROCEDURE `Aggr_ipcttable_activity`(IN `_dbName` VARCHAR(64),
 IN `_tableSuffix` VARCHAR(25), _requestedDate DATE)

Replaced by Update_activity_aggr_volume_data()

• Update_activity_aggr_volume_data
CREATE PROCEDURE `Update_activity_aggr_volume_data`(IN `_dbName` VARCHAR(64),
 IN `_TableName` VARCHAR(100), IN `_rangeStart` VARCHAR(100),
 IN `_rangeEnd` VARCHAR(100), IN `_GUID` VARCHAR(100),
 IN `_activity` VARCHAR(100), IN `_location` VARCHAR(100),
 IN `_ip` VARCHAR(100))

Utility routine called by Aggr_activityvolumetable_first_level() and by
Aggr_activityvolumetable_first_level() to prepare yesterday data for the synthesis reporting
(on Activity/Location/peer Country traffic volumes)

Extract the IP volumes and TCP and FTP meaningful counters as well as the qualified
source and destination addresses (activity, location, country, DNS)

• Aggr_activityvolumetable_first_level
CREATE PROCEDURE `Aggr_activityvolumetable_first_level`(
 IN `_dbName` VARCHAR(64), IN `_rangeStart` VARCHAR(100),
 IN `_rangeEnd` VARCHAR(100))

For the given range of days (up to yesterday), or for yesterday when both rangeStart
and rangeEnd are NULL, call the Update_activity_aggr_volume_data() based on the
ipcttable_aggr_1h (flow volumes detected by the probes) to produce all the base data
necessary for the synthesis reports at 1 hour granularity: into activityvolumetable_aggr_1h.

This table is the source of synthesis reports covering one day.

Then calls Aggr_activityvolumetable_next_level() (see below) to aggregate those hourly
data per day (adding or replacing the values for the specified range of days).

This procedure must be invoked explicitly (e.g. via crontab), typically once a day during
quiet time at night, with rangeStart = rangeEnd = NULL (case insensitive, but without
quotes).

• Aggr_activityvolumetable_next_level
CREATE PROCEDURE `Aggr_activityvolumetable_next_level`(IN `_dbName` VARCHAR(64),
 IN `_rangeStart` VARCHAR(100), IN `_rangeEnd` VARCHAR(100))

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 138/248

Use activityvolumetable_aggr_1h, supposedly updated by invoking
Aggr_activityvolumetable_first_level() procedure, to aggregate (and possibly replace) the
daily values in activityvolumetable_aggr_1d.

This table is the source of synthesis reports covering one day.

• Aggr_activityvolumetable_netflow_first_level
CREATE PROCEDURE `Aggr_activityvolumetable_netflow_first_level`(
 IN `_dbName` VARCHAR(64), IN `_rangeStart` VARCHAR(100),
 IN `_rangeEnd` VARCHAR(100))

For the given range of days (up to yesterday), or for yesterday when both rangeStart
and rangeEnd are NULL, call the Update_activity_aggr_volume_data() based on the
netflow_aggr_1h (flow volumes provided by SiLK logs) to produce all the base data
necessary for the synthesis reports at 1 hour granularity: into
activityvolumetable_netflow_aggr_1h.

This table is the source of synthesis reports covering one day.

Then calls Aggr_activityvolumetable_netflow_next_level() (see below) to aggregate those
hourly data per day (adding or replacing the values for the specified range of days).

This procedure must be invoked explicitly (e.g. via crontab), typically once a day during
quiet time at night (dissociated from the execution of
Aggr_activityvolumetable_first_level()), with rangeStart = rangeEnd = NULL (case
insensitive, but without quotes).

• Aggr_activityvolumetable_netflow_next_level
CREATE PROCEDURE `Aggr_activityvolumetable_netflow_next_level`(
 IN `_dbName` VARCHAR(64), IN `_rangeStart` VARCHAR(100),
 IN `_rangeEnd` VARCHAR(100))

Use activityvolumetable_netflow_aggr_1h, supposedly updated by invoking
Aggr_activityvolumetable_netflow_first_level() procedure, to aggregate (and possibly
replace) the daily values in activityvolumetable_netflow_aggr_1d.

This table is the source of synthesis reports covering one day.

3.2.4 Additional Stored Procedures
• Init_tables_if_necessary

CREATE PROCEDURE `init_tables_if_necessary`(`_dbName` VARCHAR(64),
 `tablePrefix` VARCHAR(64))

This procedure is executed once at the beginning of nearly every aggregation procedures
(xxx_first_level()) to make sure that all the destination tables exist (they are created if not)
and that they are partitioned as expected (a partition with including today is created if not).

• Drop_procedure
CREATE PROCEDURE `Drop_working_table `()

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 139/248

This procedure drops persistent but working tables generated by other procedures
(volume aggregation, etc). The procedure only drops tables that are older than at least 10
minutes and with a certain pattern (name starting with an underscore) specific to those
tables.
This is applied to all databases whose name starts with trafMon or tmon.
This cleanup procedure has to be called manually: typically via a daily crontab task. It is
not dangerous to invoke (no loss of information) and light in processing (simply drops
entire tables at once).

3.2.5 Data Computations upon Report Generation
• Make_intervals

CREATE PROCEDURE `Make_intervals`(IN `_dbName` VARCHAR(64),
 `startDate` TIMESTAMP, `endDateDate` TIMESTAMP,
 `intVal` INT, `unitVal` VARCHAR(10), `endBool` VARCHAR(10))

This procedure generates a set of dates with regular intervals; this set of dates is then
used by the FTP Summary report to provide the user with easy to choose intervals for the
report generation.

• Report_sum
CREATE PROCEDURE `Report_sum`(IN `_dbName` VARCHAR(64),
 `_ACTION` VARCHAR(100), `_GUID` VARCHAR(100),
 `_TABLENAME` VARCHAR(100), `_RANGESTART` VARCHAR(100),
 `_RANGEEND` VARCHAR(100), `_FLOW` VARCHAR(100))

This procedure is used by all the protocol counters details reports to compute the sum of
all specific counters during the defined time span for the defined flow (summary table at
top of report). The flow value is an SQL expression, part of WHERE clause, which allows
for a precise Flow or for a group of Flows that match the input template.

• Activity_aggr_volume
CREATE PROCEDURE `Activity_aggr_volume`(IN `_dbName` VARCHAR(64),
 IN `_TableName` VARCHAR(100), IN `_rangeStart` VARCHAR(100),
 IN `_rangeEnd` VARCHAR(100), IN `_GUID` VARCHAR(100),
 IN `_activity` VARCHAR(100), IN `_location` VARCHAR(100),
 IN `_ip` VARCHAR(100))

Replaced by Activity_aggr_volume_fast()

This procedure is used to obtain a large variety of information, from either NetFlow or the
trafMon probes: volumes, bitrates, counters about TCP connections, FTP transfers, etc.
The counters are aggregated depending on the filters. Note that this procedure works with
any combination of specified _site/_mission/_ip (but can be slow at times), which is not the
case with the following one.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 140/248

• Activity_aggr_volume_fast
CREATE DEFINER=`root`@`localhost` PROCEDURE ` Activity_aggr_volume_fast`(
 IN `_granularity` VARCHAR(100),
 IN `_rangeStart` VARCHAR(100),
 IN `_rangeEnd` VARCHAR(100)), IN `_GUID` VARCHAR(100),
 IN `_activity` VARCHAR(100), IN `_location` VARCHAR(100),
 IN `_ip` VARCHAR(100) , IN `_srcTable` VARCHAR(100))

This procedure works in the same way as Activity_aggr_volume() (it returns the same
table with the same information), but it does so by querying dedicated tables,
activityvolumetable_aggr_1d and activityvolumetable_aggr_1h. As such, it is extremely
fast, contrary to other procedures which outputs the same kind of information. The results
of this procedure are used to generate reports.
The _srcTable decides on the use of NetFlow data (= 'netflow') instead of default probe
data.

This procedure is the main BIRT Data Set of all synthesis report templates.

3.3 NETFLOW DATA COLLECTION
NetFlow v5 or v9 (or sFlow or IPFIX) observations are automatically received and logged
on the collector system via utilities provided by CERT® of SiLK™. The service
rwflowpack is running on the collector and listen on the port 9991 (configurable). The
main configuration file is located in /var/silk/sensor.conf (path configured in
/usr/local/etc/rwflowpack.conf).

NetFlow PDUs are logged in a tree of binary files root at /var/silk/data/ (path
configurable) and retrieved via the script trafMon_FormatNetFlow.py. This script pulls
the observations for a specific range of time (via the rwfilter and rwcut SiLK utilities).

Load data from NetFlow SiLK logs every hour
15 * * * * python /opt/trafMon/bin/trafMon_FormatNetFlow.py -H 1
 >> /var/log/trafMon/cron.log 2>&1

Those observations are stored in the collector directory and formatted as text in order to
be processed by the trafMon_loader.py script.

As those observations are not pre-aggregated by the trafMon collector software, they have
to be separated in per-minute observations.

The NetFlow observations do not provide extensive per-application details: they are limited
to IP, port, protocol, number of packets, number of bytes, start time, end time and duration.

NetFlow observations are used to provide volume distribution between
hosts/locations/activities.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 141/248

3.4 DATABASE REGULAR LOADING AND
AGGREGATING PYTHON SCRIPT
One script, trafMon_loader.py, is to be regularly executed, via crontab, as in

Load collector data files into the DB
only when trafMon_loader.py returns with status 0,
then trafMon_updateIpInfo.py - partial - is executed to resolve
IP addresses with no DNS name
*/10 * * * * python /opt/trafMon/bin/trafMon_loader.py -p /var/trafMon/collector
 >>/var/log/trafMon/cron.log 2>&1
 && python /opt/trafMon/bin/trafMon_updateIpInfo.py -p /etc/trafMon/ipInfo.ini
 >>/var/log/trafMon/cron.log 2>&1

The script does the following steps:

• Moves all pending collector output files to a working directory
(/var/trafMon/collector/work/), which are then merged as one per type
(under/var/trafMon/collector/mergedFiles/) and also archived in a
compressed tarfile (/var/trafMon/collector/done/YYYMMDDThhmm.tbz).

• Prepare the NetFlow collected data with intervals of a minute.

• For each type of observations, creates one merged file by concatenating all
corresponding per-minute chunk files.

• It then bulk loads (with replace) definitional data (flow instances, metric histogram
slices and flow class hops lists), with potential replace upon clash of key, directly
into their permanent definitional tables.

• Then bulk loads, with replace, all other files into corresponding temporary tables.

• For TCP connections, FTP file transfers and 1way individual observations,
temporary records are inserted, with replace, into their respective persistent table.
The replace statement ensures that only the last update results are kept for a given
connection or transfer record. The replace has no effect on 1way observations,
whose numeric key is not explicit in inserted data: auto-increment.

• For each other temporary tables, it invokes to corresponding aggregation stored
procedure (see section 3.2.1 above), which updates/complements the aggregate at
1 minute, then also updates/inserts the further aggregates at 1 day and at 1 month.

The script use a UNIX socket to communicate with MySQL, therefore the network is not
used and no password is sent through the network (in the deployment baseline).

Because the bulk load is directed to temporary tables and is accompanied by smart
aggregation and update/extension of per-day aggregate tables, it is not implemented via
invocation of the mysqlimport command, but directly via the LOAD DATA SQL statement.
The Python script relies on the MySQL connector for Python software library.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 142/248

3.4.1 IP Addresses Geolocation
Just after each execution of the trafMon_loader.py script, another script is executed,
which is dedicated to resolving newly found IP addresses, trafMon_updateIpInfo.py.

This script fetches all non-resolved IP addresses from the database and query its DNS
server: if the server resolves the IP address, the script updates it, afer all addresses have
been queried. Otherwise, the IP is kept in place of a proper DNS resolution.

Once a week or less frequently, the script is also executed with --all IP addresses as
input. It results in a full update of all the IPs with newly resolved DNS.

On top of that, this script also tag all IP addresses with other kind of information:

• A country

• A location

• An activity

• A city

• An ASN

• Some comments

These data can come from two different places: an offline geolocation database
(GeoLite2™ from MaxMind® Inc.) pre-loaded on the system, and a configuration input file,
provided as an argument to the script, which provides information about known IP
addresses for which the geolocation process is not needed.

At the end of its execution, this script stores its results into a dedicated table, ipinfotable,
by doing a REPLACE into it.

3.4.2 Database Regular Aggregation
For preparing and alleviating the report generation work induced by the synthesis reports
(see below), fully decorated volume tables are prepared once a day, on the basis of probe
produced IP volume data (and some FTP and TCP observations) and, optionally, on the
basis of NetFlow volume data:

Update of ipcttable with re-assigning data bytes of passive FTP transfers to
the flow with the FTP control connection
(null from/to arguments means do for yesterday)
THEN
fill activity/location volume table every day with yesterday's data
(must be executed *AFTER* update_ftp_data_in_ipcttable every day)
the user trafmon must have a $HOME/.my.cnf with permission 0400 for auto
login as the tmon_birt read-only/call-only user into MySQL:
% cat ~/.my.cnf
[mysql]
user=tmon_birt
password=xxxx

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 143/248

47 0 * * * mysql -e 'CALL trafMon_template.Update_ftp_data_in_ipcttable(
 "trafMon", null, null)' >>/var/log/trafMon/cron.log 2>&1 ;
 mysql -e 'CALL trafMon_template.Aggr_activityvolumetable_first_level(
 "trafMon", null, null)' >>/var/log/trafMon/cron.log 2>&1

and optionally for NetFlow:

Fill NetFlow volume table every day
2 3 * * * mysql -e 'CALL
trafMon_template.Aggr_activityvolumetable_netflow_first_level(
 "trafMon", null, null)' >> /var/log/trafMon/cron.log 2>&1

3.4.3 Database Partitions and Efficient Clean-up
When creating entries for a new day in persistent tables, a new dedicated partition is
created if needed. The partition covers a different period of time depending on the
granularity of the table (every day for 1 second, every 8 days for 1 hour, every 31 days for
1 day).

Therefore in normal operations, detailed data are partitioned into separate physical sub-
tables. Partitions have two advantages:

• Segmenting the data has a performance impact, avoiding to fetch old irrelevant data
when querying a recent period of time;

• Destroying ancient data does not involve an expensive per row DELETE WHERE
statement: it is replaced by a simple and efficient DROP PARTITION.

A cleanup database procedure, Partition_drop(), is provided that preserves only the
last _keepDays (at least) in the given _dbName._tableName. The trafMon tool
administrator may carefully automate the gradual cleanup of ancient file grain data, via
crontab:

DO THIS WITH CARE: drop the partitions with quickly growing fine grain
data at 1 minute and that are about 90 days ago
e.g. the IP size histograms
every 3 day at 7:16
#16 7 */3 * * mysql -e 'CALL trafMon_template.Partition_drop(
 "trafMon", "ipsz_table_aggr_1m", 90)'
 >> /var/factseo/log/cron.log 2>&1

In addition, working tables with intermediate results, which cannot be declared temporary ,
nor can be removed by the tasks that produce them, must be regularly dropped by
crontab:

CLEAN DATABASE of the '_xxx' working tables
34 * * * * mysql -e 'CALL trafMon_template.Drop_working_tables()'
 >> /var/factseo/log/cron.log 2>&1

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 144/248

3.5 DATABASE USERS
Two users have been created in MySQL database for different purposes described below.
These users identifies themselves with passwords specified in the following file:

[DatabaseURL]
db_name = trafMon
db_url = unix:///var/lib/mysql/mysql.sock
#db_name = trafMon_2
#db_url = tcp://db_server:3306

[TMonloaderCredentials]
trafMon_loader_user = tmon_db
trafMon_loader_pwd = GuvfVfZlErnq/JevgrgensZbaQOHfreCnffjbeq

[TMonReportCredentials]
trafMon_report_user = tmon_birt
trafMon_report_pwd = GuvfVfZlErnq-BaylgensZbaQOHfreCnffjbeq

Passwords are (rot13) encoded and a decode function is applied in each script using
them.
MySQL encrypts passwords stored in the user table using its own algorithm.

3.5.1 Database management user
For purposes of regular loading, user ‘tmon_db’ has been created.
The following privileges has been assigned:

• Global privileges: FILE (loading data from text file)

• For database trafMonxxx (trafMon% SQL pattern):
o SELECT,INSERT,UPDATE,DELETE,EXECUTE (stored procedures calls)
o CREATE,ALTER,DROP,CREATE TEMPORARY TABLES

• For database tmon_template: SELECT (temporary tables template, covered by
above)

• For database information_schema: SELECT (partitions management)

3.5.2 Database reporting user
For purposes of BIRT reporting tool, user ‘tmon_birt’ has been created.
The only privileges allowed are SELECT and EXECUTE on trafMonxxx (trafMon% SQL
pattern) databases.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 145/248

3.6 BIRT REPORTING

3.6.1 Selected Tools
The reporting is implemented through the use of public-domain Eclipse/BIRT reporting
tool. This tool also exists as a commercial product from Open Text Corp. (formerly Actuate
Corp.).

Using the same template and fed by the same data BIRT Engine is able to produce
indifferently Web reports (HTML) and electronic documents (PDF, WORD doc, OpenOffice
doc).

BIRT can produce reports mixing texts, simple variables, tables and charts from a wide
palette. Multiple data sets can be shown in a single chart, possibly with multiple Y axes.
XY plots permit to represent, in the axes, linear, logarithmic or date/time values.
Furthermore, its can present , in a same report, a mix of data sets extracted from several
different data sources, possibly for totally different types:

• All types of public domain or commercial SQL relational DBMS,

• XML files,

• data streams,

• ...
In addition to the data retrieved from the data source (e.g. SQL queries results), BIRT
implements the JavaScript language that allows to further transform and or aggregate the
input data.

A given report template does not freeze the data it presents. Through the use of report
parameters, selected at run time, the template can be applied to custom-selected data.

Any object in the report can also be an hyperlink, either inside the report itself, or towards
another (sub)report, or to any URL. Cross report hyperlinks also allow to pass data items
from the calling report as values for sub-report parameters.

Report templates can be available with a Web-based BIRT runtime Engine, installed on a
Java Web server product, for the on-demand generation of reports with custom-defined
parameter values.

For trafMon the public-domain Apache Tomcat7 has been selected. Its security has been
enforced through the use of SSL HTTPS encrypted connection (with self-signed
certificate). And HTTP Basic authentication has been activated to force users to provide
username/password, through the privacy protected connection.

3.6.2 Expert User
In addition to the normal user basic access to the interactive Web reports, an Apache
HTTP server with phpMyAdmin public domain application is also installed, allowing an
expert user to custom query directly the data tables and, according to the database

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 146/248

authorisation profile of the username he mentions in its Web-based login form, the expert
user will be allowed to modify the trafMon data and even to administer the DBMS. With the
necessary privileges, he will be able to kill a (too resource-consuming) query in progress
too.

Currently, with MySQL version 5.6.31, slow queries part of report generation, but also
launched by the expert user, can optionally be detected by the server and written in the
slow_query_log:

• System Variable slow query_log is a Boolean that dynamically controls
whether such logging is enabled/disabled

• System Variable slow query_log file
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html -
sysvar_general_log is the full pathname of the slow log.

• System Variable long query_time is the threshold in seconds

Later, with version above MySQL 5.7.4, it will be possible to specify a maximum time for
executing a query. This will permit to protect the DBMS from inconsequently huge
queries launched via the expert user interface.

3.6.3 BIRT Report Templates
All reports refer to a common Data Source, by default the MySQL database `trafMon`
accessed, through the JDBC connector for Java, locally via a Unix socket pathname, using
the account tmon_birt and its encrypted password. This is specified in the BIRT library file
Library/trafMonDb.rptlibrary.

3.6.3.1 Protocol Details Reports

An initial set of reports have been implemented, focusing at the detailed protocol
observations collected by the trafMon probes.

• one report, FTP_Summary.rptdesign, is standalone and presents top-10
synthesis views of the FTP File Transfers

• A set of reports implement a coherent presentation through navigation:
o This first one is the Flow Instance report, with tabular presentation. It exists
o There is one sub-report per protocol counters: IP_Counters.rptdesign,

ICMP_Counters.rptdesign, UDP_Counters.rptdesign,
TCP_Counters.rptdesign, FTP_Counters.rptdesign

http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_slow_query_log
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_general_log
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_general_log
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_general_log
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_general_log
http://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_general_log

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 147/248

o There is one sub-report for IP Size Distribution:
IP_Size_distribution.rptdesign

o There is one sub-report for Round-trip Delays: TwoWayDelays.rptdesign
o There are two sub-report for One-Way observations:

OneWayLatencies.rptdesign and OneWay_Counters.rptdesign
This set of reports derives from a common page. They share two common BIRT libraries,
the DataSource for accessing the database (Library/trafMonDb.rptlibrary)and
several Data Source queries and parameters definitions
(Library/trafMonLibrary.rptlibrary). And they share a common javascript
library with the per-report ad hoc routines, Scripts/FormatFileSize.js.

3.6.3.2 Synthesis Reports

This implementation also provides a set of reports presenting the traffic dissemination
between hosts / sites and missions:

• MissionManagerReport.rptdesign

• OperatorReport.rptdesign

• OperatorReport_conv.rptdesign
Besides the access to the Data Source (MySQL database instance and login), those
reports also encompass hyperlinks to each/other, referred by the urlBirt parameter (the
host:port head of the Apache Tomcat URI, e.g. “https://127.0.0.1:8443/”) and by the url
parameter (the Apache HTTPD URI for accessing the trafMon Menu Bar for synthesis
reports, e.g. https://127.0.0.1/trafmon/#!/volume, in order to re-display the top menu bar
after following the hyperlink) Those values are defined in Library/url.rptlibrary.

3.6.3.3 Report Template Editor

Edition of report templates is achieved via the BIRT Report Designer GUI tool, part of the
Eclipse environment.

• On the CentOS Linux collector computer, the pre-configured Eclipse with BIRT
Report Designer is typically installed under /opt/eclipse/. The user must
execute /opt/eclipse/eclipse command to launch the designer.

• An All-in-one version of Eclipse with BIRT Designer for Windows PC (32 or 64 bit)
and for Mac OS X (32 or 64 bit) is also available for download via the URL
https://www.eclipse.org/birt/

3.6.4 Apache Tomcat Environment for On-demand Generation
of trafMon Reports
The trafMon URL for directly accessing a given BIRT report is structured as

https://127.0.0.1/trafmon/#!/volume

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 148/248

https://trafMonServer:8443/birt/run?__report=trafMon_reports/xxx.rptdesign

This means that the BIRT runtime environment has been installed in the directory

/var/lib/tomcat/webapps/birt/

This also means that the .rptdesign files are stored in the sub-directory:

/var/lib/tomcat/webapps/birt/trafMon_reports/

and of course with its tree sub-directories (Library/ and Scripts/) as per above.

When using run in the report URL, the user is presented with a continuous potentially very
long page he must scroll through.

When using frameset instead of run in the report URL, the user is presented the BIRT
Viewer application. This allows to see paginated report and to navigate on a per-page
basis. Additional icons permit to, among others, export the report in HTML or PDF or MS-
WORD or OpenOffice document format. And the user is also able to export the actual data
from a report object (e.g. a chart).

Due to the interactive menu bar (see section 3.6.5 below), the set of report parameters has
been more or less unified and generalised. Hence, it is not that intuitive to execute the
reports directly, some parameters (especially the start/end Day are redundant vs the
start/end Time. Furthermore, the (limited) capability for the BIRT parameters to query
themselves the database for a list of possible values has been deactivated in the current
version, because replaced by the JavaScript bar of dynamic menus and its PHP queries

When accessing the FTP_Summary.rptdesign report, the user must provide the DBname,
the Granularity (Minute, hour or Day), the StartTime and EndTime. StartDay and EndDay
(used by the Menu Bar to pre-determine the rough time span) can be left NULL.

When accessing all other protocol details reports, the list of report parameters reflect also
the choices in the Menu Bar to apply for an individual Flow instance, or to sum-up the per-
flow figures matching one or more of the flow identification components: IP1, IP2, Direction
and/or probe Interface (with the risk of double counting). The parameters are:

• DBname,

• TableName: even though this is implied by the report type, it is the (radix) of) the
data table that provides the values populating the report instance,

• Either flowID != “none”

• Or (flowID == “none”):

o IP1 and/or,

o IP2 and/or,

o Direction: “<”, “>”, “<>” (bi-directional) or other (don’t care), and/or,

o Interface,

• Granularity: “Minute”, “Hour”, or other (means “Day”),

https://trafmonserver:8443/birt/run?__report=trafMon_reports/xxx.rptdesign

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 149/248

• StartTime,

• EndTime,

• StartDay (unused, expoited by the Menu Bar when selecting the StartTime)

• EndDate (unused, expoited by the Menu Bar when selecting the EndTime)
When accessing the synthesis reports, the parameters are:

• DBname,

• activity: “any” or a valid Activity name,

• location: “any” or a valid Location name,

• host: “any” or a valid hot IP address,

• source: “probe” or other (means “netflow”),

• view: “IP” (host IP address) or other (means “DNS” hostname),

• granularity: “Months”, “Hours”, or other (means “Days”),

• top (integer > 0),

• treshold (spelling typo, should be threshold): integer value in bit/sec,

• rangeStart,

• rangeEnd,

• url (from library, see 3.6.3.2 above),

• urlBirt (from library, see 3.6.3.2 above)

3.6.5 Apache Httpd Environment for On-demand Generation of
trafMon Reports
A web menu is accessible at https://trafMonServer/trafMon, this open the Menu Bar for
synthesis reports, with URI replaced by https://trafMonServer/trafMon/#!/volume. When
switching to “Detailed”, the URI for details reports is used:
https://trafMonServer/trafMon/#!/birt.

This menu provides easy access to the different parameters of all the reports. The purpose
of this menu is to ease the navigation/drill-down generation of multiples reports and to
provide a simple way to refine input parameters.

The web server is hosted on the central trafMon server and the files are located in
/var/www/html/, the queries to the database are made by php and the client-based
interaction are managed via JavaScript (AngularJS and JQuery).

https://trafmonserver/trafMon
https://trafmonserver/trafMon/#!/volume
https://trafmonserver/trafMon/#!/birt

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 150/248

The report generation is made by updating an iFrame inside the page and calling the
Tomcat report generation.

The different uses of this menu are further explained in the User Manual.

3.6.5.1 trafMon_web App Source Structure

$ ls -R trafMon_web/
trafMon_web/:
README app

trafMon_web/app:
404.html index.html php scripts styles views

trafMon_web/app/php:
Activity.php Host.php IP.php IP1.php IP2.php Location.php database.php
dateend.php datestart.php flow.php host_info.php include.php interface.php
rangeend.php rangestart.php

trafMon_web/app/scripts:
app.js controllers directives filters services

trafMon_web/app/scripts/controllers:
about.js birt.js main.js volume.js

trafMon_web/app/scripts/directives:
mydirective.js ngdate.js

trafMon_web/app/scripts/filters:
unique.js

trafMon_web/app/scripts/services:
birturl.js phpurl.js

trafMon_web/app/styles:
Supernice.css custom.css jquery-ui.min.css

trafMon_web/app/views:
about.html birt.html main.html volume.html

The trafMon_web/app/scripts/app.js maps the URI to the right menu:

/**
 * @ngdoc overview
 * @name trafMonWebApp
 * @description
 * # trafMonWebApp
 *
 * Main module of the application.
 */
angular
 .module('trafMonWebApp', [
 'ngAnimate',
 'ngAria',
 'ngCookies',
 'ngMessages',

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 151/248

 'ngResource',
 'ngRoute',
 'ngSanitize',
 'ngMaterial',
 'angularSpinner'
])
 .config(function ($routeProvider) {
 $routeProvider
 .when('/volume', {
 templateUrl: 'views/volume.html',
 controller: 'VolumeCtrl',
 controllerAs: 'volume'
 })
 .when('/birt', {
 templateUrl: 'views/birt.html',
 controller: 'BirtCtrl',
 controllerAs: 'birt'
 })
 .when('/about', {
 templateUrl: 'views/about.html',
 controller: 'AboutCtrl',
 controllerAs: 'about'
 })
 .otherwise({
 redirectTo: '/volume'
 });
 })
 .constant('PHP_URL', 'https://127.0.0.1/');

The trafMon_web/app/scripts/services/birturl.js defined the URL prefix for
invoking the BIRT report generation:

/*
 * TO BE ADAPTED TO YOUR ENVIRONMENT
 */
/**
 * @ngdoc service
 * @name trafMonWebApp.birtUrl
 * @description
 * # birtUrl
 * Constant in the trafMonWebApp.
 */
angular.module('trafMonWebApp')
 .constant('birtUrl', 'https://127.0.0.1:8443/birt/');

The various pull-down menus in the Menu Bar are populated via the corresponding SQL
queries in the PHP files under trafMon_web/app/php/. The file
trafMon_web/app/php/include.php contains the configurable definition on how to
access the target MySQL database server. The password is encoded in rot13.

The date selection for the synthesis reports is based on JQuery-UI Datepicker widget,
which has been integrated in the AngularJS environment, via the directive in
trafMon_web/app/scripts/directives/ngdate.js.

The JavaScript code follows the AngularJS View/Controller conventions. Data are handled
as JSON structures populated by the PHP code.

https://127.0.0.1/
https://127.0.0.1:8443/birt/

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 152/248

3.6.5.2 trafMon_web App Packages Dependencies.

The trafMon web App can be put under Yeoman/Bower/Grunt/Usemin control. Usemin
allows the production of a rather cryptic compact variant of all the JavaScript code, which
downloads more quickly in the browser. Grunt allows to run the Web App from the
development environment, to test/debug/tune/fix the code.

The trafMon Installation Guide explains the simplest way to download the necessary third-
party public domain modules and to produce a running app (although not “minimized”):

trafmon % cd /opt/trafMon/trafMon_web/app/
trafmon % cat .bowerrc
{
 "directory": "bower_components"
}
trafmon % bower install angular angular-animate angular-aria angular-cookies
trafmon % bower install angular-material angular-messages angular-resource
trafmon % bower install angular-route angular-sanitize angular-spinner
trafmon % bower install angular-touch bootstrap jquery jquery-ui spin.js
trafmon % ls bower_components/
angular angular-material angular-route bootstrap
angular-animate angular-messages angular-sanitize jquery
angular-aria angular-mocks angular-spinner jquery-ui
angular-cookies angular-resource angular-touch spin.js

Verify that the pathnames in index.html are correctly referring inside the substructure of
every installed package under bower_components/.

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>trafMon Reports Viewer</title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">
 <!-- Place favicon.ico and apple-touch-icon.png in the root directory -->
 <!-- build:css(.) styles/vendor.css -->
 <!-- bower:css -->
 <link rel="stylesheet" href="bower_components/bootstrap/dist/css/bootstrap.css" />
 <link rel="stylesheet" href="bower_components/angular-material/angular-material.css"
/>
 <!-- endbower -->
 <!-- endbuild -->
 <!-- build:css(.tmp) styles/main.css -->
 <link rel="stylesheet" href="styles/Supernice.css">
 <link rel="stylesheet" href="styles/custom.css">
 <link rel="stylesheet" href="styles/jquery-ui.min.css">
 <!-- endbuild -->
 </head>
 <body ng-app="trafMonWebApp">
 <div class="container-fluid">
 <div ng-view=""></div>
 </div>
 <iframe class="iframe-basic-volume" id="frame" src="" width="100%"
height="100%"></iframe>
 <!-- build:js(.) scripts/vendor.js -->
 <!-- bower:js -->
 <script src="bower_components/jquery/dist/jquery.js"></script>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 153/248

 <script src="bower_components/angular/angular.js"></script>
 <script src="bower_components/bootstrap/dist/js/bootstrap.js"></script>
 <script src="bower_components/angular-animate/angular-animate.js"></script>
 <script src="bower_components/angular-aria/angular-aria.js"></script>
 <script src="bower_components/angular-cookies/angular-cookies.js"></script>
 <script src="bower_components/angular-messages/angular-messages.js"></script>
 <script src="bower_components/angular-resource/angular-resource.js"></script>
 <script src="bower_components/angular-route/angular-route.js"></script>
 <script src="bower_components/angular-sanitize/angular-sanitize.js"></script>
 <script src="bower_components/angular-touch/angular-touch.js"></script>
 <script src="bower_components/angular-material/angular-material.js"></script>
 <!-- endbower -->
 <script src="bower_components/jquery-ui/jquery-ui.min.js"></script>
 <script src="bower_components/spin.js/spin.ts"></script>
 <script src="bower_components/angular-spinner/dist/angular-spinner.js"></script>
 <!-- endbuild -->
 <!-- build:js({.tmp,app}) scripts/scripts.js -->
 <script src="scripts/app.js"></script>
 <script src="scripts/controllers/main.js"></script>
 <script src="scripts/controllers/about.js"></script>
 <script src="scripts/controllers/birt.js"></script>
 <script src="scripts/controllers/volume.js"></script>
 <script src="scripts/directives/mydirective.js"></script>
 <script src="scripts/filters/unique.js"></script>
 <script src="scripts/directives/ngdate.js"></script>
 <script src="scripts/services/phpurl.js"></script>
 <script src="scripts/services/birturl.js"></script>
 <!-- endbuild -->
</body>
</html>

3.6.6 Apache Tomcat Environment for Batch Generation of
trafMon Reports
A second BIRT Runtime can been installed under /opt/birt-runtime-xyz/.

This is used for the batch report production. More precisely, the generating command is
executed via the path /opt/tmon/bin/genReport.sh which is a link to /opt/birt-
runtime-xyz/ReportEngine/genReport.sh.

$ /opt/tmon/bin/genReport.sh --help
Help for ReportRunner

--mode/-m [run|render|runrender] [options] [rptdesign|rptdocument]
 The default mode is runrender.
To see options for run mode, use:
 --help/-h run
To see options for render mode, use:
 --help/-h render
To see options for runrender mode, use:
 --help/-h runrender
Print current message, use --help/-h

$ /opt/tmon/bin/genReport.sh --help render
ReportRunner's RENDER mode:
--mode/-m render [options] <rptdocument file>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 154/248

where options could be:
 --format/-f [HTML|PDF]
 --output/-o <target file>
 --page/-n <pageNumber>
 --locale/-l <locale> default is english
 --config/-c <"configName=configValue">
 --renderOption/-r <"optionName=optionValue">
 --file/-F <file>

1. configs/renderOptions in command line will overide those in file
2. config/renderOption name can not include characters such as ' ', '=', ':'
use "--help/-h configNames" for a list of configurables
use "--help/-h renderOptions" for a list of render options
use "--help/-h file" for options in <file>

The script trafMon_detailReportGen.py relies on the genReport.sh script to produce
those protocol details reports listed at the top of the script for the IP addresses matching
the expressions in the configuration file /etc/trafMon/report/FILENAME:

$./trafMon_detailReportGen.py --help
Usage: trafMon_detailReportGen.py [options]

Options:
 -h, --help show this help message and exit
 -l, --localConfig if -l is specified, db.cred file is fetched from the
 current directory. Default: /etc/trafMon/cred/
 -f FILENAME, --filename=FILENAME
 Give a pathname or filename containing IP address
 patterns in concerned Flow Instances. This file
 basename is also the root of the tree of generated
 reports. When relative, the file is fetched from
 current directory when -l is specified, otherwise from
 default /etc/trafMon/report/
 -D destination, --destination=destination
 Destination directory. Default to
 '/var/trafMon/reports/'.
 -s STARTDATE, --startDate=STARTDATE
 Give a start date in format: 'YYYY-MM-DD'
 -e ENDDATE, --endDate=ENDDATE
 Optionally give an end date in format: 'YYYY-MM-DD'
 -t TIMESPAN, --timespan=TIMESPAN
 Without endDate: choose between 'weekly' or 'monthly'
 report. With endDate: give any identifier for this
 type of reports.
 -L LOGDIR, --logFileDirectory=LOGDIR
 Path to log directory. Default: /var/log/trafMon/
 -T TEMPLATESFOLDER, --reportTemplatesDirectory=TEMPLATESFOLDER
 Path to trafMon report templates directory. Default:
 /opt/trafMon/report/
 -g GENREPORT, --genReport_sh=GENREPORT
 Full pathname to the Birt runtime 'genReport.sh'
 utility. Default to /opt/trafMon/bin/genReport.sh,
 which is typically a symbolic link to the BIRT RunTime
 installation/ReportEngine/genReport.sh

This script is primarily aimed at producing the set of reports related to specified set of
servers.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 155/248

The reports are listed in the reportsToTables structure inside the python scripts:

reportsToTables = {
 "IP_Counters" : "ipcttable_aggr_",
 "TCP_Counters" : "tcpcttable_aggr_",
 "UDP_Counters" : "udpcttable_aggr_",
 "FTP_Counters" : "ftpcttable_aggr_",
 "ICMP_Counters" : "icmpcttable_aggr_",
 "IP_Size_distribution" : "ipsztable_aggr_",
 "TwoWayDelays" : "twowaydelaytable_aggr_",
 "OneWayDelays" : "onewaylatencytable_aggr_",
 "OneWay_Counters" : "onewaycttable_aggr_",
 "FTP_Details" : "ftpxfrtable",
 "TCP_Details" : "tcpcontable"
}

A Mission FILENAME for the batch reports generation script, mentioned either as an
absolute pathname or relative to /etc/tmon/report/, contains a list of IP addresses
regular expression patterns. Reports are generated for all available protocol details
templates related to Flow Instances whose one (or both) IP address field matches a
pattern from the Mission file.

If optional ENDDATE is given, per-day reports are produced from STARTDATE (inclusive)
to ENDDATE (excluded).

Otherwise, the TIMESPAN is used to determine boundaries. It is either

• "weekly": per-day reports from Monday to Sunday of the week containing
STARTDATE

• or “monthly”: per-day reports for the month containing STARTDATE
Even when not used to determine date boundaries, a string value must be given to
TIMESPAN

Reports are produced under
/var/trafMon/reports/TIMESPAN/FILENAME/from_STARTDATE_to_ENDDATE/.

Typically, invocations of the proxyGenRep.py are scheduled in the user factseo crontab,
as in:

Generate detail protocol reports about myServers for last month every month
45 5 1 * * python /opt/trafMon/bin/trafMon_detailReportGen.py -f

myServers.genAddrs -s `date -d "yesterday" "+%Y-%m-01"` -t monthly
>> /var/log/trafMon/cron.log 2>&1

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 156/248

The script trafMon_volumeReportGen.py relies on the genReport.sh script to produce
the requested synthesis report [manager, operator, conversation]:

$./trafMon_volumeReportGen.py --help
Usage: trafMon_volumeReportGen.py [options]

Options:
 -h, --help show this help message and exit
 -d DBname, --db=DBname
 Database to be used. Default to 'trafMon'.
 -r report, --report=report
 Type of synthesis report to be generated. Possible
 choices are: [manager, operator, conversation].
 Default to 'manager'.
 -D destination, --destination=destination
 Destination directory. Default to
 '/var/trafMon/reports/2020/10/28', where the
 'YYYY/MM/DD' part is the generation time of the report
 (today).
 -t top, --top=top Top-N to be used. Possible choices are: [5, 10, 15,
 20, 25]. Default to top-5.
 -T threshold, --threshold=threshold
 Threshold bandwidth in b/s to be used. Possible
 choices are: [0, 1000, 10000, 50000, 100000, 500000].
 Default to 1000.
 -A activityName, --activity=activityName
 Activity to be used. Default to 'any'. Use quotes if
 the activity name include a space.
 -L locationName, --location=locationName
 Location to be used. Default to 'any'. Use quotes if
 the location name include a space.
 -H hostName, --host=hostName
 Host to be used. Default to 'any'. Use quotes if the
 host name include a space.
 -s startDate, --startDate=startDate
 Start date to be used (format: 'YYYY-MM-DD'). Default
 to first day of previous month.
 -e endDate, --endDate=endDate
 End date to be used (format: 'YYYY-MM-DD'). Default to
 last day of previous month.
 -l LOGDIR, --logFileDirectory=LOGDIR
 Path to log directory (default: /var/log/trafMon/)
 -R TEMPLATESFOLDER, --reportTemplatesDirectory=TEMPLATESFOLDER
 Path to trafMon report templates directory. Default:
 /opt/trafMon/trafMon_reports/
 -g GENREPORT, --genReport_sh=GENREPORT
 Full pathname to the Birt runtime 'genReport.sh'
 utility. Default to /opt/trafMon/bin/genReport.sh,
 which is typically a symbolic link to the BIRT RunTime
 installation/ReportEngine/genReport.sh

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 157/248

3.7 DATA MAINTENANCE
For permitting smooth preparation/validation/tuning phase, the collector raw observations
are voluntarily not removed from the collector computer disk. These are left under
/var/trafMon/collector/done/.

However, the log files are cleaned up after a certain time span:

• on both probe and collector computers, the online functions trace logs (and db
loading logs on the collector) under /var/log/trafmon/ are processed via
custom logrotate script:
cat /etc/logrotate.d/trafmon
/var/log/trafMon/*.log {
 # When some files have been mistakenly created as root,
 # this can perturbate the automated operations, so restore ownership
 firstaction
 chown -R trafmon:trafmon /var/log/trafMon
 endscript

 lastaction
 chown -R trafmon:trafmon /var/log/trafMon
 endscript

 rotate 300000
 # on CentOS 6.x, use daily insead of not yet suppoprted hourly
 hourly
 size 200M
 compress
 delaycompress
 missingok
 notifempty
 create 0644 trafmon trafmon
}}

• on the collector computer, a custom logrotate script has also been created for the
MySQL optional logs stored in their standard location /var/log/mysqld/:
cat /etc/logrotate.d/mysql
/var/log/mysqld/*.log {
 # create 600 mysql mysql
 notifempty
 daily
 rotate 7
 missingok
 compress
 lastaction
 chown -R mysql:mysql /var/log/mysqld/
 if test -x /usr/bin/mysqladmin && /usr/bin/mysqladmin ping
&>/dev/null
 then
 /usr/bin/mysqladmin flush-logs
 fi
 endscript
}

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 158/248

Database regular cleanup is described in section3.4.3 above.

Database back-up and restore can be achieved via the two standard MySQL utilities:

• mysqldump
• mysqlimport

or via the phpmyadmin tool: Export and Import tabs

Computers disk partitions can be efficiently back-ed up and (selectively) restored through
the classical Unix utilities:

• dump
• restore

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 159/248

4. TRAFMON INTERFACE CONTROL
DOCUMENTATION

4.1 TRAFMON ONLINE FUNCTIONS XML
CONFIGURATION INTERFACE
Being the tmon_probe or the tmon_collector online programs, the packet capture,
observations gathering, measurements processing and regular output of performance data
log file activities are governed by a single XML configuration file.

The configuration uses XML for its tags and tag attributes, neglecting text in between tags.

The XML obeys the syntax defined by a DTD called “tmon.dtd” which rules out part of
the consistency of an XML configuration file and permits its verification upon loading.

The recommended practice is that the XML file refers to its DTD simply by its basename,
meaning that the tmon.dtd must be located in the same directory as the XML
configuration file, on every system where tmon_probe and/or tmon_collector are
running.

<!DOCTYPE TrafMonConfig SYSTEM "tmon.dtd" [...]>

By default, the configuration file is named tmon.xml. And by default, the configuration file
and its DTD are read from /etc/tmon/xml/:

File tmon_probe.h:

#define TM_PROBE_CONFIG_PATH "/etc/tmon"
#define TM_PROBE_XML_DIR "xml"

File tmon_collector.h:

#define TM_COLL_CONFIG_PATH "/etc/tmon"
#define TM_COLL_XML_DIR "xml"

Command-line option permits to modify the pathname of the XML configuration file.

% ./tmon_probe
USAGE:
tmon_probe [-l] [-c configXML] [-n NEWconfigXML] probeName
 -l (local) means using ./tmon.xml, ./tmon-new.xml and,
 if it exists, ./tmon_probe.diag
 -c means use the given XML, and nothing else
 -n monitors the given NEW XML for scheduled config update
 (based on its `startAt' attribute
 If -l is NOT given, /etc/trafMon/xml/tmon.xml is used
 If -l and -n are NOT given, /etc/trafMon/xml/tmon-new.xml is looked at
 If -l is NOT given, or ./tmon_probe.diag doesn't exist,
 /etc/trafMon/diag/<probeName>.diag is used
% ./tmon_collector
USAGE:
tmon_collector [-l] [-c configXML] [-n NEWconfigXML] collectorName

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 160/248

 -l (local) means using ./tmon.xml, ./tmon-new.xml and, if it exists,
./tmon_collector.diag
 -c means use the given XML, and nothing else
 -n monitors the given NEW XML for scheduled config update
 (based on its `startAt' attribute
 If -l is NOT given, /etc/trafMon/xml/tmon.xml is used
 If -l and -n are NOT given, /etc/trafMon/xml/tmon-new.xml is looked at
 If -l is NOT given, or ./tmon_collector.diag doesn't exist,
 /etc/trafMon/diag/<collectorName>.diag is used

Also, this file may mention a pathname where to fine the DTD, instead of only its
basename. When just tmon.dtd is specified, it must be collocated with the XML
configuration file:

<!DOCTYPE trafMonConfig SYSTEM "tmon.dtd" [...]>

The XML configuration is assigned a version number (<TrafMonConfig> tag serial
attribute) but also a Date/Time lower bound of validity (TrafMonConfig> tag startAt
attribute), as in

<trafMonConfig serial="100" startAt="2020-08-04 13:29:00" pktSignBytes="3"
 maxTravelTime="30000" >
...

</trafMonConfig>

Upon start, the program produces the following kind of log messages:

20201012T164400.674881,tmon_probe[14969],WNG,tmon_probe.c:417:main,Auto-
detecting future config. update as './tmon-new.xml': at its 'startAt' time, this
file will be renamed as 'test.xml' and ./tmon_probe probe will auto-restart
20201012T164400.674967,tmon_probe[14969],TR0,tmon_probe.c:441:main,STARTING
probe probe (ID=11) using test.xml version 100 valid since 04 Aug 2020 13:29:00

More precisely, the program uses the same pathname as its startup XML configuration to
build the name of a potential next update:

• By default /etc/tmon/xml/tmon-new.xml

• or ./tmon-new.xml, when program invoked with –l option
• or the pathname given by the –n option

While running, the program regularly checks, every minute, for the presence of a file with
this name. In case there is one, the XML is parsed (and validated) and the startAt
inspected. If the file is a correct new version and valid in the future, a timer is launched to
let the program automatically re-start itself at the right time on this new version of the
configuration, renamed as per the original (itself renamed with “.PREVIOUS” suffix). This
restart happens immediately when the correct new version is already valid.

A pseudo new file with same start time and serial number its name is simply appended the
“.UNCHANGED” suffix.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 161/248

4.1.1 Definition of XML Configuration
The configuration is defined by a fully commented DTD file. The DTD enforces the
structure and some other constraints. Further detailed constraints and the meaning/effects
of configuration items are presented as comment text.

<!--
 Copyright (c) 2020 AETHIS s.a./n.v., Belgium. All rights reserved.
 www.trafmon.org

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->
<!-- trafMon XML DTD tmon.dtd ### Current version $Id:
a13d30010506c1a3f0d1e4c04ef9f41149b9c93a $-->
<!ELEMENT TrafMonConfig (Collector+, Probe+,GranularFlow+,
 (FlowClass | ReportLink)+) >
<!ATTLIST TrafMonConfig
 serial NMTOKEN #REQUIRED
 startAt CDATA #REQUIRED
 pktSignBytes NMTOKEN "3"
 maxTravelTime NMTOKEN "10000"
 pduYoungWindow NMTOKEN "10"
>
 <!-- serial: Config. version ID to which every PDU refers -->
 <!-- valid values are [0..255], wrapping -->
 <!-- startAt: Universal (UTC) Date/Time in sec at which to -->
 <!-- switch to this TrafMonConfig serial number -->
 <!-- Format: as per ISO 8601 date representation -->
 <!-- YYYY-MM-DD hh:mm:ss -->
 <!-- pduCRCSize: how many bytes of PDU content digest [1..3] -->
 <!-- pduCRCFunc: hash function for computing PDU content digest-->
 <!-- CURRENTLY ONLY "MD5" is supported -->
 <!-- pktSignBytes: signature bytes of IP packet content digest -->
 <!-- valid values are [2..10] -->
 <!-- maxTravelTime: reasonable boundary, in milliseconds, for -->
 <!-- any packet to travel through the network. -->
 <!-- Outside this time window, packet of same -->
 <!-- ReportFlow and same signature are considered-->
 <!-- different. -->
 <!-- Furthermore, after this duration, an -->
 <!-- incomplete obs. record, whose missing info -->
 <!-- are expected from an alive probe, times-out -->
 <!-- in the collector (e.g. packet lost event) -->
 <!-- valid values are [100..50000] -->
 <!-- pduYoungWindow: time window, in seconds in the past, -->
 <!-- where the first time in a server received -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 162/248

 <!-- probe PDU is still considered fresh data -->
 <!-- valid values are [3..3600] -->
<!ELEMENT Collector (Addr,Output) >
<!ATTLIST Collector name ID #REQUIRED
 ID NMTOKEN #REQUIRED
 descr CDATA #IMPLIED
 burstRate NMTOKEN "10"
>
 <!-- ID: [256..] -->
 <!-- burstRate: how much PDU to expect in a burst -->
 <!-- valid values are [10..65535] -->
<!ELEMENT Addr EMPTY >
<!ATTLIST Addr ip NMTOKEN "0.0.0.0"
 port NMTOKEN #REQUIRED
 UDPBufferSize
 NMTOKEN "0"
>
 <!-- ip: IP on which to bind to receive PDUs -->
 <!-- port: port number on which to listen -->
 <!-- UDPBufferSize: kernel buffer size, in kilobytes, -->
 <!-- of UDP socket -->
 <!-- valid values are [0..65535] -->
 <!-- 0 means the kernel default max size -->
<!ELEMENT Output EMPTY >
<!ATTLIST Output dataFile CDATA "tmondata-%y%m%d%H%M%S"
 eventFile CDATA "tmonevent-%y%m%d%H%M%S"
 excepFile CDATA "tmonexcep-%y%m%d%H%M%S"
 period NMTOKEN #IMPLIED
>
 <!-- dataFile: CSV-file radix name for data output -->
 <!-- supports strftime strings (%H%M...) -->
 <!-- eventFile: CSV-file radix name for event output -->
 <!-- supports strftime strings (%H%M...) -->
 <!-- excepFile: CSV-file radix name for exceptions output-->
 <!-- supports strftime strings (%H%M...) -->
 <!-- period: number of minutes during which output -->
 <!-- accumulate in a same CVS-file -->
 <!-- ONLY VALID where strftime %M present -->
 <!-- Used as the modulo on the minute field-->
 <!-- valid values are [1..59] -->

<!ELEMENT Probe ((CapFile | Interface+), PDUSending*, PDUSaving?) >
<!ATTLIST Probe name ID #REQUIRED
 ID NMTOKEN #REQUIRED
 descr CDATA #IMPLIED
>
 <!-- ID: [0..255] -->

<!ELEMENT CapFile EMPTY >
<!ATTLIST CapFile filename CDATA #REQUIRED
 ID NMTOKEN #REQUIRED
 expr CDATA #IMPLIED
 rate (withDelay|fullSpeed) "withDelay"
>
 <!-- filename: Full pathname of packet capture file to read -->
 <!-- id: TrafMon-wide unique numeric ID of the probe -->
 <!-- interface that can distinguish among granular -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 163/248

 <!-- flow instances -->
 <!-- valid values are [1..65535] -->
 <!-- expr: tcpdump-like packet capture filter expression -->
 <!-- WHEN VLAN PARTLY TAGS PRESENT -->
 <!-- INVOLVE vlan at end of expr -->
 <!-- MATCH only IP packets -->
 <!-- DON'T use netmask based criteria -->
 <!-- rate: fullSpeed: captured pakets are processed -->
 <!-- untouched (with their original capt.-->
 <!-- time) without waiting between each -->
 <!-- withDelay: every packet has its capture time -->
 <!-- artificially translated by a fixed -->
 <!-- amount of time so as if the exact -->
 <!-- same traffic behaviour would occur -->
 <!-- 'now'. The necessary variable delay -->
 <!-- is respected before processing each -->
 <!-- next packet -->

<!ELEMENT Interface EMPTY >
<!ATTLIST Interface name NMTOKEN #REQUIRED
 ID NMTOKEN #REQUIRED
 descr CDATA #IMPLIED
 snapLen NMTOKEN "1600"
 bufPacketCount
 NMTOKEN "70000"
 expr CDATA #IMPLIED
>
 <!-- id: TrafMon-wide unique numeric ID of the probe -->
 <!-- interface that can distinguish among granular -->
 <!-- flow instances -->
 <!-- valid values are [1..65535] -->
 <!-- snapLen: maximum Ethernet frame Captured portion -->
 <!-- valid values are [125..65535] -->
 <!-- On Linux: -->
 <!-- snapLen=125 leads to 122 Eth capture => IP len=108 -->
 <!-- -->
 <!-- NOTE: -->
 <!-- Even on Ethernet (max MTU = 1500 bytes IP), -->
 <!-- larger packets can be actually captured due to -->
 <!-- reassembly being offloaded in the NIC Card -->
 <!-- Linux Ethtool -k: LRO - Large Receive Offload or -->
 <!-- or GRO - Generic Receive Offload -->
 <!-- ATTEMPT IS MADE TO DEACTIVATE THIS and the Reception -->
 <!-- Checksum processing offload upon initiatisation of -->
 <!-- the probe capture interfaces -->
 <!-- -->
 <!-- bufPacketCount: -->
 <!-- How many packets (of ~ snapLen) could be -->
 <!-- buffered upon traffic burst -->
 <!-- valid values are [1000..1000000] -->
 <!-- -->
 <!-- expr: tcpdump-like packet capture filter expression -->
 <!-- WHEN VLAN PARTLY TAGS PRESENT -->
 <!-- INVOLVE vlan at end of expr -->
 <!-- MATCH only IP packets -->
 <!-- DON'T use netmask based criteria -->
 <!-- LIMITATION: care must been taken with VLAN packets: -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 164/248

 <!-- using vlan in expression let the software -->
 <!-- use a four bytes offset -->
 <!-- BUT for mixed tagged and untagged traffic -->
 <!-- the expression "vlan or udp or tcp" could -->
 <!-- fail to work on some systems/NICs -->

<!ELEMENT PDUSending (SendTo+) >
<!ATTLIST PDUSending probeIP NMTOKEN "0.0.0.0"
 probePort NMTOKEN #REQUIRED
>
 <!-- probeIP: Source IP for sending PDUs -->
 <!-- 0.0.0.0 means ANY SOURCE ADDR -->
 <!-- probePort: Source port for sending PDUS -->
<!ELEMENT SendTo EMPTY >
<!ATTLIST SendTo collector IDREF #REQUIRED
 maxPDUSize NMTOKEN "300"
 maxPDUBuildTime
 NMTOKEN "300"
 minTimeGap NMTOKEN "100"
 heartBeatDelay
 NMTOKEN "10"
 timeout NMTOKEN "10"
 TOMult NMTOKEN "1"
 TOIncr NMTOKEN "0"
 retries NMTOKEN "2"
 breakBorderTime
 NMTOKEN "3"
 dropObsFinalTimeout
 NMTOKEN "60"
>
 <!-- collector: Name of target Collector -->
 <!-- maxPDUSize: maximum UDP payload, in bytes, of a PDU -->
 <!-- valid values are [200..1460] -->
 <!-- maxPDUBuildTime: maximum duration, in seconds, that a PDU -->
 <!-- under construction waits for new records -->
 <!-- before being sent -->
 <!-- 0 means to send each record in its own -->
 <!-- PDU, as soon as published -->
 <!-- valid values are [0..65535] -->
 <!-- minTimeGap: least gap, in msec, between two -->
 <!-- successive PDU -->
 <!-- valid values are [0..10000] -->
 <!-- heartBeatDelay: max silence delay, in sec, before -->
 <!-- publishing a possibly empty PDU to server -->
 <!-- valid values are [1..600] -->
 <!-- timeout: first PDU ack timeout in sec -->
 <!-- valid values are [1..120] -->
 <!-- TOMult: how many times previous ack timeout at -->
 <!-- next retry? -->
 <!-- valid values are [1..10] -->
 <!-- TOIncr: secs to add to -->
 <!-- (previous ack timeout * TOMult) -->
 <!-- valid values are [0..120] -->
 <!-- -->
 <!-- FOR TYPES OF OBSERVATIONS SUBJECT TO BE DISCARDED: -->
 <!-- retries: (maximum PDU send tries) minus 1 -->
 <!-- ALSO threshold for detecting loss of -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 165/248

 <!-- probe connectivity condition -->
 <!-- valid values are [0..100] -->
 <!-- breakBorderTime: time window, in sec, from detection -->
 <!-- of probe loss of connectivity, whose -->
 <!-- packet observations PDU's are -->
 <!-- continuously retried -->
 <!-- valid values are [0..300] -->
 <!-- dropObsFinalTimeout: probe will anyway discard its -->
 <!-- long retried obs after this quite -->
 <!-- long delay in MINUTES -->
 <!-- valid values are [1..12000] -->
 <!-- up to 1 week -->
 <!-- NOTE: retries and breakBorderTime do NOT apply to -->
 <!-- - Flow Instance Description PDU type -->
 <!-- which are always retried until PDU contents expire -->

<!ELEMENT PDUSaving EMPTY >
<!ATTLIST PDUSaving filepathname CDATA #REQUIRED
 maxPDUSize NMTOKEN "3000"
>
 <!-- filepathname: Full pathname of file radix where to -->
 <!-- locally save the various types of probe -->
 <!-- observation PDU's -->
 <!-- supports strftime strings (%H%M...) -->
<!-- FACTS-EO FlowClass covers a new TrafMon behaviour where the traffic -->
<!-- can be independently measured at the different probe/interfaces, and -->
<!-- the measurements are selectively aggregated and centralised, according-->
<!-- to Measure directives associated to different FlowClasses. -->
<!-- -->
<!-- A FlowClass is assigned one or more Filter expressions to designate to-->
<!-- which sets of packets and protocol exchanges its directives pertain. -->
<!-- A given Filter Expression is applied On one or more probe/interfaces -->
<!-- -->
<!-- Measurements for a FlowClass are segregated per GranularFlow, before -->
<!-- being centralised to a Server. -->
<!-- The Criteria to discover and discriminate the Granular Flows can be -->
<!-- applied via <FlowGrain> at the level of a FlowClass, or specialised -->
<!-- for specific Filter Expression. -->
<!-- -->
<!-- A given packet can well match several FlowClasses. Hence different -->
<!-- sets of measurement directives can apply to a same packet and protocol-->
<!-- exchange. -->

<!ELEMENT GranularFlow (DistinctIf?,DistinctAddr?,DistinctPort?,GroupBy*) >
<!ATTLIST GranularFlow name ID #REQUIRED
>
<!ELEMENT DistinctIf EMPTY >
 <!-- Packets seen at different Probe Interfaces lead to -->
 <!-- instances of granular flow, even when they produce same -->
 <!-- results for all other criteria. -->
 <!-- NOTE: -->
 <!-- This may NOT be used when matching BI-DIRECTIONAL -->
 <!-- traffic flow on the basis of packets captured by a -->
 <!-- PASSIVE TAP devices: each direction being seen by a -->
 <!-- separate capture interface. -->
<!ELEMENT DistinctAddr EMPTY >
<!ATTLIST DistinctAddr field (src|srcnet|dst|dstnet|srcdst|srcdstnet

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 166/248

 |addr|net|addrpair|netpair) #REQUIRED
 mask CDATA #IMPLIED
>
 <!-- field: which fields to preserve in grouping measurements -->
 <!-- a) UNI-DIRECTIONAL -->
 <!-- src: keep granularity per source IP address -->
 <!-- srcnet: keep granularity per src IP subnet: using mask -->
 <!-- dst: keep granularity per destination IP address -->
 <!-- dstnet: keep granularity per dst IP subnet: using mask -->
 <!-- srcdst: keep granularity per source/dest. IP addresses -->
 <!-- srcdstnet:keep granularity per src/dst IP subnets: mask -->
 <!-- b) BI-DIRECTIONAL -->
 <!-- addr: keep granularity per IP address of 1 peer -->
 <!-- net: keep gran. per IP subnet of 1 peer: using mask -->
 <!-- addrpair: keep granularity per pair of IP addresses -->
 <!-- netpair: keep granul. per pair of IP subnets: using mask-->
 <!-- -->
 <!-- mask: subnet mask: "xxx.xxx.xxx.xxx" or "/yy" notation -->

<!ELEMENT DistinctPort EMPTY >
<!ATTLIST DistinctPort field (sport|dport|sdport
 |port|portpair) #REQUIRED
 portspec (alldistinct|privileged) "alldistinct"
>
 <!-- field: which fields to preserve in grouping measurements -->
 <!-- a) UNI-DIRECTIONAL -->
 <!-- sport: keep granularity of source UDP/TCP port number -->
 <!-- <=> any:port to any:any -->
 <!-- dport: keep granularity of destin. UDP/TCP port number-->
 <!-- <=> any:any to any:port -->
 <!-- sdport: keep granularity of src/dst UDP/TCP prt numbers-->
 <!-- <=> any:port1 to dst:port2 -->
 <!-- EITHER without <DistinctAddr> -->
 <!-- OR ONLY with <DistinctAddr field=(src|srcnet -->
 <!-- and/or dst|dstnet) -->
 <!-- port: EITHER with <DistinctAddr field=(src|srcnet) > -->
 <!-- same as sport: <=> src:sport to any:any -->
 <!-- OR with <DistinctAddr field=(dst|dstnet) > -->
 <!-- same as dport: <=> any:any to dst:dport -->
 <!-- OR with <DistinctAddr field=(srcdst[net]) > -->
 <!-- preserves smallest port number: -->
 <!-- if sport <= dport -->
 <!-- <=> src:sport to dst:any -->
 <!-- if sport > dport -->
 <!-- <=> src:any to dst:dport -->
 <!-- portpair: ONLY with <DistinctAddr field=(src|srcnet -->
 <!-- and/or dst|dstnet) -->
 <!-- same as sdport: <=> src:sport to dst:dport -->
 <!-- OTHER COMBINATIONS of <DistinctAddr>+<DistinctPort> -->
 <!-- ARE NOT ALLOWED (and meaningless) -->
 <!-- b) BI-DIRECTIONAL -->
 <!-- port: EITHER without <DistinctAddr> -->
 <!-- keep granul. of UDP/TCP port number of 1 peer -->
 <!-- if sport <= dport -->
 <!-- <=> any:sport to any:any -->
 <!-- if sport > dport -->
 <!-- <=> any:dport to any:any -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 167/248

 <!-- OR with <DistinctAddr field=(addr|net) > -->
 <!-- keep granul. addr:port to/from any:any -->
 <!-- net:port to/from any:any -->
 <!-- WHERE addr/net <= peer any -->
 <!-- OR with <DistinctAddr field=(addrpair|netpair) > -->
 <!-- keep granul. of address pair and smallest port:-->
 <!-- if port1 <= port2 -->
 <!-- addr1:port1 to/from addr2:any -->
 <!-- net1:port1 to/from net2:any -->
 <!-- if port1 > port2 -->
 <!-- addr1:any to/from addr2:port2 -->
 <!-- net1:any to/from net2:port2 -->
 <!-- portpair: -->
 <!-- EITHER without <DistinctAddr> -->
 <!-- keep granul. of both UDP/TCP port numbers -->
 <!-- <=> any:port1 to/from any:port2 -->
 <!-- WHERE port1 <= port2 -->
 <!-- OR with <DistinctAddr field=(addr|net) > -->
 <!-- keep granul. addr:port1 to/from any:port2 -->
 <!-- net:port1 to/from any:port2 -->
 <!-- WHERE addr/net <= peer any -->
 <!-- OR with <DistinctAddr field=(addrpair|netpair) > -->
 <!-- keep granul. addr1:port1 to/from addr2:port2 -->
 <!-- net1:port1 to/from net2:port2 -->
 <!-- -->
 <!-- portspec: -->
 <!-- *alldistinct: keep all values distinct -->
 <!-- privileged: distinguish all service ports<1024 -->
 <!-- BUT group all ports>=1024 (as 65535) -->

<!ELEMENT GroupBy EMPTY >
<!ATTLIST GroupBy field (ipsizes
 |ipproto|tos|df|mf|frag|ttl
 |icmp
 |tcptype) #REQUIRED
 sizeclasses (per200|per400) #IMPLIED
 tosspec (precedence|dscp|tosbyte) #IMPLIED
 fragspec (fragnumber|fragoffset) #IMPLIED
 icmpspec (icmpclass|icmptype
 |icmptypecode) #IMPLIED
 tcptypespec (byflags|byflagsandretran
 |S_D_A_E|S_D_A_E_R
 |S_F_R_A_E|S_F_R_A_E_R) "S_D_A_E"
>
 <!-- ipsizes: keep granularity per 'sizeclasses' of IP pkt -->
 <!-- ipproto: keep granularity per UDP|TCP|Other IP protocol -->
 <!-- tos: keep granularity as per IP TypeOfSvc 'tosspec' -->
 <!-- df: keep granularity per IP Don't Fragment flag -->
 <!-- mf: keep granularity per IP More Fragment flag -->
 <!-- frag: keep granularity as per IP Fragment 'fragspec' -->
 <!-- ttl: keep granularity per IP Time-to-Live value -->
 <!-- icmp: keep granularity of ICMP pkts as per 'icmpspec'-->
 <!-- tcptype: keep granularity as per 'tcptypespec' grouping -->
 <!-- -->
 <!-- sizeclasses: groups IP packet sizes in buckets -->
 <!-- per400: 4 buckets: boundaries 400, 800, 1200 -->
 <!-- per200: 8 buckets: 200,400,600,800,1000,1200,1400 -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 168/248

 <!-- BUT, for datagram cummulated IP sizes, sizes >= 1600 -->
 <!-- are grouped by thousands: 1600, 2000, 3000 ... 7000, 8000 -->
 <!-- -->
 <!-- tosspec: -->
 <!-- precedence: per value of the three ToS precedence bits -->
 <!-- dscp: per value of the six DSCP bits -->
 <!-- tosbyte: per distinct values of the complete ToS byte -->
 <!-- -->
 <!-- fragspec: -->
 <!-- fragnumber: per ordinal number of the fragment -->
 <!-- fragoffset: per value of the fragment offset -->
 <!-- -->
 <!-- icmpspec: -->
 <!-- icmpclass: group as per Echo | Error | Info | Other -->
 <!-- icmptype: per value of the ICMP Type byte -->
 <!-- icmptypecode: per value of the ICMP Type and Code bytes -->
 <!-- -->
 <!-- tcptypespec: distinguish -->
 <!-- byflags: per distinct values of the TCP flags byte -->
 <!-- byflagsandretran: idem, but also distinguish between -->
 <!-- first and subsequent transmissions -->
 <!-- of a not empty data segment -->
 <!-- *S_D_A_E: Start (syn/syn-ack), -->
 <!-- Data (not empty payload) -->
 <!-- Ack (ack flag, but no payload) -->
 <!-- End (fin/fin-ack/reset) -->
 <!-- S_D_A_E_R: Start (syn/syn-ack), -->
 <!-- Data (not empty payload) -->
 <!-- Ack (ack flag, but no payload) -->
 <!-- End (fin/fin-ack) -->
 <!-- RESET (rst flag) -->
 <!-- S_F_R_A_E: Start (syn/syn-ack), -->
 <!-- FIRST transmission of data segment -->
 <!-- RETRANSMISSION of data segment -->
 <!-- Ack (ack flag, but no payload) -->
 <!-- End (fin/fin-ack/reset) -->
 <!-- S_F_R_A_E_R: Start (syn/syn-ack), -->
 <!-- FIRST transmission of data segment -->
 <!-- RETRANSMISSION of data segment -->
 <!-- Ack (ack flag, but no payload) -->
 <!-- End (fin/fin-ack) -->
 <!-- RESET (rst flag) -->

<!ELEMENT FlowClass (Measure, FlowGrain?, Filter+, Condition?)>
<!ATTLIST FlowClass id NMTOKEN #REQUIRED
 name ID #REQUIRED
 descr CDATA #IMPLIED
>

<!ELEMENT Measure (Delay?, Stats?) >
<!ATTLIST Measure interval (each|10s|20s|30s
 |1min|10min|20min|30min
 |1h) #REQUIRED
>
 <!-- Maximum 1 <Delay>, maximum 1 <Stats>, but not empty -->

<!ELEMENT Delay ((OneWayDelay|RoundTripDelay|InterPacket),Histogram?)>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 169/248

<!ATTLIST Delay for (firstFragment|allFragments
 |datagram) #REQUIRED
 granularity (individual|collectorAggregated
 |probeAggregated) #REQUIRED
>
<!-- How delay measurements are processed: -->
<!-- ===================================== -->
<!-- Either individual measurements are loaded in the database, or these -->
<!-- are pre-aggregated into histogram slices, either by the collector or -->
<!-- where applicable, by the probe itself, before transmission. -->
<!-- -->
<!-- granularity: Where individual measurements are -->
<!-- aggregated: -->
<!-- individual Individual measured values are delivered -->
<!-- by the probe to the collector and from the -->
<!-- collector to the database. -->
<!-- So actual aggregation occurs inside the -->
<!-- database itself. -->
<!-- collectorAggregated -->
<!-- Individual measured values are delivered -->
<!-- by the probe to the collector and these are-->
<!-- aggregated inside the collector which -->
<!-- supplies the database with short duration -->
<!-- histogram slices -->
<!-- probeAggregated -->
<!-- Individual measured values are aggregated -->
<!-- inside the probe which transmits resulting -->
<!-- short duration histogram slices to the -->
<!-- collector, in turn supplying them to the -->
<!-- database -->
<!-- ==> probeAggregated NOT VALID for Delay type="oneway" -->
<!-- ==> probeAggregated IGNORED for Measure interval="each" -->
<!-- -->
<!-- interval: Length of the histogram slice aggregating -->
<!-- the measurements -->
<!-- each Used when data are not aggregated -->
<!-- (granularity=='individual'), meaning that -->
<!-- any new value has to be transmitted as soon-->
<!-- as computed and individually supplied by -->
<!-- the collector to the database. -->
<!-- (duration) Over which duration measurements have to be-->
<!-- pre-aggregated (in the probe or collector) -->

<!-- Measuring One-Way Latencies: -->
<!-- ============================ -->
<!-- Means that probes sends individual timestamps for data units to the -->
<!-- central collector(s) -->
<!-- -->
<!-- ==> Potentially high volume of observations need to be centralised -->
<!-- in the collector -->
<!-- ==> Implies granularity=individual or collectorAggregated -->
<!-- -->
<!-- for: Which data unit to measure? -->
<!-- firstFragment One capture timestamp for single -->
<!-- or first IP fragment of a datagram/segment -->
<!-- ==> IP reassembly is not required for this -->
<!-- (second and subsequent fragments are -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 170/248

<!-- ignored for this) -->
<!-- allFragments One capture timestamp for every fragment -->
<!-- ==> only meaningful when NO fragmentation -->
<!-- between concerned probing points -->
<!-- ==> IP reassembly is required for -->
<!-- FlowClass membeship determination -->
<!-- + APPLIES ALSO to subseq. fragments not individually -->
<!-- matching Filter -->
<!-- + DOES NOT APPLY to subseq. fragments explicitly -->
<!-- rejected by StatePred Condition -->
<!-- -->
<!-- datagram One capture timestamp for unfragmented pkt -->
<!-- But two capture timestamps for chains of -->
<!-- datagram fragments: {first seen, last seen}-->
<!-- ==> IP reassembly is required for this -->
<!-- ==> Latency -->
<!-- = lastTS(dst side) -firstTS(src side)-->
<!-- -->
<!ELEMENT OneWayDelay (Hop+, Sign?) >

<!ATTLIST OneWayDelay from NMTOKEN #IMPLIED
 to NMTOKEN #IMPLIED
 lost (each|count) "each"
>
 <!-- Producing One-Way Latency: -->
 <!-- ========================== -->
 <!-- When Delay granularity=collectorAggregated -->
 <!-- produce the delay between the 'from' Hop and the 'to' Hop -->
 <!-- -->
 <!-- When Delay granularity=individual -->
 <!-- 'from' and 'to' are disregarded -->
 <!-- Individual HOP timestamps records are produced -->
 <!-- -->
 <!-- Note that Delay granularity=probeAggregated IS NOT VALID -->
 <!-- -->
 <!-- lost "each" : produce individual pkt/datagram lost records -->
 <!-- "count": produce count of lost data units per given -->
 <!-- Measure interval unit -->
<!ELEMENT Hop EMPTY >
<!ATTLIST Hop name NMTOKEN #REQUIRED
 descr CDATA #IMPLIED
>
 <!-- Measuring One-Way Latencies: hopName per timestamp -->
 <!-- ============================ ===================== -->
 <!-- NOTE: <Hop> inside a <OneWayDelay> tag are ordered!! -->
 <!-- The order represents the chronology of each timestamp in -->
 <!-- the sequence, whatever its type (capture/IP/NTP) -->
 <!-- -->
 <!-- This tag must be in one or more copies in order to -->
 <!-- specify the sequence of hop timestamps expected for -->
 <!-- completing a valid record. -->
 <!-- More than one probe (interface) can provide the same time -->
 <!-- in the case of redundant transmission via more than one -->
 <!-- link. But in any way, identical timestamp IDs are -->
 <!-- expected to identify the same logical hop along the path. -->
 <!-- If a probing point is labeled 'dmz', two different probes -->
 <!-- reporting times for 'dmz' are supposed to be located in -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 171/248

 <!-- alternate instances of the corporate DMZ. -->
 <!-- Every Hop name is assigned inside one or more <Filter>: -->
 <!-- + either as the capture timestamp at the interface -->
 <!-- + or as an IP option timestamp of a given sequence number -->
 <!-- + or as an NTP timsetamp of a given type from either the -->
 <!-- NTP Request or NTP Response -->

<!ELEMENT Sign (Mask*, Chunk*) >
<!ELEMENT Mask EMPTY >
<!ATTLIST Mask field (srcAddr|dstAddr|srcPort|dstPort
 |ipFragData|ipTOS|ipID|ipOpts
 |transportCkSum) #REQUIRED
>
 <!-- There can be multiple fields being masked. -->
 <!-- -->
 <!-- field: which part(s), if any, of the packet to -->
 <!-- zeroize before signature hash computation. -->
 <!-- -->
 <!-- Masking any of srcAddr, dstAddr, srcPort, -->
 <!-- dstPort also implies masking transportCkSum -->
 <!-- -->
 <!-- Mask directive can be combined with Chunk directives: -->
 <!-- Specified fields laying into selected Chunks -->
 <!-- do not participate to the signature hashing -->
 <!-- Absence of Mask directive leads to masking only the -->
 <!-- systematically (TTL, cksum) - or supposedly (ipOpts) - -->
 <!-- varying fields of the IP header -->

<!ELEMENT Chunk EMPTY >
<!ATTLIST Chunk start NMTOKEN "0"
 relTo (ipHeader|ipPayload|tcpHeader|tcpPayload
 |udpHeader|udpPayload) "ipHeader"
 length NMTOKEN "0"
>
 <!-- There can be one or multiple disjoint chunks of bytes -->
 <!-- being concatenated then hashed to produce the signature -->
 <!-- -->
 <!-- By default (absence of Chunk directive), the entire packet -->
 <!-- is subject to hashing, starting start the IP header -->
 <!-- (masking at least systematically varying fields of IP hdr) -->
 <!-- -->
 <!-- When <Delay type="oneway" for="datagram" -->
 <!-- or for="firstFragment"> is specified -->
 <!-- a fragmented datagram is reassembled, and the IP -->
 <!-- header, only with common stable fields, being appended-->
 <!-- the reassembled IP payload is subject to signature, -->
 <!-- according to specified Mask/Chunk directives. -->
 <!-- ==> length==0 means to the end of reassembled payload -->
 <!-- -->
 <!-- start: offset form the given relTo base. -->
 <!-- ==0 by default -->
 <!-- valid values [0..70000] (max reass. dgram = 65535) -->
 <!-- -->
 <!-- relTo: when start==0 (or absent): -->
 <!-- ipHeader: Starts at first byte of IP header -->
 <!-- -->
 <!-- ipPayload|tcpHeader|udpHeader: -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 172/248

 <!-- Starts at first byte after IP header -->
 <!-- and IP options -->
 <!-- VALID FOR ANY PROTOCOL ABOVE IP -->
 <!-- VALID FOR ANY IP FRAGMENT INDIV. MEASURED-->
 <!-- -->
 <!-- tcpPayload: Starts at first byte after TCP header -->
 <!-- and TCP options -->
 <!-- IGNORED FOR NON-TCP PACKETS -->
 <!-- IGNORED FOR NON-FIRST IP FRAGMENTS -->
 <!-- INDIVIDUALLY MEASURED -->
 <!-- -->
 <!-- udpPayload: Starts at first byte after TCP header -->
 <!-- IGNORED FOR NON-UDP PACKETS -->
 <!-- IGNORED FOR NON-FIRST IP FRAGMENTS -->
 <!-- INDIVIDUALLY MEASURED -->
 <!-- -->
 <!-- length: how many bytes, since the specified start of -->
 <!-- the chunk, do participate to the pkt signature-->
 <!-- hash computation -->
 <!-- valid values [0..70000] (max reass. dgram = 65535) -->
 <!-- 0 MEANS TO END OF CAPTURED DATA -->
 <!-- OPTIONAL, default to entire pkt -->
 <!-- can be overriden on a per flow basis -->
 <!-- -->
 <!-- IMPORTANT NOTE: -->
 <!-- Chunks will be concatenated in the order specified. -->
 <!-- Overlapping chunks are concatenanted independently, -->
 <!-- possibly leading to redundant data segments. -->
 <!-- Nevertheless, this will give same signature in different -->
 <!-- probes. -->

<!ELEMENT RoundTripDelay EMPTY>
<!ATTLIST RoundTripDelay protocol (icmpEcho|udpNTP|udpSNMP|udpDNS
 |tcpSynAck|tcpOptRTTM
 |tcpDataAck) #REQUIRED
 with (initiator|responder
 |both|unspecified) "unspecified"
>
<!-- Measuring Round-trip Delays for specific protocol exchanges: -->
<!-- == -->
<!-- The probe itself can match corresponding pairs of data units, -->
<!-- one per direction, and therefore compute the round-trip time -->
<!-- between the probing point and one of the communication side. -->
<!-- -->
<!-- ==> Measurements can be individual (from probe to collector to -->
<!-- database), or aggregated in the probe, or individually -->
<!-- forwarded and aggregated by the collector -->
<!-- As specified by <Delay> directive -->
<!-- -->
<!-- target: Which data unit to measure? -->
<!-- (Default "firstFragment") -->
<!-- firstFragment One capture timestamp for single -->
<!-- or first IP fragment of a datagram/segment -->
<!-- ==> IP reassembly is not required for this -->
<!-- (second and subsequent fragments are -->
<!-- ignored for this) -->
<!-- allFragments Meaningless in case of round-trip -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 173/248

<!-- datagram One capture timestamp for unfragmented pkt -->
<!-- But two capture timestamps for chains of -->
<!-- datagram fragments: {first seen, last seen}-->
<!-- ==> IP reassembly is required for this -->
<!-- ==> Round-Trip -->
<!-- = firstTS(ingress) -lastTS(egress) -->
<!-- protocol: -What upper layer protocol is covered by the -->
<!-- <FlowClass> definition (<Filter> MUST BE -->
<!-- PROPERLY EXPRESSED TO MATCH THIS PROTOCOL) -->
<!-- -Hence specifies which upper layer protocol -->
<!-- analysis has to be applied on <FlowClass> -->
<!-- matching packets. -->
<!-- TCP connections: -->
<!-- Identifies which further peer packets matching -->
<!-- is required. -->
<!-- Syn/Syn+Ack: 'with' is implied, its given value is not-->
<!-- considered. -->
<!-- udpSNMP or -->
<!-- udpDNS: Round-trip between the probing point and the -->
<!-- SNMP Agent or DNS Server -->
<!-- udpNTP: -Round-trip between the probing point and the -->
<!-- NTP Server, but query/reply Transmit Time -->
<!-- permit to know latency between probe and each -->
<!-- end (when these have there time precisely -->
<!-- synchronised); hence: -->
<!-- -ALSO deduced Round-Trip between NTP client and -->
<!-- NTP server: -->
<!-- ==> Round-Trip(client, server) -->
<!-- = RTT(probe, server) -->
<!-- + 2 * Delay(client, probe)-->

<!ELEMENT InterPacket EMPTY >

<!-- Measuring Inter-Packet (inter-data-unit) Delays: -->
<!-- == -->
<!-- Means that the probe itself can compute the delay between capture -->
<!-- timestamps of individual packets or reassembled datagram units -->
<!-- -->
<!-- ==> Measurements can be individual (from probe to collector to -->
<!-- database), or aggregated in the probe, or individually -->
<!-- forwarded and aggregated by the collector -->
<!-- As specified by <Delay> directive -->
<!-- -->
<!-- target: Which successive data unit to measure? -->
<!-- firstFragment Compare TS of single -->
<!-- or first IP fragment of a datagram/segment -->
<!-- ==> IP reassembly is not required for this -->
<!-- (second and subsequent fragments are -->
<!-- ignored for this) -->
<!-- allFragments Compare every fragment with its successor -->
<!-- datagram One capture timestamp for unfragmented pkt -->
<!-- But two capture timestamps for chains of -->
<!-- datagram fragments: {first seen, last seen}-->
<!-- ==> IP reassembly is required for this -->
<!-- ==> InterDatagram delay -->
<!-- = firstTS(next) - lastTS(previous) -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 174/248

<!ELEMENT Histogram EMPTY >
<!ATTLIST Histogram lowBound NMTOKEN #REQUIRED
 highBound NMTOKEN #REQUIRED
 sliceCount NMTOKEN "12"
>

<!-- For any three types of Delay, EITHER "collectorAggregated" or -->
<!-- "probeAggregated" Histogram MAY (optional) be specified to preserve -->
<!-- several ranges of observed delay values: -->
<!-- -->
<!-- When Histogram is not specified, all values are aggregated over time -->
<!-- period into a single unbound bucket (no histogram slices) -->
<!-- -->
<!-- lowBound: First slice covers all values < lowBound -->
<!-- highBound: Last slice covers all values >= highBound -->
<!-- sliceCount: In between first and last slices, there are -->
<!-- sliceCount-2 intervals of values, of equal -->
<!-- length -->
<!-- Currently only used for Delay metrics, the values are -->
<!-- signed integers coded in 32 bit. Specifying any bound -->
<!-- as either INT32_MIN (0xffff or -2147483648) -->
<!-- or INT32_MAX (0x7fff or 2147483647) -->
<!-- means "unbound". -->

<!ELEMENT Stats (PacketCounters?,TCPConnections?,FileTransfers?) >
<!ATTLIST Stats verifChksum (none|bestEffort|fullReassembly)
 #REQUIRED
>
<!ELEMENT PacketCounters EMPTY >
<!ATTLIST PacketCounters for (firstFragment|allFragments
 |datagram) #REQUIRED
>

<!ELEMENT TCPConnections EMPTY >
<!ATTLIST TCPConnections granularity (each|groupedByCollector
 |groupedByProbe) "each"
>

<!ELEMENT FileTransfers EMPTY >
<!ATTLIST FileTransfers protocol (FTP|HTTP) #REQUIRED
 granularity (each|groupedByCollector
 |groupedByProbe) "each"
 ftpdata (start-stop|full) #IMPLIED
>
 <!-- Measuring FTP File Transfers -->
 <!-- ++++++++++++++++++++++++++++ -->
 <!-- protocol="FTP" ==> ftpdata field must be specified -->
 <!-- to permit matching the associated FTP -->
 <!-- data connections that would not -->
 <!-- otherwise be analysed by other Flow -->
 <!-- Classes Filters. -->
 <!-- ftpdata: start-stop: -->
 <!-- Only look at SYN (or first seen) packet -->
 <!-- and at FIN or RST packet of any TCP -->
 <!-- connection between the pair of IP -->
 <!-- addresses of an FTP Control connection -->
 <!-- ftpdata: full: -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 175/248

 <!-- Look at every packet of any TCP -->
 <!-- connection between the pair of IP -->
 <!-- addresses of an FTP Control connection -->
 <!-- RESTRICTION : Only works when client IP (PORT) or server -->
 <!-- IP (PASV) stays the same between Control and -->
 <!-- Data connections. -->

<!ELEMENT FlowGrain EMPTY >
<!ATTLIST FlowGrain ref IDREF #REQUIRED
>

<!ELEMENT Filter (On+, CaptureTimeStamp?,
 (IpOptTimestamp | NtpTimestamp)*, NatPat*,
 PacketExpr, FlowGrain?)>

<!ELEMENT On EMPTY >
<!ATTLIST On probe IDREF #REQUIRED
 if NMTOKEN #REQUIRED
>
 <!-- probe: a reference to the name of the probe -->
 <!-- to which the Packet Filter Expression applies-->
 <!-- if: a reference to the probe interface name -->
 <!-- to which the Packet Filter Expression applies-->

<!ELEMENT CaptureTimeStamp EMPTY >
<!ATTLIST CaptureTimeStamp
 hopName NMTOKEN #REQUIRED
>
<!ELEMENT IpOptTimestamp EMPTY >
<!ATTLIST IpOptTimestamp ipTSNum NMTOKEN #REQUIRED
 hopName NMTOKEN #REQUIRED
>

<!ELEMENT NtpTimestamp EMPTY >
<!ATTLIST NtpTimestamp ntpTime (originreq|recvdreq
 |xmitreq|originrsp
 |recvdrsp|xmitrsp) #REQUIRED
 hopName NMTOKEN #REQUIRED
>
 <!-- Capture Timestamps on packet/datagram -->
 <!-- == -->
 <!-- name of the hop timestamp at a probing point -->
 <!-- -->
 <!-- Optional Additional Timestamps on packet/datagram -->
 <!-- == -->
 <!-- -->
 <!-- + based on IP OPTION TIMESTAMP (milliseconds since midnight-->
 <!-- The nth (ipTSNum) IP timestamp in the flow packets is -->
 <!-- mapped to the given hopName -->
 <!-- 1 <= ipTSNum <= 9 -->
 <!-- -->
 <!-- + based on UDP NTP Embedded Timestamps -->
 <!-- Designates, respectively for a request or response, -->
 <!-- which of the three relevant NTP Timestamps to report -->
 <!-- as hopName -->
 <!-- This requires firstFragment|datagram -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 176/248

<!ELEMENT NatPat EMPTY>
<!ATTLIST NatPat translate (src|dst|addr
 |sport|dport|port) #REQUIRED
 from CDATA #IMPLIED
 into CDATA #REQUIRED
>
 <!-- Address and/or Port Translation for Probing Point(s) -->
 <!-- == -->
 <!-- -->
 <!-- Granular flows corresponding to this FlowClass and -->
 <!-- discovered at the given probing point(s) (as per <On> -->
 <!-- clause(s)> must translate their identification information-->
 <!-- transmitted to the collector according to the given -->
 <!-- <NatPat> directive(s) for permitting common network-wide -->
 <!-- determination of same flows independent on their local -->
 <!-- translation on IP address(es) and UDP/TCP port number(s) -->
 <!-- -->
 <!-- translate: -->
 <!-- src or dst: specifies that the source or destination -->
 <!-- locally seen IP address is subject to -->
 <!-- translation before being mentioned to the -->
 <!-- collector. -->
 <!-- addr: specifies that both the source and destination-->
 <!-- locally seen IP addresses are subject to -->
 <!-- translation before being mentioned to the -->
 <!-- collector. -->
 <!-- ==> only meaningful with explicit 'from' value-->
 <!-- sport or dport: -->
 <!-- specifies that the source port number or -->
 <!-- destination port number locally seen value has-->
 <!-- to be translated before being mentioned to the-->
 <!-- collector. -->
 <!-- port: specifies that both the source and destination-->
 <!-- locally seen port number values are subject to-->
 <!-- translation before being mentioned to the -->
 <!-- collector. -->
 <!-- ==> only meaningful with explicit 'from' value-->
 <!-- from is OPTIONAL -->
 <!-- absent: replace the value of the field indicated by -->
 <!-- 'translate' whatever it is, with the value -->
 <!-- provided by 'into' -->
 <!-- ==> only 'src', 'dst, 'sport' or dport' are -->
 <!-- meaningful here), -->
 <!-- present: gives the value of the field(s) indicated by -->
 <!-- 'translate' which would be subject to be -->
 <!-- replaced by that given by 'into' -->
 <!-- into: the replacing value for field(s) designated by -->
 <!-- 'translate' -->

<!ELEMENT PacketExpr (Predicate|AND|NotAND)>
<!ELEMENT AND (Predicate|OR|NotOR)+>
<!ELEMENT NotAND (Predicate|OR|NotOR)+>
<!ELEMENT OR (Predicate|SubAND|SubNotAND)+>
<!ELEMENT NotOR (Predicate|SubAND|SubNotAND)+>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 177/248

<!ELEMENT SubAND EMPTY>
<!ELEMENT SubNotAND EMPTY>
 <!-- Packet Filter Expression for <FlowClass> match -->
 <!-- == -->
 <!-- This expression has up to three layers of sub-expressions. -->
 <!-- Either Single-predicate: -->
 <!-- <PacketExpr> -->
 <!-- <Predicate field=... op=... value=.../> -->
 <!-- </PacketExpr> -->
 <!-- Or predicate AND predicate AND predicate ... -->
 <!-- <PacketExpr> -->
 <!-- <AND> -->
 <!-- <Predicate field=... op=... value=.../> -->
 <!-- <Predicate field=... op=... value=.../> -->
 <!-- ... -->
 <!-- </AND> -->
 <!-- </PacketExpr> -->
 <!-- Or NOT (predicate AND predicate AND predicate ...) -->
 <!-- <PacketExpr> -->
 <!-- <NotAND> -->
 <!-- <Predicate field=... op=... value=.../> -->
 <!-- <Predicate field=... op=... value=.../> -->
 <!-- ... -->
 <!-- </NotAND> -->
 <!-- </PacketExpr> -->
 <!-- -->
 <!-- The list inside <AND> ... </AND> can also contain 1 or more-->
 <!-- alternatives of predicates, introducing a second level -->
 <!-- with the <OR> ... </OR> or its contrary <NotOR> .. </NotOR>-->
 <!-- -->
 <!-- For sake of completeness, elements joined by an <OR> or -->
 <!-- <NotOR> connectives can be a mix of predicates and of -->
 <!-- sub-expressions consisting only in predicates, assembled by-->
 <!-- logical AND connective (<SubAND> tag) or their contrary -->
 <!-- (<SubNorAND> tag) -->

<!ELEMENT Predicate EMPTY>
<!ATTLIST Predicate field (src|dst|addr
 |ipsize|ttl|tosprec|tosdscp|tosbyte
 |df|mf|fragofst
 |proto
 |icmpTypeCode
 |sport|dport|port
 |syn|fin|ack|psh|urg) #REQUIRED
 op (eq|ne|lt|le|gt|ge|betw|mask) #REQUIRED
 value CDATA #REQUIRED
 value2 CDATA #IMPLIED
>
 <!-- src or dst: Predicate applies respectively to the source -->
 <!-- or destination IP address field of the captured-->
 <!-- packet -->
 <!-- addr: Predicate applies any of source or destination -->
 <!-- IP address fields of the captured packet -->
 <!-- The 'mask' operator permits to test subnet membership -->
 <!-- ipsize: Length of the IP fragment, in bytes, including -->
 <!-- the 20 bytes of IPv4 header and the potential -->
 <!-- IPv4 options data. -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 178/248

 <!-- ttl: The IP Time-to-Leave byte value -->
 <!-- tosprec: The numeric prority (precedence) given in the -->
 <!-- three high-order bits of the Type-of-Service -->
 <!-- byte. -->
 <!-- tosdscp: The numeric Differentiated Service Code Point -->
 <!-- given in the six high-order bits of the IPv4 -->
 <!-- Type-of-Service byte. -->
 <!-- tosbyte: The numeric value of the complete IPv4 -->
 <!-- Type-of-Service byte. -->
 <!-- Subject to 'mask' operator -->
 <!-- df: The boolean "Don't Fragment" IPv4 flag bit -->
 <!-- mf: The boolean "More Fragment" IPv4 flag bit -->
 <!-- fragofst: The value of the IPv4 Fragment Offset, -->
 <!-- expressed in 8-byte words -->
 <!-- Unfragmented pkt: (mf == 0) AND (fragofst == 0) -->
 <!-- First fragment or unfragmented pkt: (fragofst == 0) -->
 <!-- proto: valid operators are "eq", "ne", "mask" -->
 <!-- valid value are "esp", "ah", "udp", "tcp", -->
 <!-- "icmp", "icmpEcho", "icmpFragNeed", -->
 <!-- "icmpSrcQuench", "icmpTTLexpired", -->
 <!-- "icmpReassemblyFailed", "icmpUnreachable", -->
 <!-- "icmpOtherError", "icmpInfo", "icmpOther" -->
 <!-- Note that upper layer protocols are not know at -->
 <!-- <PacketExpr> level, applied on individual packet. -->
 <!-- This <FlowFilter> is precisely used for determining-->
 <!-- <FlowClass> membership, whose <Measure> statements -->
 <!-- permit to identify applicable upper layer protocol -->
 <!-- analysis. Hence this filter permits the user to -->
 <!-- specify the upper layer protocol, (typically based -->
 <!-- TCP/UDP service 'port'). -->
 <!-- icmpTypeCode is an alternative to 'proto'. It designates -->
 <!-- the 2-byte ICMP Type and ICMP code of an ICMP -->
 <!-- packet. -->
 <!-- Subject to 'mask' operator -->

<!ELEMENT Condition (StatePred|AND_list|NotAND_list|OR_list|NotOR_list)>
<!ELEMENT AND_list (StatePred+)>
<!ELEMENT NotAND_list (StatePred+)>
<!ELEMENT OR_list (StatePred+)>
<!ELEMENT NotOR_list (StatePred+)>

<!ELEMENT StatePred EMPTY>
<!ATTLIST StatePred state (fragnum|fragcnt
 |dgramsize) #REQUIRED
 op (eq|ne|lt|le|gt|ge|betw) #REQUIRED
 value CDATA #REQUIRED
 value2 CDATA #IMPLIED
>
 <!-- Not yet implemented -->
 <!-- |tcpwindow -->
 <!-- |tcpretransmitted -->
 <!-- |tcpdirtyopen -->
 <!-- |tcpdirtyclose -->
 <!-- |tcpemptyconn -->
 <!-- |ftpemptysession -->
 <!-- |ftpnofiletransfer -->
 <!-- |ftpactivetransfer -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 179/248

 <!-- |ftppassivetransfer) #REQUIRED -->
 <!-- The <FlowClass> optional <Condition> permits to express -->
 <!-- additional contraints on matching packets, based on result -->
 <!-- of statefull analysis (e.g. IP reassembly, or TCP -->
 <!-- connection follow-on) -->
 <!-- -->
 <!-- Only a single-level of predicates can be expressed, -->
 <!-- assembled by one of the following boolean connectives: -->
 <!-- none: single state predicate only -->
 <!-- <AND_list>: all state predicates must be true -->
 <!-- <NotAND_list>: at least one of the predicates is false -->
 <!-- <OR_list>: at least one of the predicates is true -->
 <!-- <NotOR_list>: all state predicates must be false -->
 <!-- -->
 <!-- fragnum: IP Fragment number (first is 1) -->
 <!-- fragcnt: Number of IP fragment in datagram/segment -->
 <!-- (==1 for single fragment) -->
 <!-- dgramsize: How many bytes of UDP payload, TCP payload or -->
 <!-- otherwise IP payload, after IPv4 reassembly -->
 <!-- (single frag. or reassembled datagram/segment) -->
 <!-- tcpwindow: Size in bytes of the TCP window, after agreed -->
 <!-- TCP window scale option -->
 <!-- tcpretransmitted: -->
 <!-- Whether (==true) or not (==false) -->
 <!-- the TCP segment contains retransmitted payload -->
 <!-- data -->
 <!-- tcpdirtyopen: -->
 <!-- The corresponding TCP connection has been -->
 <!-- initiated with one SYN or a SYN/SYN+ACK -->
 <!-- but has not been continued (no complete 3-way -->
 <!-- SYN/SYN+ACK/ACK handshake seen during timeout -->
 <!-- period -->
 <!-- tcpdirtyclose: -->
 <!-- The corresponding TCP connection has been -->
 <!-- closed, either, by RESET or single FIN packet -->
 <!-- without reverse FIN packet seen during timeout -->
 <!-- period -->
 <!-- tcpemptyconn: -->
 <!-- Not any payload data byte has been passed, -->
 <!-- either way, over the connection -->
 <!-- ftpemptysession: -->
 <!-- Not any useful FTP command has been passed, -->
 <!-- over the control connection -->
 <!-- ftpnofiletransfer: -->
 <!-- The FTP control connection didn't initiate any -->
 <!-- actual file transfer (e.g. poll only) -->
 <!-- ftpactivetransfer: -->
 <!-- The FTP control connection or the resulting -->
 <!-- FTP data connection involves active FTP mode -->
 <!-- (i.e. PORT command) -->
 <!-- ftppassivetransfer: -->
 <!-- The FTP control connection or the resulting -->
 <!-- FTP data connection involves passive FTP mode -->
 <!-- (i.e. PASV command) -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 180/248

4.1.2 Example of XML Configuration File
The following XML file is used for trafMon Factory Qualification in the following test
environment:

Figure 1: trafMon Factory Qualification Environment

<!-- trafMon configuration file for TEST LAB -->

<!DOCTYPE trafMonConfig SYSTEM "tmon.dtd" [

<!-- Data network -->
<!ENTITY data.rho "141.253.11.112">
<!ENTITY data.bag "141.253.11.111">
<!ENTITY data.vog "141.253.221.111">
<!ENTITY data.chio "141.253.245.111">
<!ENTITY data.chia "141.253.7.111">
<!-- Traffic generators -->
<!ENTITY locdmz1 "141.253.221.150">
<!ENTITY locint1 "141.253.11.150">
<!ENTITY remdmz1 "141.253.245.100">
<!ENTITY remint1 "141.253.7.111">
<!ENTITY inet1 "141.253.14.100">
<!-- Service Port numbers -->
<!ENTITY dns "53">
<!ENTITY ntp "123">

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 181/248

<!ENTITY iperf "5001">
<!ENTITY http "80">
<!ENTITY snmp "161">
<!ENTITY ftp "21">
<!ENTITY ftpdata "20">
<!-- PDU port (for sending PDUs from probes to TrafMon server) -->
<!ENTITY tmonProbe "9877">
<!ENTITY tmonColl "9878">
<!-- Offsets used in SignBytes tags – Not used here -->
<!-- IP header offsets -->
<!ENTITY ipSrc "12">
<!ENTITY ipDst "16">
<!-- UDP header offsets -->
<!ENTITY udpSrc "0">
<!ENTITY udpDst "2">
<!-- NTP offsets -->
<!ENTITY ntpTT "40">
<!ENTITY ntpOT "24">
<!-- DNS offsets -->
<!ENTITY dnsID "0">
<!— Capture Filter fields – Not used here -->
<!ENTITY TOSBYTE "ip[1:1]">
<!ENTITY TOSPRI "ip[1:1]&0xE0">
<!ENTITY TCPFLAGS "tcp[13:1]">
<!ENTITY TCPLEN "(ip[2:2] - (ip[0:1]&0x0F)*4 - (tcp[12:1]&0xF0)/4)">
<!— Capture Filters – Not used here -->
<!ENTITY ISTCPSYN "&TCPFLAGS; = 0x02">
<!ENTITY ISECHO "icmp and icmp[icmptype] = icmp-echo">
<!ENTITY ISECHOREPLY "icmp and icmp[icmptype] = icmp-echoreply">
<!ENTITY ISTOWEB "tcp and dst port &http;">
<!ENTITY ISFROMWEB "tcp and src port &http;">
<!ENTITY ISNTP "(udp and port &ntp;)">
<!ENTITY ISDNS "(udp and port &dns;)">
<!ENTITY ISDNSREQ "(&ISDNS; and udp[10] & 0x80 = 0)">
<!ENTITY ISDNSRESP "(&ISDNS; and udp[10] & 0x80 = 0x80)">
<!ENTITY ISSNMPREQ "(udp and dst port &snmp;)">
<!-- Temporary storage for CSV data produced by Central Processor -->
<!ENTITY dataPath "/var/trafMon/collector">
<!-- End of ENTITIES -->
]>

<trafMonConfig serial="2" startAt="2020-10-24 16:00:00" pktSignBytes="3"
 maxTravelTime="30000" >

 <Collector name="rho" ID="100" descr="trafMon collector on rho"
 burstRate="30">
 <Addr ip="&data.rho;" port="&tmonColl;" UDPBufferSize="20000"/>
 <Output dataFile="&dataPath;/observations.%y%m%d%H%M"
 eventFile="&dataPath;/events.%y%m%d%H%M"
 excepFile="&dataPath;/exceptions.%y%m%d%H%M"
 period="5" />
 </Collector>

 <Probe name="voghera" ID="11" descr="trafMon probe on LOCAL DMZ">
 <Interface name="eth0" ID="111" descr="LOCAL DMZ" snapLen="210"
 bufPacketCount="1000000"
 expr= "ip"

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 182/248

 />
 <PDUSending probePort="&tmonProbe;">
 <SendTo collector="rho" maxPDUSize="1460" minTimeGap="0"
 maxPDUBuildTime="5" heartBeatDelay="90" timeout="20" retries="5"
 TOMult="1" TOIncr="5" breakBorderTime="180" dropObsFinalTimeout="5" />
 </PDUSending>
 </Probe>

 <Probe name="bagheria" ID="12" descr="trafMon probe on LOCAL INTERNAL">
 <Interface name="eth0" ID="112" descr="LOCAL Internal LAN" snapLen="210"
 bufPacketCount="1000000"
 expr= "ip"
 />
 <PDUSending probePort="&tmonProbe;">
 <SendTo collector="rho" maxPDUSize="1460" minTimeGap="0"
 maxPDUBuildTime="5" heartBeatDelay="90" timeout="20" retries="5"
 TOMult="1" TOIncr="5" breakBorderTime="180" dropObsFinalTimeout="5" />
 </PDUSending>
 </Probe>

 <Probe name="chioggia" ID="21" descr="trafMon probe on REMOTE DMZ">
 <Interface name="eth0" ID="221" descr="REMOTE DMZ" snapLen="210"
 bufPacketCount="1000000"
 expr= "ip"
 />
 <PDUSending probePort="&tmonProbe;">
 <SendTo collector="rho" maxPDUSize="500" minTimeGap="30"
 maxPDUBuildTime="5" heartBeatDelay="90" timeout="20" retries="6"
 TOMult="1" TOIncr="5" breakBorderTime="100" dropObsFinalTimeout="5" />
 </PDUSending>
 </Probe>

 <Probe name="chiavari" ID="22" descr="trafMon probe on REMOTE INTERNAL">
 <Interface name="eth0" ID="222" descr=" REMOTE Internal LAN"
 snapLen="210"
 bufPacketCount="1000000"
 expr= "ip"
 />
 <PDUSending probePort="&tmonProbe;">
 <SendTo collector="rho" maxPDUSize="500" minTimeGap="30"
 maxPDUBuildTime="5" heartBeatDelay="90" timeout="20" retries="6"
 TOMult="1" TOIncr="5" breakBorderTime="100" dropObsFinalTimeout="5" />
 </PDUSending>
 </Probe>

 <!-- ============================= -->

 <GranularFlow name="peers" > <!-- NO DistinctIf for oneWay partial obs -->
 <DistinctAddr field="addrpair" />
 </GranularFlow>

 <GranularFlow name="protoConversAtProbeIf" >
 <DistinctIf /> <!-- mandatory when Counters, to avoid double records -->
 <DistinctAddr field="addrpair" />
 <DistinctPort field="portpair" portspec="privileged" />
 <GroupBy field="ipproto"/>
 </GranularFlow>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 183/248

 <GranularFlow name="uniDirAtProbeIf" >
 <DistinctIf /> <!-- mandatory when Counters, to avoid double records -->
 <DistinctAddr field="srcdst" />
 <DistinctPort field="portpair" portspec="privileged" />
 <GroupBy field="ipproto"/>
 </GranularFlow>

 <GranularFlow name="perProtoServicePort" >
 <DistinctAddr field="srcdst" />
 <DistinctPort field="portpair" portspec="privileged" />
 <GroupBy field="ipproto"/>
 </GranularFlow>

 <!-- FTP: TCP port 21
 ================
 -->
 <FlowClass id="21" name="FTP_port21" descr="TCP with port==21">
 <Measure interval="1min" >
 <Stats verifChksum="bestEffort">
 <PacketCounters for="firstFragment"/>
 <!-- Don't ask for Dgram for TCP to avoid unnecessary
 keeping of subsequent frags (of other flows)
 between same IP address pair -->
 <TCPConnections granularity="each"/>
 <FileTransfers protocol="FTP" granularity="each"
 ftpdata="full"/>
 </Stats>
 </Measure>
 <FlowGrain ref="protoConversAtProbeIf" />
 <Filter>
 <On probe="voghera" if="eth0" />
 <On probe="bagheria" if="eth0" />
 <On probe="chioggia" if="eth0" />
 <On probe="chiavari" if="eth0" />
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="tcp"/>
 <Predicate field="port" op="eq" value="21"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>

 <!-- HTTP: TCP port 80
 =================
 -->
 <FlowClass id="80" name="HTTP" descr="TCP with port==80">
 <Measure interval="1min" >
 <Stats verifChksum="bestEffort">
 <PacketCounters for="firstFragment"/>
 <!-- Don't ask for Dgram for TCP to avoid unnecessary
 keeping of subsequent frags (of other flows)
 between same IP address pair -->
 <TCPConnections granularity="each"/>
 </Stats>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 184/248

 </Measure>
 <FlowGrain ref="protoConversAtProbeIf" />
 <Filter>
 <On probe="voghera" if="eth0" />
 <On probe="bagheria" if="eth0" />
 <On probe="chioggia" if="eth0" />
 <On probe="chiavari" if="eth0" />
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="tcp"/>
 <Predicate field="port" op="eq" value="80"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>

 <!-- ALL Unidirectional packets (for volumes counting)
 ===
 -->
 <FlowClass id="200" name="ALL_packets"
 descr="ALL Unidirectional IP Fragments">
 <Measure interval="1min" >
 <Stats verifChksum="bestEffort">
 <PacketCounters for="allFragments"/>
 </Stats>
 </Measure>
 <FlowGrain ref="uniDirAtProbeIf" />
 <Filter>
 <On probe="voghera" if="eth0" />
 <On probe="bagheria" if="eth0" />
 <On probe="chioggia" if="eth0" />
 <On probe="chiavari" if="eth0" />
 <PacketExpr>
 <AND>
 <Predicate field="src" op="betw"
 value="0.0.0.1" value2="255.255.255.254" />
 <Predicate field="dst" op="betw"
 value="0.0.0.1" value2="255.255.255.254" />
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>

 <!-- Bulk UDP Bidirectional (Fragmented) Datagrams
 ===
 -->
 <FlowClass id="210" name="two-way_Datagrams" descr="2-way UDP De-fragmented">
 <Measure interval="1min" >
 <Stats verifChksum="fullReassembly">
 <PacketCounters for="datagram"/>
 </Stats>
 </Measure>
 <FlowGrain ref="protoConversAtProbeIf" />
 <Filter>
 <On probe="voghera" if="eth0" />
 <On probe="bagheria" if="eth0" />
 <On probe="chioggia" if="eth0" />

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 185/248

 <On probe="chiavari" if="eth0" />
 <PacketExpr>
 <Predicate field="proto" op="eq" value="udp"/>
 </PacketExpr>
 </Filter>
 </FlowClass>

 <!-- Individual One-Way timestamps with IP Timestamps Option
 ===
 -->
 <FlowClass id="12345" name="withIPTS"
 descr="UDP with port==21 and IP Timestamps">
 <Measure interval="each" >
 <Delay for="datagram" granularity="individual">
 <OneWayDelay>
 <Hop name="remint1"/>
 <Hop name="remint"/>
 <Hop name="alkuf"/>
 <Hop name="hiros"/>
 <Hop name="kuching"/>
 <Hop name="locdmz"/>
 <Sign>
 <Chunk start="0" relTo="ipPayload" length="40" />
 </Sign>
 </OneWayDelay>
 </Delay>
 </Measure>
 <FlowGrain ref="peers" />

 <Filter>
 <On probe="chiavari" if="eth0" />
 <CaptureTimeStamp hopName="remint"/>
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="port" op="eq" value="21"/>
 </AND>
 </PacketExpr>
 </Filter>

 <Filter>
 <On probe="voghera" if="eth0" />
 <CaptureTimeStamp hopName="locdmz"/>
 <IpOptTimestamp ipTSNum="1" hopName="remint1"/>
 <IpOptTimestamp ipTSNum="2" hopName="alkuf"/>
 <IpOptTimestamp ipTSNum="3" hopName="hiros"/>
 <IpOptTimestamp ipTSNum="4" hopName="kuching"/>
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="port" op="eq" value="21"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>

 <!-- One-way Delay and Packet Loss on SNMP: LOCAL INT <> REMOTE DMZ

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 186/248

 ==
 Request: SNMP from LOCAL INT to REMOTE DMZ
 ++
 -->
 <FlowClass id="1111" name="One-Way_SNMP_Requests"
 descr="SNMP Requests one-way aggregated delay and loss/partial counters">
 <Measure interval="1min" >
 <Delay for="allFragments" granularity="collectorAggregated">
 <OneWayDelay from="locint_rq" to="remdmz_rq" lost="count" >
 <Hop name="locint_rq"/>
 <Hop name="remdmz_rq"/>
 <Sign/>
 </OneWayDelay>
 <Histogram lowBound="0" highBound="5000" sliceCount="7" />
 </Delay>
 </Measure>
 <FlowGrain ref="perProtoServicePort" />
 <Filter>
 <On probe="bagheria" if="eth0" />
 <CaptureTimeStamp hopName="locint_rq"/>
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="dport" op="eq" value="161"/>
 <Predicate field="dst" op="eq" value="&remdmz1;"/>
 </AND>
 </PacketExpr>
 </Filter>
 <Filter>
 <On probe="chioggia" if="eth0" />
 <CaptureTimeStamp hopName="remdmz_rq"/>
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="dport" op="eq" value="161"/>
 <Predicate field="dst" op="eq" value="&remdmz1;"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>
 <!-- Response: SNMP from REMOTE DMZ to LOCAL INT
 +++
 -->
 <FlowClass id="2222" name="One-Way_SNMP_Responses"
 descr="SNMP Responses one-way aggregated delay and loss/partial counters">
 <Measure interval="1min" >
 <Delay for="allFragments" granularity="collectorAggregated">
 <OneWayDelay from="remdmz_rs" to="locint_rs" lost="count" >
 <Hop name="remdmz_rs"/>
 <Hop name="locint_rs"/>
 <Sign/>
 </OneWayDelay>
 <Histogram lowBound="0" highBound="5000" sliceCount="7" />
 </Delay>
 </Measure>
 <FlowGrain ref="perProtoServicePort" />
 <Filter>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 187/248

 <On probe="chioggia" if="eth0" />
 <CaptureTimeStamp hopName="remdmz_rs"/>
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="sport" op="eq" value="161"/>
 <Predicate field="dst" op="eq" value="&locint1;"/>
 </AND>
 </PacketExpr>
 </Filter>
 <Filter>
 <On probe="bagheria" if="eth0" />
 <CaptureTimeStamp hopName="locint_rs"/>
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="sport" op="eq" value="161"/>
 <Predicate field="dst" op="eq" value="&locint1;"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>

 <!-- Round-Trip Delays
 =================
 -->
 <!-- Round trip delay measurement for ICMP
 -->
 <FlowClass id="3333" name="Echo-RoundTrip-histo"
 descr="ICMP Echo Req/Rsp aggregated delay">
 <Measure interval="10s" >
 <Delay for="firstFragment" granularity="probeAggregated">
 <RoundTripDelay protocol="icmpEcho" />
 <Histogram lowBound="0" highBound="5000" sliceCount="5" />
 </Delay>
 </Measure>
 <FlowGrain ref="protoConversAtProbeIf" />
 <Filter>
 <On probe="bagheria" if="eth0" />
 <On probe="chiavari" if="eth0" />
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="icmpEcho"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>
 <!-- Round trip delay measurement for DNS
 -->
 <FlowClass id="4444" name="DNS-RoundTrip-histo"
 descr="DNS Req/Rsp aggregated delay">
 <Measure interval="10s" >
 <Delay for="firstFragment" granularity="probeAggregated">
 <RoundTripDelay protocol="udpDNS" />
 <Histogram lowBound="0" highBound="800" sliceCount="4" />
 </Delay>
 </Measure>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 188/248

 <FlowGrain ref="protoConversAtProbeIf" />
 <Filter>
 <On probe="chiavari" if="eth0" />
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="port" op="eq" value="53"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>
 <!-- Round trip delay measurement for SNMP
 -->
 <FlowClass id="5555" name="SNMP-RoundTrip-histo"
 descr="SNMP Req/Rsp aggregated delay">
 <Measure interval="10s" >
 <Delay for="firstFragment" granularity="probeAggregated">
 <RoundTripDelay protocol="udpSNMP" />
 <Histogram lowBound="0" highBound="800" sliceCount="4" />
 </Delay>
 </Measure>
 <FlowGrain ref="protoConversAtProbeIf" />
 <Filter>
 <On probe="bagheria" if="eth0" />
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="port" op="eq" value="161"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>
 <!-- Round trip delay measurement for NTP
 -->
 <FlowClass id="6666" name="NTP-RoundTrip-histo"
 descr="NTP Req/Rsp aggregated delay">
 <Measure interval="10s" >
 <Delay for="firstFragment" granularity="probeAggregated">
 <RoundTripDelay protocol="udpNTP" with="both" />
 <Histogram lowBound="0" highBound="1000" sliceCount="5" />
 </Delay>
 </Measure>
 <FlowGrain ref="protoConversAtProbeIf" />
 <Filter>
 <!-- Real NTP from client remdmz1 to server locdmz1 -->
 <On probe="chioggia" if="eth0" />
 <PacketExpr>
 <AND>
 <Predicate field="addr" op="eq" value="&remdmz1;"/>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="port" op="eq" value="123"/>
 </AND>
 </PacketExpr>
 </Filter>
 <Filter>
 <!-- Fake NTP from clients remint1/locint1 to server locdmz1 -->
 <On probe="bagheria" if="eth0" />

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 189/248

 <On probe="chiavari" if="eth0" />
 <PacketExpr>
 <AND>
 <Predicate field="addr" op="eq" value="&locdmz1;"/>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="port" op="eq" value="123"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>
 <!-- Round trip delay measurement for TCP-SYN
 -->
 <FlowClass id="7777" name="TCP-SYN-RoundTrip-histo"
 descr="TCP SYN/SYN+ACK aggregated delay">
 <Measure interval="10s" >
 <Delay for="firstFragment" granularity="probeAggregated">
 <RoundTripDelay protocol="tcpSynAck" />
 <Histogram lowBound="0" highBound="2000" sliceCount="6" />
 </Delay>
 </Measure>
 <FlowGrain ref="protoConversAtProbeIf" />
 <Filter>
 <On probe="bagheria" if="eth0" />
 <On probe="chiavari" if="eth0" />
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="tcp"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>
 <!-- Round trip delay measurement for TCP-RTTM
 -->
 <FlowClass id="8888" name="TCP-RTTM-RoundTrip-histo"
 descr="TCP RTTM Timestamps aggregated delay">
 <Measure interval="10s" >
 <Delay for="firstFragment" granularity="probeAggregated">
 <RoundTripDelay protocol="tcpOptRTTM" with="both" />
 <Histogram lowBound="0" highBound="300" sliceCount="8" />
 </Delay>
 </Measure>
 <FlowGrain ref="protoConversAtProbeIf" />
 <Filter>
 <On probe="bagheria" if="eth0" />
 <On probe="chiavari" if="eth0" />
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="tcp"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>
</trafMonConfig>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 190/248

4.2 TRAFMON DIAGNOSTIC LOGGING CONTROL
INTERFACE
The diagnostic trace logging is provided by the common core module tmon_diag.c.

Each message generated from the C source code is assigned a severity level among (by
decrease severity and increasing level of verbosity):

Config. C code
fatal FATAL -- the program print-out its message then aborts
error ERR
warning WARN
trace0 TR0
trace1 TR1
trace2 TR2
trace3 TR3

A configuration file permits to determine, for each software module (C source file radix
name) part of the program, as well as per program:

• the maximum level of verbosity (minimal severity) will actually be logged

• the (list of) destination log pathname(s) per software module
Furthermore, this file establishes a maximum runtime level applicable to all modules
(Highest_level).

By default, the diagnostic logging configuration is found in
/etc/trafMon/diag/name.diag, where name is the name of either the probe or the
collector instance (given as argument to the program):

File tmon_probe.h:

#define TM_PROBE_CONFIG_PATH "/etc/trafMon"
#define TM_PROBE_DIAG_DIR "diag"
#define TM_PROBE_DIAG_SUF "diag"

File tmon_collector.h:

#define TM_COLL_CONFIG_PATH "/etc/trafMon"
#define TM_COLL_DIAG_DIR "diag"
#define TM_COLL_DIAG_SUF "diag"

However, using the –l program option (local), the file can alternatively be taken from the
current directory, as ./program_name.diag, where program_name is either
tmon_probe or tmon_collector.

The format of the config file is the same for all active lines except that with global
threshold:

• either
Highest_level trace0

• or

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 191/248

program module level logname1 logname2 ...

as in

tmon_probe tmp_statistics trace2 /var/log/trafMon/probe.log
#tmon_probe tmp_tcpconnection warning /var/log/trafMon/probe.log

/var/log/trafMon/tcp.log
tmon_probe tmp_tcpconnection trace2 /var/log/trafMon/probe.log

/var/log/trafMon/tcp.log
tmon_probe tmp_transmission trace3 /var/log/trafMon/probe.log stderr
#tmon_probe tmp_transmission trace2 /var/log/trafMon/probe.log stderr
tmon_probe tmp_udptransaction trace3 /var/log/trafMon/probe.log

Note that stderr and stdout are special keywords of output log file.

In the C code, each invocation of a logging function takes the form of printf-like message
formatting argument list (with %m being the last errno string), pre-pended with the
severity keyword, and appended with END (or END; for pleasing the debugger).

 TR1 "FTP Data Conn: %p %s %s%s%s user=%s", tcpConnp,
 TmTcpConnStr(&(search.tcpConnKey), tcpConnp->tcpConnState),
 (listOrFile==TMP_TCPUPPER_FTPLIST)?"LIST":"",
 (dataConnp->ftpDataXferDir==TMP_FTPFILE_GET)? "GET ":
 (dataConnp->ftpDataXferDir==TMP_FTPFILE_PUT)? "PUT ":"",
 (dataConnp->ftpDataFileName[0])? dataConnp->ftpDataFileName: "",
 (dataConnp->ftpCtlUser[0])? dataConnp->ftpCtlUser: "?"
 END;

The resulting log message is formatted as

DATETIME.MS,prog[PID],SEV,src_file:src_line:src_function,formatted mesage

as in

20201012T164520.346864,tmon_probe[14970],TR1,tmp_tcpconnection.c:2750:TmpF
tpDataConnMatch,FTP Data Conn: 0x1ec2f60 141.253.221.100:40274<-
>141.253.245.248:0 PUT transferred00.tar0.tar user=?

Note that when several C code statements are necessary to build-up the trace level 2 or 3
message, but are useless if that message level is disabled, it is more efficient to surround
this portion of code by

START_TR3
 TmonTimeSub(&(ackPktp->pktPcapHdr.ts), &(synPktp->pktPcapHdr.ts), &delta);
 TR3 "pkt 0x%016"PRIx64" TCP SYN Round-Trip %s - %s DELAY %f ms",
 synPktp->pktID, TmonTimeToStr(&(synPktp->pktPcapHdr.ts)),
 TmonTimeToStr(&(ackPktp->pktPcapHdr.ts)),
 (delta.tv_sec * 1000.0) + (delta.tv_usec / 1000.0) END;
END_TR3

Because those files are quickly growing, it is good to regularly proceed to a logrotate:
/etc/logrotate.d/trafmon

/var/log/trafMon/*.log {
 # When some files have been mistakenly created as root,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 192/248

 # this can perturbate the automated operations, so restore ownership
 firstaction
 chown -R trafmon:trafmon /var/log/trafMon
 endscript

 lastaction
 chown -R trafmon:trafmon /var/log/trafMon
 endscript

 rotate 300000
 # on CentOS 6.x, use daily insead of not yet suppoprted hourly
 hourly
 size 200M
 compress
 delaycompress
 missingok
 notifempty
 create 0644 trafmon trafmon
}

4.3 PROBE CAPTURE INTERFACE
The characteristics of a probe interface are described with following tags in the trafMon
tool XML configuration file.

<!ELEMENT Probe ((CapFile | Interface+), PDUSending*, PDUSaving?) >
<!ATTLIST Probe name ID #REQUIRED
 ID NMTOKEN #REQUIRED
 descr CDATA #IMPLIED
>
 <!-- ID: [0..255] -->

<!ELEMENT CapFile EMPTY >
<!ATTLIST CapFile filename CDATA #REQUIRED
 ID NMTOKEN #REQUIRED
 expr CDATA #IMPLIED
 rate (withDelay|fullSpeed) "withDelay"
>
 <!-- filename: Full pathname of packet capture file to read -->
 <!-- id: TrafMon-wide unique numeric ID of the probe -->
 <!-- interface that can distinguish among granular -->
 <!-- flow instances -->
 <!-- valid values are [1..65535] -->
 <!-- expr: tcpdump-like packet capture filter expression -->
 <!-- WHEN VLAN PARTLY TAGS PRESENT -->
 <!-- INVOLVE vlan at end of expr -->
 <!-- MATCH only IP packets -->
 <!-- DON'T use netmask based criteria -->
 <!-- rate: fullSpeed: captured pakets are processed -->
 <!-- untouched (with their original capt.-->
 <!-- time) without waiting between each -->
 <!-- withDelay: every packet has its capture time -->
 <!-- artificially translated by a fixed -->
 <!-- amount of time so as if the exact -->
 <!-- same traffic behaviour would occur -->
 <!-- 'now'. The necessary variable delay -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 193/248

 <!-- is respected before processing each -->
 <!-- next packet -->

<!ELEMENT Interface EMPTY >
<!ATTLIST Interface name NMTOKEN #REQUIRED
 ID NMTOKEN #REQUIRED
 descr CDATA #IMPLIED
 snapLen NMTOKEN "1600"
 bufPacketCount
 NMTOKEN "70000"
 expr CDATA #IMPLIED
>
 <!-- id: TrafMon-wide unique numeric ID of the probe -->
 <!-- interface that can distinguish among granular -->
 <!-- flow instances -->
 <!-- valid values are [1..65535] -->
 <!-- snapLen: maximum Ethernet frame Captured portion -->
 <!-- valid values are [125..65535] -->
 <!-- On Linux: -->
 <!-- snapLen=125 leads to 122 Eth capture => IP len=108 -->
 <!-- -->
 <!-- NOTE: -->
 <!-- Even on Ethernet (max MTU = 1500 bytes IP), -->
 <!-- larger packets can be actually captured due to -->
 <!-- reassembly being offloaded in the NIC Card -->
 <!-- Linux Ethtool -k: LRO - Large Receive Offload or -->
 <!-- or GRO - Generic Receive Offload -->
 <!-- ATTEMPT IS MADE TO DEACTIVATE THIS and the Reception -->
 <!-- Checksum processing offload upon initiatisation of -->
 <!-- the probe capture interfaces -->
 <!-- -->
 <!-- bufPacketCount: -->
 <!-- How many packets (of ~ snapLen) could be -->
 <!-- buffered upon traffic burst -->
 <!-- valid values are [1000..1000000] -->
 <!-- -->
 <!-- expr: tcpdump-like packet capture filter expression -->
 <!-- WHEN VLAN PARTLY TAGS PRESENT -->
 <!-- INVOLVE vlan at end of expr -->
 <!-- MATCH only IP packets -->
 <!-- DON'T use netmask based criteria -->
 <!-- LIMITATION: care must been taken with VLAN packets: -->
 <!-- using vlan in expression let the software -->
 <!-- use a four bytes offset -->
 <!-- BUT for mixed tagged and untagged traffic -->
 <!-- the expression "vlan or udp or tcp" could -->

 <!-- fail to work on some systems/NICs -->

Packet capture is achieved through the use of the public domain portable libpcap
software module. Its API is generic and independent of the specifics of the particular
operating system.

In particular, the configured snap length (maximum length of the captured frame that is
actually buffered and passed to the application) is apparently aligned to a set of discrete
values.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 194/248

In Linux, libpcap exploits the system capability of reserving and initialising a potentially
quite large ring memory buffer, resident in the kernel itself, and storing the successive
captured packets that match the capture filter (also kernel resident).

Libpcap implementation does permit to specify the requested memory size of this per-
interface memory reservation. But the API does not give access to the stored packet
sequence. A callback routine of the application software is repetitively invoked with only
one packet at a time. When this routine returns, the corresponding slot of the ring buffer is
released for reused by a future capture.

For working at wire speed, the application should avoid to copy, in user space, the content
of most of the analysed packets.

These limitations and performance constraints are the technical reasons why the selective
permanent preservation of a chunk of packets, after they have been captured and
analysed, upon request by the collector has not been implemented.

Note that the requested size for the ring buffer isn’t necessarily allocated. First the size is
rounded to a number of slots of maximum packet size capacity. Then the kernel
reservation ioctl(SOL_PACKET, PACKET_RX_RING) is repeated, asking for only half the
previous size at each retry, until it succeeds to reserve a reasonable amount of the
available memory resource.

To test if the reservation does actually correspond to the configured bufPacketCount,
one must launch the probe under strace (system call tracing), verifying that the first
ioctl(PACKET_RX_RING) succeeds for each configured interface. Otherwise, the
bufPacketCount values must be decreased and the strace attempt retried.

See Table 1 for some observed sizing values.

Modern kernels and modern NIC cards work in tandem: several functions, like checksum
production/verification and IP reassembly, are by defaults done in the NIC card. And
packet capture does occur in between the kernel protocol stack and the NIC.

Therefore, the trafMon probe deactivates IP reassembly of incoming packets in every
NIC port of its probing interfaces.

Also the trafMon probe checksum verification may be fooled by the fact that the kernel is
not assigning the UDP or TCP checksum value, relying in the NIC to the jobs (only after
capture of locally generated packets).

For specific testing and diagnostics purposes, the probe can run by replaing a previously
captured sequence of packets (commonly named a pcap file), produced by tcmpdump or
Wireshark. There, the packets are handled as if they were occurring now. either they a
replayed by respecting the original delay between successive packets, or they are
processed at full speed, to measure the maximum analysis performance of the probe
father and child processes on a given hardware configuration.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 195/248

4.4 PROBE PDU TO COLLECTOR PROTOCOL

4.4.1 General Mechanism
See section 1.3.5 above.

4.4.2 Common PDU Header
/*
 * trafMon Absolute Time Reference as a Unix Timestamp
 */
#define TMON_PDU_ABSTIME_REF 1300000000L /* Sun Mar 13 07:06:40 2011 UTC */
/*
 * Common PDU TrafMon PDU Header
 * ================================
 */
typedef struct tmon_pdu_hdr {
 uint16_t pduLen;
 uint8_t pduProbeID;
 uint8_t pduCfgVers;
 uint32_t pduTimeRef; /* Unix Abs. Timestamp - TMON_PDU_ABSTIME_REF */
 uint32_t pduID;
 uint8_t pduType;
 uint8_t pduRecCnt;
 uint8_t pduCRC[2];
} tmon_pdu_hdr_t;

4.4.3 Heart Beat PDU
This consists only in a PDU header with no data (pduRecCnt == 0)

pduType == TMON_PDU_TYPE_HRTBEAT 10

4.4.4 Flow Instance Description Records PDU
pduType == TMON_PDU_TYPE_FLDESCR 1

/*
 * I. FLOW INSTANCES DESCRIPTION PDU
 * ================================== */

/*
 * Possible values for flowGrainTcpSpec
 * ------------------------------------
 */
#define TMFGTCP_FLAGS 1 /* distinct per TCP Flags byte value */
#define TMFGTCP_FLRETR 2 /* dist. per TCP Flags byte and retransm. or not */
#define TMFGTCP_SDAE 3 /* distinct per TCP Start/Data/emptyAck/End */
#define TMFGTCP_SDAER 4 /* distinct per TCP Start/Data/emptyAck/End/RST */
#define TMFGTCP_SFRAE 5 /* distinct per TCP Start/First/Retr/emptyAck/End */
#define TMFGTCP_SFRAER 6 /* distinct per TCP Start/First/Retr/Ack/End/RST */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 196/248

/*
 * Flow Instance description record for PDU
 * --
 *
 * Sorry: a coding trick has been used to code the five bits of potential
 * network Mask length for ipAddr1/ipAddr2 by using unused
 * nibble of the size bucket index and 1 unused bit of ICMP type/code
 * (real-life ICMP non-experimental ICMP types are below 127)
 *
 * This uggly coding is necessary to preserve the total
 * sizeof(tmon_flow_descr_t) being a multiple of 8 bytes for
 * alignment purpose, without gap, in the PDU: successive records
 * form a clean array of tmon_flow_descr_t
 *
 * Collector and output convention:
 * --------------------------------
 * The collector arranges for ensuring that 'ipAddr1 <= ipAddr2'
 * for whatever direction is reflected: uni- or bi-directional.
 * Where required it exchanges the description provided by a probe
 * (swapping addr/port 1 and 2) and adapts the flow direction
 * in useSpec.direct accordingly.
 * This way, the address ordering invariant persists in the database
 * and simplifies the grouping of site-to-site flows for a given
 * pair of sites.
 */
typedef struct tmon_flow_descr {
 uint64_t uniqId;
 uint32_t ipAddr1; /* 0 means no addressing */
 uint32_t ipAddr2; /* 0 means with any peer host */
 uint16_t ifID; /* interf. ID: 0 means don't care (NULL) */
 uint16_t frag; /* fragmentation info: see below */
 uint8_t ipTTL; /* 0 when not assigned */
 uint8_t ipTOS; /* either IP ToS byte, or IP Precedence or IP DSCP */
 uint16_t tpPort1; /* if Addr1: is UDP/TCP port on Addr1 host, 0 = none */
 uint16_t tpPort2; /* 0 means with any peer port */
 uint16_t icmp; /* low-order bits (0x7f)== ICMP type, type/code, class*/
 /* high-order bit is high bit of net Mask */
 uint8_t mask_lowSz;/* High nibble (0xf0): == low nibble of net Mask */
 /* Low nibble (0x0f): == IP sizes bucket index */
 /* lower bound as multiple of 200|400 */
 uint8_t tcpType;
 uint16_t useSpec; /* Specification of used info fields: see below */

} tmon_flow_descr_t;

/*
 * Fragmentation Info:
 * -------------------
 *
 * On Big Endian host (network byte order), the uint16_t frag
 * is structured as follows:
 *
 * uint16_t ipDF:1; * IP Don't Fragment flag
 * uint16_t ipMF:1; * IP More Fragment flag
 * uint16_t frgNum:1; * true: fragVal == fragNumber, else == fragOffset
 * uint16_t fragVal:13; * either fragNumber or fragOffset
 */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 197/248

/* Network Byte Order Fragmentation Masks */
/*- */
#define TMPDU_FLOW_FRGNUM 0x8000
#define TMPDU_FLOW_IPDF 0x4000
#define TMPDU_FLOW_IPMF 0x2000
#define TMPDU_FLOW_FRGVAL 0x1FFF
/*
 * Specification of used info fields: useSpec
 * --
 *
 * On Big Endian host (network byte order), the uint16_t useSpec
 * is structured as follows:
 *
 * uint8_t direct:2; * 1: from Addr1/Port1, 2: to Addr1/Port1, 3: both *
 * uint8_t ipProto:2; * 0: any, 1: UDP, 2 TCP, 3: other *
 * uint8_t tosSpec:2; * 0: none, 1: ToS byte, 2: precedence, 3: DSCP *
 * uint8_t icmpSpec:2;* 0: none, 1: type class, 2: ICMP Type, 3: Type+Code*
 * uint8_t useDF:1; * is ipDF bit actually assigned ? *
 * uint8_t useMF:1; * is ipMF bit actually assigned ? *
 * uint8_t useFrag:1; * are frgNum bit and fragVal actually assigned ? *
 * uint8_t tcpSpec:3; * 0: no tcpType, else: TMFGTCP_xxx value *
 * uint8_t szSpec:2; * 0: none, 1: lowSize as multiple of 200, 2: of 400 *
 * * NOTE FOR DGRAM CUMMULATED IP SIZES: *
 * * when sizes < 1600, bucket size is 200|400 *
 * * when sizes >= 1600 buckets end at thousands *
 * * last bucket is >= 8000 *
 */
/* Network Byte Order Use Masks */
/*- - - - - - - - - - - - - - - */
#define TMPDU_FLOW_DIRECTN 0xC000
#define TMPDU_FLOW_FROM_1 0x4000
#define TMPDU_FLOW_TO_1 0x8000
#define TMPDU_FLOW_BIDIR 0xC000
#define TMPDU_FLOW_IPPROTO 0x3000
#define TMPDU_FLOW_UDP 0x1000
#define TMPDU_FLOW_TCP 0x2000
#define TMPDU_FLOW_OTHER 0x3000
#define TMPDU_FLOW_TOSSPEC 0x0C00
#define TMPDU_FLOW_TOSBYTE 0x0400
#define TMPDU_FLOW_TOSPREC 0x0800
#define TMPDU_FLOW_TOSDSCP 0x0C00
#define TMPDU_FLOW_ICMPSPC 0x0300
#define TMPDU_FLOW_ICMPCLS 0x0100 /* per ICMP class of type/code */
#define TMPDU_FLOW_ICMPTYP 0x0200 /* per ICMP Type byte */
#define TMPDU_FLOW_ICTYPCD 0x0300 /* per ICMP Type & Code */
#define TMPDU_FLOW_USEDF 0x0080
#define TMPDU_FLOW_USEMF 0x0040
#define TMPDU_FLOW_USEFRAG 0x0020
#define TMPDU_FLOW_TCPSPEC 0x001C /* shifted TMFGTCP_xxx <<2 */
#define TMPDU_FLOW_SIZSPEC 0x0003
#define TMPDU_FLOW_SIZ200 0x0001
#define TMPDU_FLOW_SIZ400 0x0002

/*
 * Masks for ICMP value, for bucket size index and for network mask
 * Uggly coding trick
 */
#define TMPDU_FLOW_ICMPMASK 0x7f/* value is tmon_flow_descr_t.icmp & 0x7f */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 198/248

#define TMPDU_FLOW_SIZEMASK 0x0f/* val is tmon_flow_descr_t.mask_lowSz & 0x0f*/

#define TMPDU_FLOW_LOWNMASK 0xf0/* netmsk low nibble:(.mask_lowSz & 0xf0)>>4*/
#define TMPDU_FLOW_HIGNMASK 0x80/* netmsk high bit: (.icmp & 0x80) >>3 */
/*Resulting netmask value is ((.icmp & 0x80) >>3)|((.mask_lowSz & 0xf0)>>4)*/

4.4.5 Flow Instance Protocol Counters Records PDU
pduType == TMON_PDU_TYPE_FLCNTRS 2

Protocol stack dissection and stateful analysis leads to the update of numerous counters
of the several types of protocols.

The per-Flow protocol counters are:

typedef struct tmon_ipv4_counters {
 uint64_t reassemblyTimeout;
 uint64_t fragmentOverlap;
 uint64_t icmp;
 uint64_t udp;
 uint64_t tcp;
 uint64_t others;
} tmon_ipv4_counters_t;

typedef struct tmon_icmpv4_counters {
 uint64_t icmpCksumFailed; /* not counted as malformed */
 uint64_t icmpCksumSkipped;/* checksum not verified (!UDP/TCP or trunc.) */
 uint64_t echoRequest;
 uint64_t echoReply;
 uint64_t fragNeeded;
 uint64_t srcQuench;
 uint64_t ttlExpired;
 uint64_t reassemblyTimeout;
 uint64_t unReach; /* except fragNeeded */
 uint64_t redirect;
 uint64_t otherErrMsg;
 uint64_t otherInfo;
} tmon_icmpv4_counters_t;

typedef struct tmon_udpv4_counters {
 uint64_t udpCksumFailed; /* not counted as malformed */
 uint64_t udpCksumSkipped;/* no checksum or not verified (frag. or trunc.) */
 uint64_t udpEmpty;
 uint64_t snmp;
 uint64_t dns;
 uint64_t ntp;
 uint64_t other;
} tmon_udpv4_counters_t;

typedef struct tmon_tcpv4_counters {
 uint64_t tcpCksumFailed; /* not counted as malformed */
 uint64_t tcpCksumSkipped;/* checksum not verified: frag. or trunccated */
 uint64_t tcpRestransmit;
 uint32_t tcpLatePkt;
 uint32_t tcpStartConns;
 uint32_t tcpCleanClose;

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 199/248

 uint32_t tcpDirtyClose;
 uint32_t ftpCtlConns;
 uint32_t ftpFileXfers;
 uint32_t httpFileXfers;
 uint32_t otherTcpConns;
} tmon_tcpv4_counters_t;

typedef struct tmon_ftp_counters {
 uint32_t ftpStartSessions;/* # started CTL sessions */
 uint32_t ftpCleanClose; /* # of QUIT commands seen */
 uint32_t ftpDirtyClose; /* # of FTP ctl session closed without QUIT */
 uint32_t ftpEncrypted; /* # of FTP ctl session encrypted */
 uint32_t ftpNoLogin; /* # of FTP ctl session without succ. login */
 uint32_t ftpNoCommand; /* # of FTP ctl session without logged-in command*/
 uint32_t ftpNoFileXfer; /* # of FTP ctl session without logged-in xfer */
 uint32_t ftpWithFileXfer; /* # of FTP ctl session with logged-in file xfer */
 uint32_t ftpActives; /* # of PORT/EPRT/LPRT based data connections,
 including Directory Listing */
 uint32_t ftpPassives; /* # of PASV/EPSV/LPSV based data connections,
 including Directory Listing */
 uint32_t ftpDirList; /* # directory listing */
 uint32_t ftpGets; /* # succeeded RETR of files */
 uint32_t ftpPuts; /* # succeeded STOR/STOU/APPE of files */
 uint32_t ftpFailedGets; /* # failed to complete RETR of files */
 uint32_t ftpFailedPuts; /* # failed to complete STOR/STOU/APPE of files */
 uint32_t ftpRestarts; /* # of REST commands seen */
 uint32_t ftpDataAborts; /* # of ABOR commands seen */
 uint32_t ftpLoginFailed; /* # failed USER/PASS exchanges */
 uint32_t ftpCipherFailed; /* # of AUTH command failures */
 uint32_t ftpCmdFailed; /* # of Negative Replies to commands */
} tmon_ftp_counters_t;

typedef struct tmon_http_counters {
 /* TBD */
} tmon_http_counters_t;

These counters are complemented with the IPv4 size distribution of the packets (or
reassembled datagrams).

• In case of packet sizes (maximum 1500 bytes), the size histogram consists in 7
slices covering each a fixed range of 200 bytes, terminated by an open-ended
range starting at 1400 bytes.

• In case of reassembled datagram sizes, the size histogram consists in the same
200 bytes-wide 7 initial ranges, followed by an 8th range of 200 bytes ([1400 ..
1600[), followed by 7 slices of fixed-size range of 400 bytes, terminated by an open-
ended range starting at 8000 bytes.

#define TMON_SIZE_BUCKETS 16 /* Index MUST fit in a nibble for coding */
 /* tmon_flow_descr_t struct in PDU */
#define TMON_SIZE_IPV4BUCKLEN 200
typedef struct tmon_sizes {
 uint64_t sumBytes; /* cummul. volume of IPv4 pkts (hdr+payload) */
 tmon_size_bucket_t szDistrib[TMON_SIZE_BUCKETS]; /* size distribution: */
 /* bucket 0: 0 <= size < 200 */
 /* bucket 1: 200 <= size < 400 */
 /* bucket 2: 400 <= size < 600 */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 200/248

 /* bucket 3: 600 <= size < 800 */
 /* bucket 4: 800 <= size < 1000 */
 /* bucket 5: 1000 <= size < 1200 */
 /* bucket 6: 1200 <= size < 1400 */
 /* bucket 7: 1400 <= size */
 /* OR, opt. for datagram/segment bucket 7: 1400 <= size < 1600 */
 /* optional bucket 8: 1600 <= size < 2000 */
 /* optional bucket 9: 2000 <= size < 3000 */
 /* optional bucket 10: 3000 <= size < 4000 */
 /* optional bucket 11: 4000 <= size < 5000 */
 /* optional bucket 12: 5000 <= size < 6000 */
 /* optional bucket 13: 6000 <= size < 7000 */
 /* optional bucket 14: 7000 <= size < 8000 */
 /* optional bucket 15: 8000 <= size */
 uint8_t szBucketsCnt; /* # of szDistrib buckets actually used */

} tmon_sizes_t;

Each slice consists in a set of aggregate statistical values (permitting further aggregating):

typedef struct tmon_size_bucket {
 uint16_t sz_lower; /* bucket includes this lower boundary */
 uint16_t sz_upper; /* value just above the bucket boundary
 ==0 when not upward bounded */
 uint16_t sz_min; /* actual minimal size within this bucket population*/
 uint16_t sz_max; /* actual maximal size within this bucket population*/
 uint16_t sz_avg; /* average size within this bucket population */
 uint64_t sz_pop; /* actual population covered by this size bucket */
 uint64_t sz_sum; /* sum of all size of members of this bucket */
 uint64_t sz_sumsq; /* sum of the square of all sizes within this bucket*/
} tmon_size_bucket_t;

For each Flow Instance whose Flow Class(es) request the regular reporting of
<Stats><PacketCounters>, the entire set of protocol counters are regularly sampled and
reported to the collector(s) and locally reset to zero for starting a new measurement time
period. The reporting period for a Flow Instance is the smallest (divider) of the periods
specified by its concerned Flow Classes:
<!ELEMENT FlowClass (Measure, FlowGrain?, Filter+, Condition?)>
<!ATTLIST FlowClass id NMTOKEN #REQUIRED
 name NMTOKEN #REQUIRED
 descr CDATA #IMPLIED
>

<!ELEMENT Measure (Delay?, Stats?) >
<!ATTLIST Measure interval (each|10s|20s|30s
 |1min|10min|20min|30min
 |1h) #REQUIRED
>
<!ELEMENT Stats (PacketCounters?,TCPConnections?,FileTransfers?) >
<!ATTLIST Stats verifChksum (none|bestEffort|fullReassembly)
 #REQUIRED
>
<!ELEMENT PacketCounters EMPTY >
<!ATTLIST PacketCounters for (firstFragment|allFragments

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 201/248

 |datagram) #REQUIRED
>

For each Flow Instance, the protocol counters record consists in a fixed part and a variable
part.

The fixed part refers to the probe-assigned Flow ID, the duration of the reported time
interval (period), whether the measurements apply per fragment (per individual packet,
either un-fragmented datagram/segment or individual fragment counted separately) or per
datagram (either un-fragmented or re-assembled), and the size of the variable part:
typedef struct tmon_flow_cntrs {
 uint64_t prbFlowId; /* Probe assigned ID to flow instance */
 uint16_t timeIntrvl;/* period is timeIntrvl seconds before PDU ref. time */
 uint16_t encodgLen; /* length of the variable data[] portion */
 uint8_t granularity;/* TMPDU_FLCNTR_PERFRAG or TMPDU_FLCNTR_PERDGRM */
 uint8_t data[1]; /* Byte array of Length/Type/Value entries */
} tmon_flow_cntrs_t;

The variable part does report all counters (and size) values resulting from the reported
period as integer values encoded as variable length Length-Type-Value.

• Length is the number of bytes occupied by the encoded Value (not counting the 1-
byte Type); Length may be zero, meaning that the counter Value is zero and
occupies no byte.

• Type is a 1-byte numeric identifier (see below)

• Value is the normal encoding of an integer in network byte-order, but containing
only the significant low order bytes (high order bytes that are zero aren’t copied in
the encoding).

In tmon_PDU.h:

/*
 * Flow Stats Counter Types
 * ------------------------
 */
#define TMPDU_FLCNTR_PERFRAG 1 /* per packet (fragment) counter */
#define TMPDU_FLCNTR_PERDGRM 2 /* per datagram (reassembled) counter */

#define TMPDU_FLCNTR_TOTBYTES 3 /* ipSizes.sumBytes */
#define TMPDU_FLCNTR_SZBUCKTS 4 /* ipSizes.szBucketsCnt */
/* For each bucket of size distribution : */
#define TMPDU_FLCNTR_SZBKIDX 5 /* index in ipSizes.szDistrib[] */
#define TMPDU_FLCNTR_SZBKLOW 6 /* ipSizes.szDistrib.sz_lower */
#define TMPDU_FLCNTR_SZBKUP 7 /* ipSizes.szDistrib.sz_upper */
#define TMPDU_FLCNTR_SZBKMIN 8 /* ipSizes.szDistrib.sz_min */
#define TMPDU_FLCNTR_SZBKMAX 9 /* ipSizes.szDistrib.sz_max */
#define TMPDU_FLCNTR_SZBKAVG 10 /* ipSizes.szDistrib.sz_avg */
#define TMPDU_FLCNTR_SZBKPOP 11 /* ipSizes.szDistrib.sz_pop */
#define TMPDU_FLCNTR_SZBKSUM 12 /* ipSizes.szDistrib.sz_sum */
#define TMPDU_FLCNTR_SZBKSQSM 13 /* ipSizes.szDistrib.sz_sumsq */

In tmon_statistics.h:

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 202/248

/*
 * Numeric Identifiers of the Statistics Counters
 *
 * These fit in one unsigned byte
 * These codes are also used as counter identifiers in the encoded
 * Flow Instance Counters PDU: starting at 20 in order not to clash
 * with other TMPDU_FLCNTR_XXXX in tmon_PDU.h
 */
#define TMON_STATS_IP_REASTIMOUT 20
#define TMON_STATS_IP_FRAGDUPL 21 /* unused */
#define TMON_STATS_IP_FRAGOVRL 22
#define TMON_STATS_IP_FRAGSEQU 23 /* unused */
#define TMON_STATS_IP_ICMP 24
#define TMON_STATS_IP_UDP 25
#define TMON_STATS_IP_TCP 26
#define TMON_STATS_IP_OTHER 27

#define TMON_STATS_ICMP_CKSUMFAIL 30
#define TMON_STATS_ICMP_CKSUMSKIP 31
#define TMON_STATS_ICMP_ECHOREQ 32
#define TMON_STATS_ICMP_ECHORSP 33
#define TMON_STATS_ICMP_FRAGNEED 34
#define TMON_STATS_ICMP_SRCQHCH 35
#define TMON_STATS_ICMP_TTLEXPRD 36
#define TMON_STATS_ICMP_REASTIMOUT 37
#define TMON_STATS_ICMP_UNREACHD 38
#define TMON_STATS_ICMP_REDIRECT 39
#define TMON_STATS_ICMP_OTHERROR 40
#define TMON_STATS_ICMP_OTHRINFO 41

#define TMON_STATS_UDP_CKSUMFAIL 50
#define TMON_STATS_UDP_CKSUMSKIP 51
#define TMON_STATS_UDP_EMPTY 52
#define TMON_STATS_UDP_SNMP 53
#define TMON_STATS_UDP_DNS 54
#define TMON_STATS_UDP_NTP 55
#define TMON_STATS_UDP_OTHER 56

#define TMON_STATS_TCP_CKSUMFAIL 60
#define TMON_STATS_TCP_CKSUMSKIP 61
#define TMON_STATS_TCP_RETRANSMIT 62
#define TMON_STATS_TCP_LATEPKT 63
#define TMON_STATS_TCP_STARTCONNS 64
#define TMON_STATS_TCP_CLEANCLOSE 65
#define TMON_STATS_TCP_DIRTYCLOSE 66
#define TMON_STATS_TCP_FTPCTLCONNS 67
#define TMON_STATS_TCP_FTPFILEXFERS 68
#define TMON_STATS_TCP_HTTPFILEXFERS 69
#define TMON_STATS_TCP_OTHERCONNS 70

#define TMON_STATS_FTP_STARTSESSIONS 80
#define TMON_STATS_FTP_CLEANCLOSE 81
#define TMON_STATS_FTP_DIRTYCLOSE 82
#define TMON_STATS_FTP_ENCRYPTED 83
#define TMON_STATS_FTP_NOLOGIN 84
#define TMON_STATS_FTP_NOCOMMAND 85
#define TMON_STATS_FTP_NOFILEXFER 86

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 203/248

#define TMON_STATS_FTP_FILEXFER 87
#define TMON_STATS_FTP_ACTIVES 88
#define TMON_STATS_FTP_PASSIVES 89
#define TMON_STATS_FTP_DIRLIST 90
#define TMON_STATS_FTP_GETS 91
#define TMON_STATS_FTP_PUTS 92
#define TMON_STATS_FTP_FAILEDGETS 93
#define TMON_STATS_FTP_FAILEDPUTS 94
#define TMON_STATS_FTP_RESTARTS 95
#define TMON_STATS_FTP_DATAABORTS 96
#define TMON_STATS_FTP_LOGINFAIL 97
#define TMON_STATS_FTP_CIPHERFAIL 98
#define TMON_STATS_FTP_CMDFAIL 99

#define TMON_STATS_HTTP_XXX 110 /* Not yet */

4.4.6 Compact per-Packet/Datagram One Way Observations
PDU
pduType == TMON_PDU_TYPE_PKTOBS 3

This contains, for individual packet or reassembled datagram, the probe-assigned ID of the
Flow Instance, the IPv4 size and a series of timestamps.

In the XML configuration file, a Flow Class requiring measuring OneWay Delay specifies
an ordered list of network Hops the tool must provide the packet timestamps of.

<!ELEMENT OneWayDelay (Hop+, Sign?) >
<!ELEMENT Hop EMPTY >
<!ATTLIST Hop name NMTOKEN #REQUIRED
 descr CDATA #IMPLIED
>
 <!-- Measuring One-Way Latencies: hopName per timestamp -->
 <!-- ============================ ===================== -->
 <!-- NOTE: <Hop> inside a <OneWayDelay> tag are ordered!! -->
 <!-- The order represents the chronology of each timestamp in -->
 <!-- the sequence, whatever its type (capture/IP/NTP) -->
 <!-- -->
 <!-- This tag must be in one or more copies in order to -->
 <!-- specify the sequence of hop timestamps expected for -->
 <!-- completing a valid record. -->
 <!-- More than one probe (interface) can provide the same time -->
 <!-- in the case of redundant transmission via more than one -->
 <!-- link. But in any way, identical timestamp IDs are -->
 <!-- expected to identify the same logical hop along the path. -->
 <!-- If a probing point is labeled 'dmz', two different probes -->
 <!-- reporting times for 'dmz' are supposed to be located in -->
 <!-- alternate instances of the corporate DMZ. -->
 <!-- Every Hop name is assigned inside one or more <Filter>: -->
 <!-- + either as the capture timestamp at the interface -->
 <!-- + or as an IP option timestamp of a given sequence number -->
 <!-- + or as an NTP timsetamp of a given type from either the -->
 <!-- NTP Request or NTP Response -->

...

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 204/248

<!ELEMENT Filter (On+, CaptureTimeStamp?,
 (IpOptTimestamp | NtpTimestamp)*, NatPat*,
 PacketExpr, FlowGrain?)>

<!ELEMENT On EMPTY >
<!ATTLIST On probe NMTOKEN #REQUIRED
 if NMTOKEN #REQUIRED
>
 <!-- probe: a reference to the name of the probe -->
 <!-- to which the Packet Filter Expression applies-->
 <!-- if: a reference to the probe interface name -->
 <!-- to which the Packet Filter Expression applies-->

<!ELEMENT CaptureTimeStamp EMPTY >
<!ATTLIST CaptureTimeStamp
 hopName NMTOKEN #REQUIRED
>
<!ELEMENT IpOptTimestamp EMPTY >
<!ATTLIST IpOptTimestamp ipTSNum NMTOKEN #REQUIRED
 hopName NMTOKEN #REQUIRED
>

<!ELEMENT NtpTimestamp EMPTY >
<!ATTLIST NtpTimestamp ntpTime (originreq|recvdreq
 |xmitreq|originrsp
 |recvdrsp|xmitrsp) #REQUIRED
 hopName NMTOKEN #REQUIRED
>
 <!-- Capture Timestamps on packet/datagram -->
 <!-- == -->
 <!-- name of the hop timestamp at a probing point -->
 <!-- -->
 <!-- Optional Additional Timestamps on packet/datagram -->
 <!-- == -->
 <!-- -->
 <!-- + based on IP OPTION TIMESTAMP (milliseconds since midnight-->
 <!-- The nth (ipTSNum) IP timestamp in the flow packets is -->
 <!-- mapped to the given hopName -->
 <!-- 1 <= ipTSNum <= 9 -->
 <!-- -->
 <!-- + based on UDP NTP Embedded Timestamps -->
 <!-- Designates, respectively for a request or response, -->
 <!-- which of the three relevant NTP Timestamps to report -->
 <!-- as hopName -->
 <!-- This requires firstFragment|datagram -->

Example:

 <FlowClass id="12345" name="withIPTS"
 descr="UDP with port==21 and IP Timestamps">
 <Measure interval="each" >
 <Delay for="datagram" granularity="individual">
 <OneWayDelay>
 <Hop name="remint1"/>
 <Hop name="remint"/>
 <Hop name="alkuf"/>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 205/248

 <Hop name="hiros"/>
 <Hop name="kuching"/>
 <Hop name="locdmz"/>
 <Sign>
 <Chunk start="0" relTo="ipPayload" length="40" />
 </Sign>
 </OneWayDelay>
 </Delay>
 </Measure>
 <FlowGrain ref="peers" />

 <Filter>
 <On probe="chieti" if="eth2" />
 <CaptureTimeStamp hopName="remint"/>
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="port" op="eq" value="21"/>
 </AND>
 </PacketExpr>
 </Filter>

 <Filter>
 <On probe="hutch" if="eth1" />
 <CaptureTimeStamp hopName="locdmz"/>
 <IpOptTimestamp ipTSNum="1" hopName="remint1"/>
 <IpOptTimestamp ipTSNum="2" hopName="alkuf"/>
 <IpOptTimestamp ipTSNum="3" hopName="hiros"/>
 <IpOptTimestamp ipTSNum="4" hopName="kuching"/>
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="port" op="eq" value="21"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>

Each Hop identifies

• Either a packet capture time at one among an equivalent set of probe interfaces
(e.g. in Figure 1 above, if a probe interface was capturing the segment
141.253.14.0/24, and another on the segment 141.253.24.0/24, these two
equivalent steps, on alternative network paths, would correspond to the same hop)

• or the nth value of IPv4 Optional list of timestamp accumulated in the IPv4 header
during the packet traversal of routers in its network path,

• or one of the NTP timestamps among:
o NTP Request Origin Time,
o NTP Request Reception Time,
o NTP Request Transmit Time,
o NTP Response Origin Time,

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 206/248

o NTP Response Reception Time,
o NTP Response Transmit Time

When reporting per datagram is requested, and the datagram has been re-assembled
from its fragment, two different values are reported for a same capture interface hop:

o the (oldest) timestamp of the first seen fragment (not necessarily the one
with offset == 0),

o the (youngest) timestamp of the last seen fragment (not necessarily the one
without the more fragment flag)

The encoding is quite compact so as to limit the size of monitoring packets to about 1 % of
the observed traffic volume.

4.4.6.1 Assumptions

A probe PDU contains packet observations made by a unique Probe Software Instance.

A One Way Observations PDU contains packet observations from one or more flow
instances, grouped by flow instances. A flow instance is assigned by a probe a unique id
from a very large 64-bit integer. Probe flow instance Ids are never zero.

One physical probe computer can host several logical probes (ie n probes on 1 chassis)

A Probe Software Instance can be identified by source IP + source port of PDU, as well as
by the Logical Probe Identifier in the PDU header. Typically, a Physical Probe could be
identified by source IP of PDU or source IP subnet of probe PDU.

A packet can (theoretically) match more than one Flow Instance with applicable
OneWayDelay specifications. Anyway, the Flow Class definitions are expected to be
configured in a consistent and meaningful way: a packet at a probe interface provides
single subset of the expected set of hop timestamps among:

• the capture time at the interface,
• the ordered list of (up to 9) IP Option Timestamps
• the three NTP timestamps of either a request or a reply packet.

All expected hops, from (the applicable set of) flow class(es), form an ordered list. Each
hop can therefore be designated by its sequence number (starting at 1) instead of by
hopName.

Timestamps are expected to be close to each other, but a travel time as high as 10
seconds is not unrealistic, e.g. with IP option timestamps or with remote NTP timestamp.

At a given time, flow instances alive in a probe are expected to have clustered Flow Ids,
but there may be some very ancient ones whose Ids are significantly distant numbers wrt
the others.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 207/248

A One Way Observations PDU carries one or more hop timestamps per observed data
unit. When data unit is a reassembled datagram, its packet capture hop consists in two
timestamps: first and last observed fragments.

A One Way Observations PDU also carries the size (in bytes) of the [optionally
reassembled] data unit.

Some code tags are common to both formats of One Way Observations PDU as well as
Individual Delays PDU (see section 4.4.7 below):

[0xfa]: TMP_PDU_CODE_FLOW
with 8-byte absolute ProbeFlowID reference

[0xfb]: TMP_PDU_CODE_RLFLW
with 2-byte relative ProbeFlowID reference and 2-byte unique
FlowClass “id” and also, for OneWay Observations, the number and
index list of timestamps,

[0xfc]: TMP_PDU_CODE_TS
with 2-byte relative ¼ second reference

[0xfd]: TMP_PDU_CODE_ADDFLW
with 8-byte additional Flow reference

Some code tags are specific to the data being encoded:

[0xfe]: TMP_PDU_CODE_FRGNUM, for One Way Observations
with 1-byte fragment number (for second to before-last frags)

[0xfe]: TMP_PDU_CODE_DELTYP, for Delay Observations
with 1-byte Delay Type

[0xff]: TMP_PDU_CODE_LSTFRG, for One Way Observations

alone, attached to a last fragment
[0xff]: TMP_PDU_CODE_INITOR, for Delay Observations with Round-Trip

Delay alone, meaning the delay is round-trip between initiator and
probe

[0xff]: TMP_PDU_CODE_ITRFRG, for Delay Observations with Inter-Unit
Delay alone, meaning the delay is between 2 successive fragments
of a fragmented datagram

4.4.6.2 Encoding Format

At any position inside the encoding stream, there is a known Reference Flow ID (and its
Flow Class ID), a Reference list of network Hops and a known Reference Time expressed
in ¼ second (quartSec).

The main component of the encoding covers a packet record whose primary capture time
is close to the reference quartSec (before quartSec +1), and which belongs to the
reference Flow ID and provides timestamps for the reference Hop list.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 208/248

This is encoded as the positive delay (in milliseconds) from quartSec, followed by IP
size, by the signature hash bytes and by N-1 timestamps encoded as a signed offset from
the primary capture time of the packet.

When the reported packet is a second or subsequent IP fragment, it is added the tag
TMP_PDU_CODE_FRGNUM or TMP_PDU_CODE_LSTFRG. For intermediate
fragments, the tag is followed by a one-byte X, so that nth fragment is given X=n (n==1 for
first fragment).

When next record has its primary capture timestamp distant from the current quartSec by
more the ¼ second, then a new TMP_PDU_CODE_TS reference quartSec is inserted.

When next record belongs to a (primary) flow different from the reference and/or provides
a different Hop timestamps list, a new reference is inserted. If the new reference Flow ID is
distant by more than +/- 0x7FFF (+/- 32767) from the previous reference, then a new
TMP_PDU_CODE_FLOW tag is inserted with its new 8-byte absolute Flow ID reference. A
new TMP_PDU_CODE_RLFLW tag is inserted with is signed relative delta from the
reference Flow ID, its Flow Class ID, the number of Hops and the list of positions (first is 1)
of Hops in the Flow Class XML definition.

GRAMMAR (where * means 0 or more, + means 1 or more, xN means N times)

PDU_PAYLD: { CODE DATA }+

CODE: 1 byte
DATA: n bytes according to the value of CODE
Possible combinations for (CODE DATA) are:
Specific short codes:

 [0xfa] FLOW
FLOW: Current Flow instance complete identifier - 8 bytes

 [0xfb] RELFLW FLOWCLS N {TINDEX}xN
RELFLW: Current Flow instance relative identifier - 2 bytes of signed delta wrt

last mentioned FLOW
FLOWCLS: Corresponding applicable XML <FlowClass> “id” attribute

2 bytes
N: Number of timestamps to be reported for packet
 In upper nibble (1/2 byte)
TINDEX: Respective sequence indexes of TS, then of ADDTS, for the flow

(first == 1)
 One nibble (1/2 byte) each

 [0xfc] TS
TS: 2-byte timestamp in quarts of a second as a signed delta wrt REFTS

 [0xfd] M {FLOW}xM

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 209/248

M: Number of following additional Flow instances for packet
(1-byte)

FLOW: Additional Flow instance complete identifier for packet - 8 bytes

 [0xfe] X
X: This is (X+2)th fragment
 [0xff]
 This is the last fragment
 First fragment has neither of [0xfe] or [0xff]
 Last fragment has only [0xff]
 From second to before-last fragment: [0xfe] code

Packet obs. main data format:

 [0x00-0xf9] SIZE HASH {ADDTS}xN-1
[0x00-0xf9]: First timestamp of the packet at this probe/interface expressed as a

time offset from the current quart of a second (i.e. from last TS) -
Permitted values are 0 to 249 msec.

SIZE: Size in bytes of the observed data unit (2 bytes, Maximum payload
datagram is 65535 bytes + size of IP Header, but assumed that it
always fit in a 2 bytes unsigned).

HASH: The hash of the packet observed (2..5 bytes of MD5).
For reassembled datagram, this is the IPv4 size of first fragment plus
that of the cumulated IPv4 payload of subsequent fragments

ADDTS: [-127..-1,+0..+127] | [0xff] RELTS
 Additional timestamp for the packet: as per the sequence of TINDEX

defined by the [0xfb] directive.
 Expressed as a signed number of milliseconds relative to the first

timestamp of the packet ([0x00-0xf9])
 Either encoded as a 1-byte one’s complement (without -0). Or [0xff]

(= -0 in one’s complement) followed by signed 16-bit.

4.4.7 Individual Delays PDU
pduType == TMON_PDU_TYPE_DELOBS 4

When a probe is requested to individually (not probeAggregated) measure either Two-
Way delays (RoundTripDelay) of specific transactions (peer datagram in each direction)
or Inter-Unit delays (InterPacket not implemented) between successive captured
datagrams and between successive captured fragments of a same datagram, it must
report each pair of observed timestamps to the collector(s).

The encoding mechanism is here quite similar (though simpler) to the one described in
section 4.4.6.2 above. But only two timestamps are provided per observation record:

• primary timestamp is that of the “request” (one way data unit),

• the second timestamp is that of the “response” (corresponding return peer data unit)

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 210/248

Delay Observations PDU format is a simplified variant of One Way Observations encoding:
N==2 timestamps per observation: start then end time of the delay, in that order (no
TINDEX sequence number is needed)

In case a (typically response) datagram is fragmented (only possible with SNMP, for
round-trip): when RT delay is per datagram, corresponding datagram peer time is that of
the youngest fragment, otherwise it is that of the oldest fragment.

A same Delay Observations PDU type is used for both Round-Trip delay and inter-data
unit delay.

Some code tags are common to both formats of One Way Observations PDU (see section
4.4.6.2 above) as well as Individual Delays PDU:

[0xfa]: TMP_PDU_CODE_FLOW
with 8-byte absolute ProbeFlowID reference

[0xfb]: TMP_PDU_CODE_RLFLW
with 2-byte relative ProbeFlowID reference and 2-byte unique
FlowClass “id” and also, for OneWay Observations, the number and
index list of timestamps,

[0xfc]: TMP_PDU_CODE_TS
with 2-byte relative ¼ second reference

[0xfd]: TMP_PDU_CODE_ADDFLW
with -byte additional Flow reference

Some code tags are specific to the data being encoded:

[0xfe]: TMP_PDU_CODE_FRGNUM, for One Way Observations
with 1-byte fragment number (for second to before-last frags)

[0xfe]: TMP_PDU_CODE_DELTYP, for Delay Observations
with 1-byte Delay Type

[0xff]: TMP_PDU_CODE_LSTFRG, for One Way Observations

alone, attached to a last fragment
[0xff]: TMP_PDU_CODE_INITOR, for Delay Observations with Round-Trip

Delay alone, meaning the delay is round-trip between initiator and
probe

[0xff]: TMP_PDU_CODE_ITRFRG, for Delay Observations with Inter-Unit
Delay alone, meaning the delay is between 2 successive fragments
of a fragmented datagram

4.4.7.1 Encoding Format

At any position inside the encoding stream, there is a known Reference Flow ID (and its
Flow Class ID), a Reference list of network Hops and a known Reference Time expressed
in ¼ second (quartSec).

The main component of the encoding covers a packet record whose primary capture time
is close to the reference quartSec (before quartSec +1), and which belongs to the
reference Flow ID and provides timestamps for the reference Hop list.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 211/248

This is encoded as the positive delay (in milliseconds) from quartSec, followed by IP
size, by the signature hash bytes and by N-1 timestamps encoded as a signed offset from
the primary capture time of the packet.

When the reported packet is a second or subsequent IP fragment, it is added the tag
TMP_PDU_CODE_FRGNUM or TMP_PDU_CODE_LSTFRG. For intermediate
fragments, the tag is followed by a one-byte X, so that nth fragment is given X=n (n==1 for
first fragment).

When next record has its primary capture timestamp distant from the current quartSec by
more the ¼ second, then a new TMP_PDU_CODE_TS reference quartSec is inserted.

When next record belongs to a (primary) flow different from the reference and/or provides
a different Hop timestamps list, a new reference is inserted. If the new reference Flow ID is
distant by more than +/- 0x7FFF (+/- 32767) from the previous reference, then a new
TMP_PDU_CODE_FLOW tag is inserted with its new 8-byte absolute Flow ID reference. A
new TMP_PDU_CODE_RLFLW tag is inserted with is signed relative delta from the
reference Flow ID, its Flow Class ID, the number of Hops and the list of positions (first is 1)
of Hops in the Flow Class XML definition.

GRAMMAR (where * means 0 or more, + means 1 or more, xN means N times)

PDU_PAYLD: { CODE DATA }+

CODE: 1 byte
DATA: n bytes according to the value of CODE
Possible combinations for (CODE DATA) are:

Specific short codes:

 [0xfa] FLOW
FLOW: Current Flow instance complete identifier - 8 bytes

 [0xfb] RELFLW FLOWCLS
RELFLW: Current Flow instance relative identifier - 2 bytes of signed delta wrt

last mentioned FLOW
FLOWCLS: Corresponding applicable XML <FlowClass> “id” attribute

2 bytes

 [0xfc] TS
TS: 2-byte timestamp in quarts of a second as a signed delta wrt REFTS

 [0xfd] M {FLOW}xM
M: Number of following additional Flow instances for packet

(1-byte)
FLOW: Additional Flow instance complete identifier for packet - 8 bytes

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 212/248

 [0xfe] TYPE
TYPE: Either TMP_PDU_DEL_2WAY(==1) for round-trip delay, or

TMP_PDU_DEL_INTER(==2) for inter-unit delay

 [0xff]
 Either (TYPE == TMP_PDU_DEL_2WAY): Round-trip with Initiator

(instead of with Responder)
Or (TYPE == TMP_PDU_DEL_INTER): Inter-fragment delay (instead
of inter-datagram, fragmented or not)

Packet obs. main data format:

 [0x00-0xf9] HASH {ADDTS}x1
[0x00-0xf9]: First timestamp of the packet at this probe/interface expressed as a

time offset from the current quart of a second (i.e. from last TS) -
Permitted values are 0 to 249 msec.

HASH: The hash of the packet observed (2..5 bytes of MD5).
ADDTS: [-127..-1,+0..+127] | [0xff] RELTS
 Second timestamp for the delay
 Expressed as a signed number of milliseconds relative to the first

timestamp of the packet ([0x00-0xf9])
 Either encoded as a 1-byte one’s complement (without -0). Or [0xff]

(= -0 in one’s complement) followed by signed 16-bit.

4.4.8 Metric Single or Multi-Slice (Histogram) Aggregate
Description PDU
pduType == TMON_PDU_TYPE_HISTDSC 5

For those metrics which are computed inside the probe and whose values are aggregated
over a specified regular reporting time period, the probe publishes once to the collector(s)
the description of the aggregate properties.

These properties derive from applicable (“probeAggregated” Measure/Delay) Flow
Class <Histogram> definition:

<!ELEMENT Histogram EMPTY >
<!ATTLIST Histogram lowBound NMTOKEN #REQUIRED
 highBound NMTOKEN #REQUIRED
 sliceCount NMTOKEN "12"
>

<!-- For any three types of Delay, EITHER "collectorAggregated" or -->
<!-- "probeAggregated" Histogram MAY (optional) be specified to preserve -->
<!-- several ranges of observed delay values: -->
<!-- -->
<!-- When Histogram is not specified, all values are aggregated over time -->
<!-- period into a single unbound bucket (no histogram slices) -->
<!-- -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 213/248

<!-- lowBound: First slice covers all values < lowBound -->
<!-- highBound: Last slice covers all values >= highBound -->
<!-- sliceCount: In between first and last slices, there are -->
<!-- sliceCount intervals of values, of equal -->
<!-- length -->
<!-- Currently only used for Delay metrics, the values are -->
<!-- signed integers coded in 32 bit. Specifying any bound -->
<!-- as either INT32_MIN (0xffff or 147483648) -->
<!-- or INT32_MAX (0x7fff or 2147483647) -->
<!-- means "unbound". -->

As for the Protocols Counters PDU (section 4.4.5 above), the per-histogram record
consists in a fixed size part followed by variable length encoded list of fields.

Fixed part:

/*
 * Fixed metric instance histogram description header
 * --
 */
typedef struct tmon_hist_desc {
 uint64_t prbFlowId; /* Probe assigned ID to flow instance */
 uint16_t encodgLen; /* length of the variable data[] portion */
 uint8_t metricType;/* TMPDU_MTR_XXX */
 uint8_t slicesCnt; /* how many histogram slices for this metric instance?*/
 uint8_t data[1]; /* Byte array of Length/Type/Value entries */
} tmon_hist_desc_t;

The metricType is one of

/* delays */
#define TMPDU_MTR_LATENCY (TMON_MTR_DELAY_1WAY+1)
 /* one-way latency (between 2 interfaces of a probe) */
#define TMPDU_MTR_RTRSPDR (TMON_MTR_DELAY_2W_RSPDR+1)
 /* round-trip time towards protoc. responder(svr)*/
#define TMPDU_MTR_RTINITR (TMON_MTR_DELAY_2W_INITR+1)
 /* round-trip time towards protoc. initiator(cli) */
#define TMPDU_MTR_ITRDRGM (TMON_MTR_DELAY_INTERDGRM+1)
 /* inter-datagram delay at probe interface */
 /* for unfragmented or reassembled datagrams */
#define TMPDU_MTR_ITRFRAG (TMON_MTR_DELAY_INTERFRAG+1)
 /* delay inter incomplete fragments of a datagram */
/* others could come later */

where

 * A. DELAY METRICS
 * ++++++++++++++++
 * Five possible instance types of probe-aggregated delay histograms:
 *
 * ==> index in table inside a flow instance record in probe.
 */
#define TMON_MTR_DELAY_1WAY 0 /* packet latency between probing
 interfaces */
#define TMON_MTR_DELAY_2W_RSPDR 1 /* round-trip time towards responder */
#define TMON_MTR_DELAY_2W_INITR 2 /* round-trip time towards initiatior */
#define TMON_MTR_DELAY_INTERDGRM 3 /* inter-datagram delay */
#define TMON_MTR_DELAY_INTERFRAG 4 /* inter-fragment (of a same datagram)

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 214/248

 delay */
#define TMON_MTR_DELAY_COUNT 5

Code Fields with variable-length encoding:

/*
 * Variable-length metric instance histogram description fields
 * --
 */
#define TMPDU_HISTO_LOW 1 /* Low Bound of histogram */
#define TMPDU_HISTO_HIGH 2 /* High Bound of histogram */

4.4.9 Metric Instances Data PDU
pduType == TMON_PDU_TYPE_HISTDTA 6

Probe-aggregated metric instances (only the 2-Way round-trip delays in Phase I) consist in
one time period interval of aggregated characteristics of the values distributed over one or
multiple range slices of possible values (see above).

Not all defined slices have actually observed values of the metric instance over the
reported time interval. Only those slices with non null population are reported. A slice is
reported with its index number (first is 1), its observed population, observed min and max,
the sum of observed values and the sum of the square of observed values. Note that the
bounds and length of every slice is assumed already known by the collector(s) thanks to
the above TMON_PDU_TYPE_HISTDSC PDU.

One metric instance data interval consists in a fixed part record followed by variable-length
encodings of slice data fields.

Fixed part:

typedef struct tmon_hist_rec {
 uint64_t prbFlowId; /* Probe assigned ID to flow instance */
 uint16_t timeIntrvl;/* period is timeIntrvl seconds before PDU ref. time */
 uint16_t encodgLen; /* length of the variable data[] portion */
 uint8_t metricType;/* TMPDU_MTR_XXX */
 uint8_t flags; /* TMPDU_MTR_FLAG_XXX */
 uint8_t slicesCnt; /* how many histogram slices for this metric instance?*/
 uint8_t data[1]; /* Byte array of Length/Type/Value entries */
} tmon_hist_rec_t;
/*
 * probe-aggregated metrics characterising flags
 * ---
 */
/* NONE DEFINED YET */
/* #define TMPDU_MTR_FLAG_XXX 0x00 */

Code Fields with variable-length encoding:

#define TMPDU_SLICE_INDEX 1 /* Slice # (index starts at 1) */
#define TMPDU_SLICE_POP 2 /*Population: # observed values within slice bnd */
#define TMPDU_SLICE_MIN 3 /*Minimum value observed within slice boundaries */
#define TMPDU_SLICE_MAX 4 /*Maximum value observed within slice boundaries */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 215/248

#define TMPDU_SLICE_SUM 5 /*Sum of observed values within slice boundaries */
#define TMPDU_SLICE_SUMSQ 6 /*Sum of square of obs values within slice bounds*/

4.4.10 Per-TCP Connection Stateful Observation Data PDU
pduType == TMON_PDU_TYPE_TCPCONN 7

Being reported regularly or at end, the per-TCP connection data are reported into records
with a fixed part, identifying the connection and referring to the (primary) flow instance, and
a variable part, as a series of state and performance values, at the level of the connection,
then for each of its directions.

Those reported TCP connections are

• those match the Filter criteria of a Flow Class requesting to Measure
TCPConnections with a granularity=”each” or “groupedByCollector” (e.g.
matching the control connection of FTP sessions)

• and by extension, where the Flow Class also File Transfers measurement of
protocol=”FTP”, the indirectly discovered and matched file transfer data
connections over the same FTP sessions (data connections for FTP file listing are
not reported)

Fixed part:

typedef struct tmon_tcpconn_rec {
 uint64_t prbFlowId; /* Probe assigned ID to flow instance */
 uint32_t tcpAddrA;
 uint32_t tcpAddrB;
 uint16_t tcpPortA;
 uint16_t tcpPortB;
 uint16_t ifID; /* optional: 0 for NULL */
 uint8_t connState; /* TCP Connection State Information: see below */
 uint8_t connOpts; /* Flags of used TCP Options: see below */
 uint16_t encodgLen; /* Length of the variable data[] portion */
 uint8_t data[1]; /* Byte array of Length/Type/Value entries */
} tmon_tcpconn_rec_t;

The fixed part of record contains the set of fields (except for the first seen time in the
variable length part) permitting to uniquely identify it, as well as it probing point (when a
same connection could be seen at more than one reporting probing interface: A side is that
whose IP address is the lowest or, in case of equality (?!? same host, normally localhost
generic address), the lowest port:

• IPv4 address A-side

• IPv4 address B-side

• TCP port A-side,

• TCP port B-side,

• Probing Interface global ID

• First seen time (in variable length part)

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 216/248

The fixed part also contains the current operational state (connection report could be
produced during the connection lifetime, in case of regular reporting):

/*
 * Values for the connState TCP Connection State information
 * =========
 *
 * 2bits: global connection state
 * 2bits: which side (A or B) is initiator, if known
 * 2bits: which side (A or B) is terminator, if known
 * 1bit: whether A sent RESET
 * 1bit: whether B sent RESET
 */
#define TMPDU_TCPCONN_STATE 0x03 /* mask for overall connection state bits */
#define TMPDU_TCPCONN_SYN 0x00 /* one-way SYN but no SYN+ACK */
#define TMPDU_TCPCONN_DATA 0x01 /* two-way SYN: in data mode */
#define TMPDU_TCPCONN_FIN 0x02 /* one-way FIN or RST, but no rev. FIN/RST*/
#define TMPDU_TCPCONN_CLS 0x03 /* closed by both parties, via FIN or RST */

#define TMPDU_TCPCONN_INITR 0x0c /* mask for TCP Connection Initiator */
#define TMPDU_TCPCONN_INIUNK 0x00 /* Initiator not known */
#define TMPDU_TCPCONN_INITA 0x04 /* Initiator is A side */
#define TMPDU_TCPCONN_INITB 0x08 /* Initiator is B side */

#define TMPDU_TCPCONN_TERM 0x30 /* mask for TCP Connection Terminator */
#define TMPDU_TCPCONN_TRMUNK 0x00 /* Terminator not known */
#define TMPDU_TCPCONN_TERMA 0x10 /* Terminator is A side */
#define TMPDU_TCPCONN_TERMB 0x20 /* Terminator is B side */

#define TMPDU_TCPCONN_RSTA 0x40 /* Side A has sent RESET */
#define TMPDU_TCPCONN_RSTB 0x80 /* Side B has sent RESET */

And a flags byte also identifies the set of mutually agreed TCP Options:

/*
 * Values for the connOpts TCP Connection Options flags
 * =========
 */
#define TMPDU_TCPCONN_WINSCL 0x01 /* is the connection using Window scale? */
#define TMPDU_TCPCONN_RTTM 0x02 /* is the connection using TCP Timestamp?*/
#define TMPDU_TCPCONN_MSSA 0x04 /* has A side sent a MSS value? */
#define TMPDU_TCPCONN_MSSB 0x08 /* has B side sent a MSS value? */
#define TMPDU_TCPCONN_SACKA 0x10 /* has A side sent a SACK-permitted? */
#define TMPDU_TCPCONN_SACKB 0x20 /* has B side sent a SACK-permitted? */

The variable length part consists in fields encoded as Length-Type-Value, as for the above
described Protocol Counters PDU (section 4.4.5). The list of TCP connection state and
performance observation fields of the variable length part is (A and B identifying the two
directions, respectively [AtoB] and [BtoA]):

/*
 * Possible TYPE of variable length TCP connection fields
 * ==
 */
#define TMPDU_TCPCONN_1STTIME 1 /* tcpConnFirstTime */
 /* POSITIVE Delta sec vs. Hdr.pduTimeRef*/

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 217/248

#define TMPDU_TCPCONN_SEGBYTA 2 /* tcpConnDir[ATOB].tcpConnDirSegmBytes */
#define TMPDU_TCPCONN_PLDBYTA 3 /* tcpConnDir[ATOB].tcpConnDirPaylBytes */
#define TMPDU_TCPCONN_1STBYTA 4 /* tcpConnDir[ATOB].tcpConnDir1stPlByts */
#define TMPDU_TCPCONN_RTRBYTA 5 /* tcpConnDir[ATOB].tcpConnDirRetrPayld */
#define TMPDU_TCPCONN_SEGCNTA 6 /* tcpConnDir[ATOB].tcpConnDirSegmCount */
#define TMPDU_TCPCONN_1STCNTA 7 /* tcpConnDir[ATOB].tcpConnDirFirstCnt */
#define TMPDU_TCPCONN_RTRCNTA 8 /* tcpConnDir[ATOB].tcpConnDirRetrSegmt */
#define TMPDU_TCPCONN_MTYACKA 9 /* tcpConnDir[ATOB].tcpConnDirEmAckCnt */

#define TMPDU_TCPCONN_LASTTMA 10 /* tcpConnDir[ATOB].tcpConnDirLastTime */
 /* POSITIVE Delta sec vs. Hdr.pduTimeRef*/

#define TMPDU_TCPCONN_WUDACKA 11 /* tcpConnDir[ATOB].tcpConnDirWouldAck */
 /* in Relative Sequence from first seen */
 /* == actual payload volume sent & seen */
#define TMPDU_TCPCONN_1stWINA 12 /* First window size announced by B */
#define TMPDU_TCPCONN_MAXWINA 13 /* Max. window real size announced by B */
#define TMPDU_TCPCONN_LSTWINA 14 /* Last window real size announced by B */

#define TMPDU_TCPCONN_SEGBYTB 15 /* tcpConnDir[BTOA].tcpConnDirSegmBytes */
#define TMPDU_TCPCONN_PLDBYTB 16 /* tcpConnDir[BTOA].tcpConnDirPaylBytes */
#define TMPDU_TCPCONN_1STBYTB 17 /* tcpConnDir[BTOA].tcpConnDir1stPlByts */
#define TMPDU_TCPCONN_RTRBYTB 18 /* tcpConnDir[BTOA].tcpConnDirRetrPayld */
#define TMPDU_TCPCONN_SEGCNTB 19 /* tcpConnDir[BTOA].tcpConnDirSegmCount */
#define TMPDU_TCPCONN_1STCNTB 20 /* tcpConnDir[BTOA].tcpConnDirFirstCnt */
#define TMPDU_TCPCONN_RTRCNTB 21 /* tcpConnDir[BTOA].tcpConnDirRetrSegmt */
#define TMPDU_TCPCONN_MTYACKB 22 /* tcpConnDir[BTOA].tcpConnDirEmAckCnt */

#define TMPDU_TCPCONN_LASTTMB 23 /* tcpConnDir[BTOA].tcpConnDirLastTime */
 /* POSITIVE Delta sec vs. Hdr.pduTimeRef*/

#define TMPDU_TCPCONN_WUDACKB 24 /* tcpConnDir[BTOA].tcpConnDirWouldAck */
 /* in Relative Sequence from first seen */
 /* == actual payload volume sent & seen */
#define TMPDU_TCPCONN_1stWINB 25 /* First window size announced by A */
#define TMPDU_TCPCONN_MAXWINB 26 /* Max. window real size announced by A */
#define TMPDU_TCPCONN_LSTWINB 27 /* Last window real size announced by A */

4.4.11 Per-File Transfer Information PDU
pduType == TMON_PDU_TYPE_FTPXFER 8

Being reported regularly or at end, the observed file transfers (currently only FTP) are
reported into records with a fixed part – with the probe Flow ID and identifying (except for
their first seen time) the underlying data TCP connection and the underlying FTP session
control TCP connection, as well as providing type flags and state – and a variable part, as
a series of information field values.

typedef struct tmon_ftpxfer_rec {
 uint64_t prbFlowId; /* Probe assigned ID to flow instance */
 uint32_t cliAddr;
 uint32_t svrAddr;
 uint16_t cliDataPort;
 uint16_t svrDataPort;
 uint16_t cliCtlPort; /* From corresponding FTP Control session */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 218/248

 uint16_t svrCtlPort; /* From corresponding FTP Control session */
 uint16_t ifID; /* optional: 0 for NULL */
 uint16_t encodgLen; /* Length of the variable data[] portion */
 uint8_t xferTypes;
 uint8_t connState; /* Same as for TCP connection: TMPDU_TCPCONN_STATE */
 uint8_t data[1]; /* Byte array of Length/Type/Value entries */
} tmon_ftpxfer_rec_t;

The type flags characterises the FTP file transfers:

/*
 * Values for the xferTypes FTP File Transfer Characteristics
 * =========
 * 2bits: GET, PUT or NULL (unknown)
 *
 * 2bits: ACTIVE, PASSIVE or NULL(unknown)
 *
 * 2bits: ASCII, BINARY(Image), EBCDIC or NULL(unknown)
 * Note: Local Byte Size is coded as NULL(unknown)
 *
 * 2bits: Stream, Block, Compressed or NULL(unknown)
 */
/*
 * FTP File Transfer Direction
 * ---------------------------
 */
#define TMPDU_FTPXFDIR_NULL 0x00 /* Unknown Get or Put operation */
#define TMPDU_FTPXFDIR_GET 0x01 /* RETR command */
#define TMPDU_FTPXFDIR_PUT 0x02 /* STOR, STOU, APPE command */
#define TMPDU_FTPXFDIR_MASK 0x03

/*
 * FTP Data Connection Mode
 * ------------------------
 */
#define TMPDU_FTPDATA_NULL 0x00/* Unknown Initiating side of Data Connection */
#define TMPDU_FTPDATA_ACTV 0x04/* ACTIVE Data Connection (via PORT equiv.t) */
#define TMPDU_FTPDATA_PASV 0x08/* PASSIVE Data Connection (via PASV equiv.t) */
#define TMPDU_FTPDATA_MASK 0x0C

/*
 * FTP File Type
 * -------------
 */
#define TMPDU_FTPTYPE_NULL 0x00 /* Unknown Type of Data File */
#define TMPDU_FTPTYPE_LCL TMPDU_FTPTYPE_NULL /* Local Byte Size == Unknown*/
#define TMPDU_FTPTYPE_ASCI 0x10 /* ASCII Type of Data File */
#define TMPDU_FTPTYPE_BINY 0x20 /* BINARY(Image) Type of Data File */
#define TMPDU_FTPTYPE_EBCD 0x30 /* EBCDIC Type of Data File */
#define TMPDU_FTPTYPE_MASK 0x30
/*
 * FTP File Structure
 * ------------------
 */
#define TMPDU_FTPMODE_NULL 0x00 /* Unknown File Structure */
#define TMPDU_FTPMODE_STRM 0x40 /* STREAM of bytes File Structure */
#define TMPDU_FTPMODE_BLOK 0x80 /* BLOCK File Structure */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 219/248

#define TMPDU_FTPMODE_CPRS 0xC0 /* COMPRESSED BLOCK File Structure */
#define TMPDU_FTPMODE_MASK 0xC0

The state of the file transfer is that of its underlying data connection (see 4.4.10 above).

The information fields of the variable length part are encoded as Length-Type-Value (as
described in section 4.4.5 above):

/*
 * Possible TYPEs of variable length FTP File Transfer fields
 * ===
 */
#define TMPDU_FTPXFER_FILE 1 /* ftpDataFileName */
#define TMPDU_FTPXFER_WDIR 2 /* ftpDataFileName */
#define TMPDU_FTPXFER_SIZE 3 /* ftpDataFileSz */
#define TMPDU_FTPXFER_BYTE 4 /* Total TCP Payload transferred, incl. retr. */
 /* NOTE: for <FileTransfers ftpdata=start-stop> */
 /* This transferred volume is deduced from the difference */
 /* of TCP Seq # between FIN/RST packet and SYN packet. */
 /* For large files (> 4GB), sequence numbers may have wrapped*/
 /* added N* 0xffffffff = 4 294 967 295 bytes */
#define TMPDU_FTPXFER_OFST 5 /* !=0 means File xfer is RESTarted at offset */
#define TMPDU_FTPXFER_USER 6 /* Username logged in for this FTP Ctl session*/
#define TMPDU_FTPXFER_FRST 7 /* First time packet has been seen over data */
 /* connection: as a positive delta to be */
 /* subtrated from the PDU reference time */
#define TMPDU_FTPXFER_LAST 8 /* Last time packet has been seen over data */
 /* connection: as a positive delta to be */
 /* subtrated from the PDU reference time */
#define TMPDU_FTPXFER_CTTM 9 /* First time packet has been seen over contrl*/
 /* connection: as a positive delta to be */
 /* subtrated from the PDU reference time */

Note that the TMPDU_FTPXFER_FRST and TMPDU_FTPXFER_CTTM complement the
pair of IP address/port number for uniquely referring, respectively, to the data and control
underlying TCP connections.

4.4.12 Events PDU
pduType == TMON_PDU_TYPE_EVENTS 9

Events have a time, a type, a severity and a message string.

typedef struct tmon_event_rec { uint32_t cliAddr;
 int32_t tmev_deltaTime; /* milliseconds delta vs. the PDU ref. time */
 uint16_t encodgLen; /* Length of the variable data[] portion */
 uint8_t tmev_type; /* see #define TMEV_XXX */
 uint8_t tmev_severity; /* see #define TMON_SEV_XXX */
 uint8_t data[1]; /* Byte array of Length/Type/Value entries */
} tmon_ftpxfer_rec_t;

The event types and severities are as follow:

/*
 * Possible Event Types
 */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 220/248

#define TMEVT_START 1 /* This entity cold starts */
#define TMEVT_WILLRESTART 2 /* This entity will auto-restart */
#define TMEVT_STOP 3 /* This entity stops */
 /* maybe upon catchable terminating signal ? */
#define TMEVT_FULLSPEED 4 /* This probe reaches full capacity */
 /* child input queue reaches 97 % full */
#define TMEVT_NOMINAL 5 /* This probe is back to nominal load */
 /* child input queue back below 50 % full */
#define TMEVT_UP 6 /* Peer entity is (again) seen */
#define TMEVT_SILENT 7 /* Peer declared silent:
 Either down or diconnected from us */
#define TMEVT_OBSDROPPING 8 /* Peer silent probe has expired its
 configured 'dropObsFinalTimeout' delay */

#define TMEVT_IFSILENT 9 /* No packet captured at this probe I/F */
 /* repeated while no pkt recvd in time period */
#define TMEVT_IFDROPPING 10 /* This probe I/F is dropping packets */
 /* repeated with # drops in time period */
#define TMEVT_IFNOMINAL 11 /* This probe I/F is back to nominal */
 /* once after prev. period IFSILENT/IFDROPPING*/

#define TMEVT_FLW_1WLOSSES 12 /* count>0 of packet loss in interval */
#define TMEVT_FLW_1WINCOMPL 13 /* count>0 of partial but non-lost 1-way
 obs in interval */
#define TMEVT_FLW_1WSIGNCLASH 14 /* Detected collision of 1-way pkt/dgram
 signature hash */
/*
 * Event Severities
 */
#define TMON_SEV_UNKNOWN 1
#define TMON_SEV_NORMAL 2
#define TMON_SEV_MINOR 3
#define TMON_SEV_MAJOR 4
#define TMON_SEV_CRITICAL 5
#define TMON_SEV_MAX 5
#define TMON_SEV_MIN 1

The last 3 event types, about one-way observations, are only detected by the collector,
hence never encoded in a probe PDU.

The information fields of the variable length part are encoded as Length-Type-Value (as
described in section 4.4.5 above):

/*
 * Possible TYPEs of variable length Event fields
 * =====================================
 */
#define TMPDU_EVENT_ENTYNM 1 /* Entity (probe) name */
#define TMPDU_EVENT_INTFNM 2 /* Probe interface name, where relevant */
#define TMPDU_EVENT_FLOWID 3 /* Flow identifier (in probe), where relevant */
#define TMPDU_EVENT_MESSAGE 4 /* Event message string */

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 221/248

4.5 PROBE LOCAL SAVING OF PDU’S (UNUSED)
Although not currently used, the probe can save all its formatted PDU payload into a local
file.

The XML configuration file defines the directory where to create the local PDU log files:

<!ELEMENT Probe (Interface+, PDUSending*, PDUSaving?) >
<!ATTLIST Probe name ID #REQUIRED
 ID NMTOKEN #REQUIRED
 descr CDATA #IMPLIED
>
 <!-- ID: [0..255] -->
...
<!ELEMENT PDUSaving EMPTY >
<!ATTLIST PDUSaving filepathname CDATA #REQUIRED
 maxPDUSize NMTOKEN "3000"
>
 <!-- filepathname: Full pathname of file radix where to -->
 <!-- locally save the various types of probe -->
 <!-- observation PDU's -->
 <!-- supports strftime strings (%H%M...) -->

as in
 <Probe name="probe" ID="11" descr="tmon probe on delhi">
...
 <PDUSaving filepathname="&pduPath;/pdus.%y%m%d%H" maxPDUSize="2000"/>
 </Probe>

For each PDU type (except Heart Beat), a specific file is created with respective suffix:

.fldesc

.pktobs

.delobs

.flcntrs

.histdesc

.histdata

.tcpconns

.ftpxfers

These fiels encompass the exact binary dump of successive Probe protocol data units. A
specific decoder must be implement to exploit them. Or the collector can be adapted to
import those files (manually transferred to the central trafMon system) as an alternative to
the online UDP PDU reception. But beware of the deferred time, then.

4.6 COLLECTOR OUTPUT LOG FILES
The collector program continually writes its output raw measurements to files that are
typically buffered in a dedicated directory of a file system partition designed to store high
volumes of archived data.

The template file pathname for those output files is given in the XML configuration as per

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 222/248

<!ELEMENT Collector (Addr,Output) >
<!ATTLIST Collector name ID #REQUIRED
 ID NMTOKEN #REQUIRED
 descr CDATA #IMPLIED
 burstRate NMTOKEN "10"
>
 <!-- ID: [256..] -->
 <!-- burstRate: how much PDU to expect in a burst -->
 <!-- valid values are [10..65535] -->
...
<!ELEMENT Output EMPTY >
<!ATTLIST Output dataFile CDATA "tmondata-%y%m%d%H%M%S"
 eventFile CDATA "tmonevent-%y%m%d%H%M%S"
 excepFile CDATA "tmonexcep-%y%m%d%H%M%S"
 period NMTOKEN #IMPLIED
>
 <!-- dataFile: CSV-file radix name for data output -->
 <!-- supports strftime strings (%H%M...) -->
 <!-- eventFile: CSV-file radix name for event output -->
 <!-- supports strftime strings (%H%M...) -->
 <!-- excepFile: CSV-file radix name for exceptions output-->
 <!-- supports strftime strings (%H%M...) -->
 <!-- period: number of minutes during which output -->
 <!-- accumulate in a same CVS-file -->
 <!-- ONLY VALID where strftime %M present -->
 <!-- Used as the modulo on the minute field-->
 <!-- valid values are [1..59] -->

as in

<!DOCTYPE TrafMonConfig SYSTEM "tmon.dtd" [
...
<!ENTITY dataPath "/var/trafMon/collector">
<!ENTITY pduPath "/data/pdu">
<!-- End of ENTITIES -->
]>

<trafMonConfig serial="100" startAt="2020-10-04 13:29:00" pktSignBytes="3"
 maxTravelTime="30000" >

 <Collector name="rho" ID="100" descr="trafMon collector on rho"
 burstRate="30">
 <Addr ip="&data.rho;" port="&tmonColl;" UDPBufferSize="20000"/>
 <Output dataFile="&dataPath;/observations.%y%m%d%H%M"
 eventFile="&dataPath;/events.%y%m%d%H%M"
 excepFile="&dataPath;/exceptions.%y%m%d%H%M"
 period="5" />

 </Collector>

<!ELEMENT Measure (Delay?, Stats?) >
<!ATTLIST Measure interval (each|10s|20s|30s
 |1min|10min|20min|30min
 |1h) #REQUIRED
>

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 223/248

The output file template pathname (may) contains reference to the date/time, typically at
the minute. This means the every minute, a same type of output is directed to a new
output log file.

One log file is created per type of output. Those files are TAB-separated and their fields
directly correspond to the columns of MySQL input data tables, permitting efficient bulk
load.

With a configured format template as:

 <Collector ... >
 ...
 <Output dataFile="/var/trafMon/observations.%y%m%d%H%M" ... />
 </Collector>

the collector produces its output files, each covering records produced during the same
minute, like:

/var/trafMon/collector/observations.200141013T1413.SUFFIX

The SUFFIX denotes the type of resulting data.

Two such types are definition items, derived from the XML configuration, which must be
kept with the data they qualify: the Metric Slices Definitions and the Flow Classes Hop
Lists.

All resulting data refer to the Flow Instance they pertain to (one of them when there are
several). Flow Instances are dynamically discovered by the distributed probes. The Flow
Instance Descriptions hold the values of those flow identifying items that are remembered
according to the applicable <GranularFlow> specifications:

<!ELEMENT GranularFlow (DistinctIf?,DistinctAddr?,DistinctPort?,GroupBy*) >
<!ATTLIST GranularFlow name ID #REQUIRED
>
<!ELEMENT DistinctIf EMPTY >
 <!-- Packets seen at different Probe Interfaces lead to -->
 <!-- instances of granular flow, even when they produce same -->
 <!-- results for all other criteria. -->
 <!-- NOTE: -->
 <!-- This may NOT be used when matching BI-DIRECTIONAL -->
 <!-- traffic flow on the basis of packets captured by a -->
 <!-- PASSIVE TAP devices: each direction being seen by a -->
 <!-- separate capture interface. -->
<!ELEMENT DistinctAddr EMPTY >
<!ATTLIST DistinctAddr field (src|srcnet|dst|dstnet|srcdst|srcdstnet
 |addr|net|addrpair|netpair) #REQUIRED
 mask CDATA #IMPLIED
>
 <!-- field: which fields to preserve in grouping measurements -->
 <!-- a) UNI-DIRECTIONAL -->
 <!-- src: keep granularity per source IP address -->
 <!-- srcnet: keep granularity per src IP subnet: using mask -->
 <!-- dst: keep granularity per destination IP address -->
 <!-- dstnet: keep granularity per dst IP subnet: using mask -->
 <!-- srcdst: keep granularity per source/dest. IP addresses -->
 <!-- srcdstnet:keep granularity per src/dst IP subnets: mask -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 224/248

 <!-- b) BI-DIRECTIONAL -->
 <!-- addr: keep granularity per IP address of 1 peer -->
 <!-- net: keep gran. per IP subnet of 1 peer: using mask -->
 <!-- addrpair: keep granularity per pair of IP addresses -->
 <!-- netpair: keep granul. per pair of IP subnets: using mask-->
 <!-- -->
 <!-- mask: subnet mask: "xxx.xxx.xxx.xxx" or "/yy" notation -->

<!ELEMENT DistinctPort EMPTY >
<!ATTLIST DistinctPort field (sport|dport|sdport
 |port|portpair) #REQUIRED
 portspec (alldistinct|privileged) "alldistinct"
>
 <!-- field: which fields to preserve in grouping measurements -->
 <!-- a) UNI-DIRECTIONAL -->
 <!-- sport: keep granularity of source UDP/TCP port number -->
 <!-- <=> any:port to any:any -->
 <!-- dport: keep granularity of destin. UDP/TCP port number-->
 <!-- <=> any:any to any:port -->
 <!-- sdport: keep granularity of src/dst UDP/TCP prt numbers-->
 <!-- <=> any:port1 to dst:port2 -->
 <!-- EITHER without <DistinctAddr> -->
 <!-- OR ONLY with <DistinctAddr field=(src|srcnet -->
 <!-- and/or dst|dstnet) -->
 <!-- port: EITHER with <DistinctAddr field=(src|srcnet) > -->
 <!-- same as sport: <=> src:sport to any:any -->
 <!-- OR with <DistinctAddr field=(dst|dstnet) > -->
 <!-- same as dport: <=> any:any to dst:dport -->
 <!-- OR with <DistinctAddr field=(srcdst[net]) > -->
 <!-- preserves smallest port number: -->
 <!-- if sport <= dport -->
 <!-- <=> src:sport to dst:any -->
 <!-- if sport > dport -->
 <!-- <=> src:any to dst:dport -->
 <!-- portpair: ONLY with <DistinctAddr field=(src|srcnet -->
 <!-- and/or dst|dstnet) -->
 <!-- same as sdport: <=> src:sport to dst:dport -->
 <!-- OTHER COMBINATIONS of <DistinctAddr>+<DistinctPort> -->
 <!-- ARE NOT ALLOWED (and meaningless) -->
 <!-- b) BI-DIRECTIONAL -->
 <!-- port: EITHER without <DistinctAddr> -->
 <!-- keep granul. of UDP/TCP port number of 1 peer -->
 <!-- if sport <= dport -->
 <!-- <=> any:sport to any:any -->
 <!-- if sport > dport -->
 <!-- <=> any:dport to any:any -->
 <!-- OR with <DistinctAddr field=(addr|net) > -->
 <!-- keep granul. addr:port to/from any:any -->
 <!-- net:port to/from any:any -->
 <!-- WHERE addr/net <= peer any -->
 <!-- OR with <DistinctAddr field=(addrpair|netpair) > -->
 <!-- keep granul. of address pair and smallest port:-->
 <!-- if port1 <= port2 -->
 <!-- addr1:port1 to/from addr2:any -->
 <!-- net1:port1 to/from net2:any -->
 <!-- if port1 > port2 -->
 <!-- addr1:any to/from addr2:port2 -->
 <!-- net1:any to/from net2:port2 -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 225/248

 <!-- portpair: -->
 <!-- EITHER without <DistinctAddr> -->
 <!-- keep granul. of both UDP/TCP port numbers -->
 <!-- <=> any:port1 to/from any:port2 -->
 <!-- WHERE port1 <= port2 -->
 <!-- OR with <DistinctAddr field=(addr|net) > -->
 <!-- keep granul. addr:port1 to/from any:port2 -->
 <!-- net:port1 to/from any:port2 -->
 <!-- WHERE addr/net <= peer any -->
 <!-- OR with <DistinctAddr field=(addrpair|netpair) > -->
 <!-- keep granul. addr1:port1 to/from addr2:port2 -->
 <!-- net1:port1 to/from net2:port2 -->
 <!-- -->
 <!-- portspec: -->
 <!-- *alldistinct: keep all values distinct -->
 <!-- privileged: distinguish all service ports<1024 -->
 <!-- BUT group all ports>=1024 (as 65535) -->

<!ELEMENT GroupBy EMPTY >
<!ATTLIST GroupBy field (ipsizes
 |ipproto|tos|df|mf|frag|ttl
 |icmp
 |tcptype) #REQUIRED
 sizeclasses (per200|per400) #IMPLIED
 tosspec (precedence|dscp|tosbyte) #IMPLIED
 fragspec (fragnumber|fragoffset) #IMPLIED
 icmpspec (icmpclass|icmptype
 |icmptypecode) #IMPLIED
 tcptypespec (byflags|byflagsandretran
 |S_D_A_E|S_D_A_E_R
 |S_F_R_A_E|S_F_R_A_E_R) "S_D_A_E"
>
 <!-- ipsizes: keep granularity per 'sizeclasses' of IP pkt -->
 <!-- ipproto: keep granularity per UDP|TCP|Other IP protocol -->
 <!-- tos: keep granularity as per IP TypeOfSvc 'tosspec' -->
 <!-- df: keep granularity per IP Don't Fragment flag -->
 <!-- mf: keep granularity per IP More Fragment flag -->
 <!-- frag: keep granularity as per IP Fragment 'fragspec' -->
 <!-- ttl: keep granularity per IP Time-to-Live value -->
 <!-- icmp: keep granularity of ICMP pkts as per 'icmpspec'-->
 <!-- tcptype: keep granularity as per 'tcptypespec' grouping -->
 <!-- -->
 <!-- sizeclasses: groups IP packet sizes in buckets -->
 <!-- per400: 4 buckets: boundaries 400, 800, 1200 -->
 <!-- per200: 8 buckets: 200,400,600,800,1000,1200,1400 -->
 <!-- BUT, for datagram cummulated IP sizes, sizes >= 1600 -->
 <!-- are grouped by thousands: 1600, 2000, 3000 ... 7000, 8000 -->
 <!-- -->
 <!-- tosspec: -->
 <!-- precedence: per value of the three ToS precedence bits -->
 <!-- dscp: per value of the six DSCP bits -->
 <!-- tosbyte: per distinct values of the complete ToS byte -->
 <!-- -->
 <!-- fragspec: -->
 <!-- fragnumber: per ordinal number of the fragment -->
 <!-- fragoffset: per value of the fragment offset -->
 <!-- -->
 <!-- icmpspec: -->

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 226/248

 <!-- icmpclass: group as per Echo | Error | Info | Other -->
 <!-- icmptype: per value of the ICMP Type byte -->
 <!-- icmptypecode: per value of the ICMP Type and Code bytes -->
 <!-- -->
 <!-- tcptypespec: distinguish -->
 <!-- byflags: per distinct values of the TCP flags byte -->
 <!-- byflagsandretran: idem, but also distinguish between -->
 <!-- first and subsequent transmissions -->
 <!-- of a not empty data segment -->
 <!-- *S_D_A_E: Start (syn/syn-ack), -->
 <!-- Data (not empty payload) -->
 <!-- Ack (ack flag, but no payload) -->
 <!-- End (fin/fin-ack/reset) -->
 <!-- S_D_A_E_R: Start (syn/syn-ack), -->
 <!-- Data (not empty payload) -->
 <!-- Ack (ack flag, but no payload) -->
 <!-- End (fin/fin-ack) -->
 <!-- RESET (rst flag) -->
 <!-- S_F_R_A_E: Start (syn/syn-ack), -->
 <!-- FIRST transmission of data segment -->
 <!-- RETRANSMISSION of data segment -->
 <!-- Ack (ack flag, but no payload) -->
 <!-- End (fin/fin-ack/reset) -->
 <!-- S_F_R_A_E_R: Start (syn/syn-ack), -->
 <!-- FIRST transmission of data segment -->
 <!-- RETRANSMISSION of data segment -->
 <!-- Ack (ack flag, but no payload) -->
 <!-- End (fin/fin-ack) -->
 <!-- RESET (rst flag) -->

The mapping between measurement data and the GranularFlow comes from the
configured <FlowGrain> reference at the level of the Flow Class or of its <Filter>
specifications:

<!ELEMENT FlowClass (Measure, FlowGrain?, Filter+, Condition?)>
<!ATTLIST FlowClass id NMTOKEN #REQUIRED
 name NMTOKEN #REQUIRED
 descr CDATA #IMPLIED
>
<!ELEMENT Filter (On+, CaptureTimeStamp?,
 (IpOptTimestamp | NtpTimestamp)*, NatPat*,
 PacketExpr, FlowGrain?)>
<!ELEMENT On EMPTY >
<!ATTLIST On probe NMTOKEN #REQUIRED
 if NMTOKEN #REQUIRED
>
<!ELEMENT FlowGrain EMPTY >
<!ATTLIST FlowGrain ref IDREF #REQUIRED
>

When the <GranularFlow> contains the <DistinctIf/> tag, the resulting Flow
Instannces will be specific per probing point (instance of probe interface). In such case,
observations of a same traffic flow (same packets) at different probing points (e.g. at peer
end sides) won’t be abusively merged.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 227/248

But for <OneWayDelay> measurement at granularity="individual", the applicable
<GranularFlow> specification must be such that packets seen at source and at
destination (and at intermediate hops over the network travel path) at assigned to the
same Flow Instance (hence avoidance of <DistinctIf/> tag for this case).

Examples:

 <GranularFlow name="protoConversAtProbeIf" >
 <DistinctIf /> <!-- mandatory when Counters, to avoid double records -->
 <DistinctAddr field="addrpair" />
 <DistinctPort field="portpair" portspec="privileged" />
 <GroupBy field="ipproto"/>
 </GranularFlow>

...

 <!-- FTP: TCP port 21
 -->
 <FlowClass id="21" name="FTP_port21" descr="TCP with port==21">
 <Measure interval="1min" >
 <Stats verifChksum="bestEffort">
 <PacketCounters for="firstFragment"/>
 <!-- Don't ask for Dgram for TCP to avoid unnecessary
 keeping of subsequent frags (of other flows)
 between same IP address pair -->
 <TCPConnections granularity="each"/>
 <FileTransfers protocol="FTP" granularity="each"
 ftpdata="start-stop"/>
 </Stats>
 </Measure>
 <FlowGrain ref="protoConversAtProbeIf" />
 <Filter>
 <On probe="hutch" if="eth1" />
 <On probe="hutch" if="eth2" />
 <On probe="chieti" if="eth1" />
 <On probe="chieti" if="eth2" />
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="tcp"/>
 <Predicate field="port" op="eq" value="21"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>

or

 <GranularFlow name="peers" > <!-- NO DistinctIf for oneWay partial obs -->
 <DistinctAddr field="addrpair" />
 </GranularFlow>

...

 <FlowClass id="12345" name="withIPTS"
 descr="UDP with port==21 and IP Timestamps">

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 228/248

 <Measure interval="each" >
 <Delay for="datagram" granularity="individual">
 <OneWayDelay>
 <Hop name="remint1"/>
 <Hop name="remint"/>
 <Hop name="alkuf"/>
 <Hop name="hiros"/>
 <Hop name="kuching"/>
 <Hop name="locdmz"/>
 <Sign>
 <Chunk start="0" relTo="ipPayload" length="40" />
 </Sign>
 </OneWayDelay>
 </Delay>
 </Measure>
 <FlowGrain ref="peers" />

 <Filter>
 <On probe="chieti" if="eth2" />
 <CaptureTimeStamp hopName="remint"/>
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="port" op="eq" value="21"/>
 </AND>
 </PacketExpr>
 </Filter>

 <Filter>
 <On probe="hutch" if="eth1" />
 <CaptureTimeStamp hopName="locdmz"/>
 <IpOptTimestamp ipTSNum="1" hopName="remint1"/>
 <IpOptTimestamp ipTSNum="2" hopName="alkuf"/>
 <IpOptTimestamp ipTSNum="3" hopName="hiros"/>
 <IpOptTimestamp ipTSNum="4" hopName="kuching"/>
 <PacketExpr>
 <AND>
 <Predicate field="proto" op="eq" value="udp"/>
 <Predicate field="port" op="eq" value="21"/>
 </AND>
 </PacketExpr>
 </Filter>
 </FlowClass>

4.6.1 Flow Description Log
SUFFIX: ".flow"

CONTENT:

flowID | address1 | address2 | port1 | port2 | protocol | direction | size |
ToSType | ToSValue | TimeToLive | DontFragment | MoreFragment | fragmentNumber |
fragmentOffset | icmpType | tcpType | probeInterface | comment

Example:

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 229/248

...
14131945711825 | '141.253.245.241' | '141.253.245.248' | 123 | 123 | 'udp' | '='
| \N | \N | \N | \N | \N | \N | \N | \N | \N | \N | 'chieti:eth1' | 'REMOTE DMZ'
...

Explanations:

The notation “\N” means NULL (no value given for this field). In this context of Flow
Instance, it means that the flow covers packets that have any value for corresponding field.

Direction is either

• ‘=’: encompasses both directions

• ‘>’: covers corresponding packets from address1 to address2

• ‘<’: covers corresponding packets from address2 to address1
Address pairs are ordered: address1 <= address2, by comparing the numeric long word
(32bit value of IPv4 address)

4.6.2 Flow IP Counters Log
SUFFIX: ".ipct"

CONTENT:

flowID | timestamp | interval | perDatagram | totalBytes | sizeBucketCount |
probeReassemblyTimeout | probeFragmentOverlap | icmpCount | udpCount | tcpCount
| otherProtocolCount

Example:

14131941405299 | '2020-10-13 10:04:16' | 60 | 'f' | 3174 | 8 | 0 | 0 | 0 | 0 |
45 | 0
14131941155130 | '2020-10-13 10:04:16' | 60 | 'f' | 24782 | 8 | 0 | 0 | 0 | 0 |
359 | 0
14131941405292 | '2020-10-13 10:04:16' | 60 | 'f' | 17868 | 8 | 0 | 0 | 0 | 55 |
0 | 0
14131942367510 | '2020-10-13 10:04:09' | 60 | 'f' | 316 | 8 | 0 | 0 | 2 | 2 | 0
| 0
14131942367507 | '2020-10-13 10:04:09' | 60 | 't' | 316 | 16 | 0 | 0 | 2 | 2 | 0
| 0

Explanations:

All these samples cover 60s (1 minute) of IP packet counting. Although the time period is
configurable on a per Flow Class measurement, in order to manage the time aggregates in
a systematic way inside the database, it has been necessary to fix a conventional period of
1 minute for all packet counters. Each sample refers to its flow instance record (see 4.6.1
above).

The three first cover the range 2020-10-13 [10:04:16 .. 10:04:17[, the last two cover the
range [10:04:09 .. 10:04:10[.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 230/248

The first five records provides IP counters at the level of individually captured IPv4
packets, while the last counts only per complete datagram (either un-fragmented IPv4
packets or reassembled datagram units inside the probe). Note that, in the case of EO
network, fragmentation has only been observed for some SNMP response packets; TCP is
never fragmented (MSS < MTU over the path); most of UDP packets are small
requests/replies of network services (DNS, NTP, most of SNMP); ICMP packets are, by
definition, short packets and are never subject to fragmentation.

4.6.3 Flow IP Sizes Distribution Log
SUFFIX: ".ipsz"

CONTENT:

flowID | timestamp | interval | perDatagram | lower | upper | minimum | maximum
| average | population | sum | sumOfSquares

Example:

...
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 0 | 200 | 0 | 0 | 0 | 0 | 0
| 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 200 | 400 | 0 | 0 | 0 | 0 |
0 | 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 400 | 600 | 0 | 0 | 0 | 0 |
0 | 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 600 | 800 | 0 | 0 | 0 | 0 |
0 | 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 800 | 1000 | 0 | 0 | 0 | 0 |
0 | 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 1000 | 1200 | 0 | 0 | 0 | 0
| 0 | 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 1200 | 1400 | 0 | 0 | 0 | 0
| 0 | 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 1400 | 1600 | 0 | 0 | 0 | 0
| 0 | 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 1600 | 2000 | 0 | 0 | 0 | 0
| 0 | 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 2000 | 3000 | 0 | 0 | 0 | 0
| 0 | 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 3000 | 4000 | 0 | 0 | 0 | 0
| 0 | 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 4000 | 5000 | 4128 | 4128 |
4128 | 149432 | 616855296 | 2546378661888
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 5000 | 6000 | 0 | 0 | 0 | 0
| 0 | 0
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 6000 | 7000 | 6240 | 6999 |
6383 | 1157 | 7385935 | 47206122891
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 7000 | 8000 | 7002 | 7059 |
7028 | 29 | 203840 | 1432792512
14131941405294 | '2020-10-13 22:45:56' | 60 | 't' | 8000 | 65535 | 29472 | 53249
| 49801 | 2375 | 118279137 | 18446740757931516007
...

Explanations:

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 231/248

This file provides the slices of histogram distribution of observed packet of datagram IP
sizes for several flows.

Here above are all slices of the size distribution reassembled IPv4 datagram units. The
step over the histogram slices is voluntarily not constant: 200 bytes up to the largest
Ethernet MTU (1500), then 400 bytes between 1600 and 2000, then 1000 bytes for larger
datagram units.

When only per IP packet measurement is reported, the first part of the histogram is
provided, with a constant step=200 bytes up to 1400. And the topmost slice is not
bounded: 1400 bytes-long and above.

NOTE: currently all slices are reported, even those without observed packet. In the future,
those empty slices would be skipped to preserve database memory space.

As for the counters, the period is conventionally fixed as 1 minute.

The average is sum/population. It could be re-computed inside the database. It is given
as an integer, although a fractional value should be kept in the database.

In order to permit computation of the standard deviation (sigma) for estimating the 95
percentile (avg +/- 2sigma), the sum of squares is given. Over the 1 minute period, this
number still fits in a big integer (64 bit), although in the database it must be stored as a
double fractional value preserving the most significant digits and would drop those below
meaningful granularity when the value becomes too high.

sigma = SQRT(((population*sum_sq)-(sum * sum))
 / (population * (population-1)))

4.6.4 Flow ICMP Counters Log
SUFFIX: ".icmpct"

CONTENT:

flowID | timestamp | interval | probeChecksumFailures | probeChecksumSkipped |
echoRequests | echoReplies | fragmentationNeeded | sourceQuench |
timeToLiveExpired | reassemblyTimeout | unReached | redirect | otherIcmpErrors |
otherIcmpInfoPackets

Example:

...
14131942227241 | '2020-10-13 10:01:56' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1
| 0 | 0 | 0
14131944689226 | '2020-10-13 10:01:56' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6
| 0 | 0 | 0
14131944689224 | '2020-10-13 10:01:56' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6
| 0 | 0 | 0
14131941665888 | '2020-10-13 10:01:59' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8
| 0 | 0 | 0
14131941665885 | '2020-10-13 10:01:59' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8
| 0 | 0 | 0

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 232/248

14131944589106 | '2020-10-13 10:01:59' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6
| 0 | 0 | 0
14131941665886 | '2020-10-13 10:01:59' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8
| 0 | 0 | 0
14131941665883 | '2020-10-13 10:01:59' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8
| 0 | 0 | 0
...

4.6.5 Flow UDP Counters Log
SUFFIX: ".udpct"

CONTENT:

flowID | timestamp | interval | probeChecksumFailures | probeChecksumSkipped |
emptyDatagrams | snmpCount | dnsCount | ntpCount | otherServiceCount

Example:

14131941665877 | '2020-10-13 10:02:49' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 4
14131942227241 | '2020-10-13 10:02:56' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 8
14131942227239 | '2020-10-13 10:02:56' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 8
14131942367510 | '2020-10-13 10:03:09' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 10
14131942367507 | '2020-10-13 10:03:09' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 10
14131941665868 | '2020-10-13 10:03:19' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 12
14131941665854 | '2020-10-13 10:03:19' | 60 | 0 | 201 | 0 | 0 | 0 | 0 | 201
14131941405292 | '2020-10-13 10:03:16' | 60 | 0 | 21 | 0 | 0 | 0 | 0 | 59
14131941405296 | '2020-10-13 10:03:16' | 60 | 0 | 200 | 0 | 0 | 0 | 0 | 200

Explanations:

The probeChecksumFailures counts those datagrams whose UDP checksum has
actually been verified wrong by the probe (either verifChksum="bestEffort" and
UDP packets are not fragmented, or verifChksum="fullReassembly" and the probe
verified the checksum of the reassembled UDP datagram).

The probeChecksumSkipped counts those datagrams whose UDP checksum has not
been verified by the probe (verifChksum="bestEffort" and UDP packets are
fragmented and not reassembled by the probe).

An emptyDatagram is a UDP datagram without payload: a packet consisting only in a
IPv4 header and a UDP header.

4.6.6 Flow TCP Counters Log
SUFFIX: ".tcpct"

CONTENT:

flowID | timestamp | interval | probeChecksumFailures | probeChecksumSkipped |
restranmits | latePackets | connectionStartCount | connectionCleanCloseCount |

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 233/248

connectionDirtyCloseCount | ftpControlConnections | ftpFileTransfers |
httpFileTransfers | otherConnections

Example:

14131941755937 | '2020-10-13 09:59:06' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3
| 0 | 0
14131941755939 | '2020-10-13 09:59:06' | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3
| 0 | 0
14131941405299 | '2020-10-13 09:59:16' | 60 | 0 | 0 | 1 | 13 | 4 | 3 | 2 | 10 |
0 | 0 | 0
14131941155130 | '2020-10-13 09:59:16' | 60 | 0 | 0 | 0 | 2 | 4 | 1 | 2 | 8 | 0
| 0 | 0
14131941665849 | '2020-10-13 09:59:19' | 60 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0
| 0 | 0
14131941816012 | '2020-10-13 09:59:16' | 60 | 0 | 0 | 0 | 2 | 0 | 3 | 3 | 1 | 0
| 0 | 0
14131941405302 | '2020-10-13 09:59:16' | 60 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0
| 0 | 0
14131941665865 | '2020-10-13 09:59:19' | 60 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0
| 0 | 0
14131941135125 | '2020-10-13 09:59:19' | 60 | 0 | 0 | 0 | 5 | 4 | 5 | 2 | 11 | 0
| 0 | 0
14131941665844 | '2020-10-13 09:59:19' | 60 | 0 | 0 | 0 | 7 | 4 | 0 | 1 | 8 | 0
| 0 | 0
14131941665870 | '2020-10-13 09:59:19' | 60 | 0 | 165 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0
14131941665863 | '2020-10-13 09:59:19' | 60 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0
| 0 | 0
14131941765958 | '2020-10-13 09:59:19' | 60 | 0 | 0 | 0 | 15 | 0 | 0 | 3 | 1 | 0
| 0 | 0

Explanations:

The restranmits counts those packets (never fragmented in practice) that transport a
TCP segment which is detected by the probe (through its optional <TCPConnections>
stateful analysis) as being a retransmission.

The latePackets counts those packets seen by the probe after the TCP connection
started its closing stage: after 500 ms for a non-retransmitted FIN, 5 ms for a non
retransmitted RST of for a DATA segment.

The connectionStartCount counts those TCP connections that are starting during the
reported time interval.

The connectionCleanCloseCount counts those TCP connections that are properly
closing over the reported interval: seen FIN+ACK response to FIN.

The connectionDirtyCloseCount counts those TCP connections that are not cleanly
closed during the reported time interval: First RESET over the (open or closing)
connection,

The ftpControlConnections counts the number of FTP control connections that are
established during the reported time interval.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 234/248

The ftpFileTransfers counts the number of succeeded or accepted-but-failed GET or
PUT transfers concluded during the time interval.

The httpFileTransfers is currently always 0 (not implemented).

The otherConnections counts the number of TCP connection first seen during this time
interval, and which are neither FTP control nor FTP File Transfer data connection (nor
HTTP file transfer, when implemented) – but directory listing FTP data connection are
counted as part of others.

4.6.7 Flow FTP Counters Log
SUFFIX: ".ftpct"

CONTENT:

flowID | timestamp | interval | startedSessions | cleanClosedSessions |
dirtyClosedSessions | encryptedSessions | noLoginSessions | noCmdSession |
noFileXferSessions | fileXferSessions | activeConnections | passiveConnections |
dirListCount | fileGetOK | filePutOK | fileGetFailures | filePutFailures |
xferRestarts | xferAborts | failedLogins | cipherFailures | commandFailures

Example:

14131941755937 | '2020-10-13 09:59:06' | 60 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1
| 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0
14131941755939 | '2020-10-13 09:59:06' | 60 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1
| 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0
14131941405299 | '2020-10-13 09:59:16' | 60 | 10 | 0 | 5 | 0 | 4 | 1 | 0 | 0 | 1
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14
14131941155130 | '2020-10-13 09:59:16' | 60 | 8 | 0 | 3 | 0 | 2 | 1 | 0 | 0 | 0
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19
14131941665849 | '2020-10-13 09:59:19' | 60 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9
14131941816012 | '2020-10-13 09:59:16' | 60 | 1 | 0 | 4 | 0 | 1 | 3 | 0 | 0 | 0
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16
14131941405302 | '2020-10-13 09:59:16' | 60 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11
14131941665865 | '2020-10-13 09:59:19' | 60 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
14131941135125 | '2020-10-13 09:59:19' | 60 | 11 | 0 | 5 | 0 | 4 | 1 | 0 | 0 | 1
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14
14131941665844 | '2020-10-13 09:59:19' | 60 | 8 | 0 | 3 | 0 | 2 | 1 | 0 | 0 | 0
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19

Explanations:

The cleanClosedSessions counts those FTP control sessions that are cleanly ended
by the client sending the QUIT command. Inversely dirtyClosedSessions counts
those FTP control sessions that are terminated abruptly by the client closing the
connection. This behaviour causes the FTP server to react and send back an “Oops”

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 235/248

message rejected by the client which responds with a RESET. Few late packets are then
observed after the connection times-out and can finally be considered as closed.

The encryptedSessions counts those which start with an AUTH command and typically
continue in a ciphered SSL/TLS connection whose state and command/response
exchanges can’t be continued by the probe. For those, the actual transfer of files can’t
be monitored.

The noLoginSessions counts those empty FTP control sessions where, after the
connection is established, correct logon never happens. These could result from FTP
server availability polling.

The noCmdSession counts those empty FTP control sessions over which, after the user
has logged-on, no other real FTP command is issued. These could result from FTP server
availability polling.

The noFileXferSessions counts those active FTP control sessions over which real
FTP command(s) is(are) exchanged, but no file is actually transferred. These could result
from FTP server file system polling: e.g. no new file spooled of interest by the client.

The fileXferSessions counts those active FTP control sessions over which at least
one file transfer is attempted.

The activeConnections counts those FTP data connections that are established in
active mode (through FTP PORT command or equivalent): data connection from the
server back to the client. This covers both the directory listing results and the actual file
transfers.

The passiveConnections counts those FTP data connections that are established in
passive mode (through FTP PASV command or equivalent): data connection from the
client to the server. This covers both the directory listing results and the actual file
transfers.

The dirListCount counts those FTP data connections that are established for
transferring the results of a directory listing request.

The fileGetOK counts those successful transfers of files from the server to the client.

The filePutOK counts those successful transfers of files from the client to the server.

The fileGetFailures counts those transfers of files from the server to the client ending
in the server finally responding with a negative completion message (error code starting
with ‘5’).

The filePutFailures counts those transfers of files from the client to the server ending
in the server finally responding with a negative completion message (error code starting
with ‘5’).

The xferRestarts counts the number of file transfers that are restarted (skipping the
first part – supposedly already successfully transferred during a previous failed attempt –
up to a given offset).

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 236/248

The xferAborts counts the number of time an FTP client has aborted a file transfer in
progress.

The failedLogins counts the number of failed attempts of logon by a client over an FTP
control session established with a server.

The cipherFailures counts the number of AUTH command by a client to which the
server replied with an error message.

The commandFailures counts the number of negative responses send by FTP servers
to commands requested by the clients.

4.6.8 Flow TCP Connections Log
SUFFIX: ".tcpcon"

CONTENT:

flowID | firstSeenTime | addressA | portA | addressB | portB | state | initiator
| terminator | reset | tcpOptions | probeInterface | interfaceDescription |
segmentsAB | ipBytesAB | payloadBytesAB | firstSegmentsAB |
firstSegmentsPayloadAB | retransmittedSegmentsAB | retransmittedPayloadBytesAB |
emptyAckAB | wouldAckNextAB | firstWindowAB | lastWindowAB | maxWindowAB |
lastSeenAB | durationAB | segmentsBA | ipBytesBA | payloadBytesBA |
firstSegmentsBA | firstSegmentsPayloadBA | retransmittedSegmentsBA |
retransmittedPayloadBytesBA | emptyAckBA | wouldAckNextBA | firstWindowBA |
lastWindowBA | maxWindowBA | lastSeenBA | durationBA

Example:

14134675449676 | '2020-101 08:50:41' | '141.253.221.100' | 20 | '141.253.11.100'
| 60090 | 'CLOSED' | 'A' | 'B' | 'no' | 'winScale+tcpRTTM+mssA>B+mssB>A' |
'hutch:eth1' | 'LOCAL DMZ' | 2 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 14480 | 14496
| 14496 | '2020-101 08:50:42' | 1 | 2 | 872 | 800 | 1 | 800 | 0 | 0 | 0 |
1048578 | 14600 | 14600 | 14600 | '2020-101 08:50:42' | 1
14134675449677 | '2020-101 08:50:41' | '141.253.221.100' | 20 | '141.253.11.100'
| 60090 | 'CLOSED' | 'A' | 'B' | 'no' | 'winScale+tcpRTTM+mssA>B+mssB>A' |
'hutch:eth2' | 'LOCAL Internal LAN' | 2 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 14480
| 14496 | 14496 | '2020-101 08:50:42' | 1 | 2 | 872 | 800 | 1 | 800 | 0 | 0 | 0
| 1048578 | 14600 | 14600 | 14600 | '2020-101 08:50:42' | 1
14134675449676 | '2020-101 08:50:42' | '141.253.221.100' | 32688 |
'141.253.11.100' | 34299 | 'CLOSED' | 'B' | 'B' | 'no' |
'winScale+tcpRTTM+mssA>B+mssB>A' | 'hutch:eth1' | 'LOCAL DMZ' | 2 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 14600 | 14624 | 14624 | '2020-101 08:50:42' | 0 | 2 | 912 |
840 | 1 | 840 | 0 | 0 | 0 | 1048578 | 14480 | 14480 | 14480 | '2020-101
08:50:42' | 0
14134675449677 | '2020-101 08:50:42' | '141.253.221.100' | 32688 |
'141.253.11.100' | 34299 | 'CLOSED' | 'B' | 'B' | 'no' |
'winScale+tcpRTTM+mssA>B+mssB>A' | 'hutch:eth2' | 'LOCAL Internal LAN' | 2 | 72
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 14600 | 14624 | 14624 | '2020-101 08:50:42' | 0 |
2 | 912 | 840 | 1 | 840 | 0 | 0 | 0 | 1048578 | 14480 | 14480 | 14480 | '2020-
101 08:50:42' | 0

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 237/248

14134675449676 | '2020-101 08:45:39' | '141.253.221.100' | 21 | '141.253.11.100'
| 44532 | 'CLOSED' | 'B' | 'A' | 'no' | 'winScale+tcpRTTM+mssA>B+mssB>A' |
'hutch:eth1' | 'LOCAL DMZ' | 30 | 1640 | 672 | 21 | 672 | 0 | 0 | 6 | 674 |
14600 | 14624 | 14624 | '2020-101 08:55:42' | 603 | 26 | 1094 | 254 | 17 | 254 |
0 | 0 | 7 | 256 | 14480 | 14496 | 14496 | '2020-101 08:55:42' | 603
14134675449677 | '2020-101 08:45:39' | '141.253.221.100' | 21 | '141.253.11.100'
| 44532 | 'CLOSED' | 'B' | 'A' | 'no' | 'winScale+tcpRTTM+mssA>B+mssB>A' |
'hutch:eth2' | 'LOCAL Internal LAN' | 30 | 1640 | 672 | 21 | 672 | 0 | 0 | 6 |
674 | 14600 | 14624 | 14624 | '2020-101 08:55:42' | 603 | 26 | 1094 | 254 | 17 |
254 | 0 | 0 | 7 | 256 | 14480 | 14496 | 14496 | '2020-101 08:55:42' | 603

In the above example, one can see three TCP connections that are simultaneously
observed by two different probe interfaces, respectively 'hutch:eth1' on 'LOCAL DMZ' and
'hutch:eth2' on 'LOCAL Internal LAN'.

Explanations:

In fact the two above are FTP successive FTP data connections within the same FTP
control session depicted by the TCP connection below. Data connection present of course
an asymmetric profile: actual data are traversing only ine one direction. The FTP session
is more balanced: made of client commands in one direction and server response in
reverse direction.

The firstSeenTime is normally that of the initiating SYN packet, unless the probe
(re)started thereafter.

The ordering A/B is such the IPv4 addressA < addressB or, for same addresses, portA <
portB.

When the reporting is only at end (<Measure> interval="each"), the state is either
‘CLOSED’ or, after a timeout TMTCP_CONN_TIME_WAIT==30s ‘FIN’. Otherwise it could
reflect an intermediate state among:

o ‘SYN’ (improbable): connection requested by one peer, but not yet agreed by
the other;

o DATA (realistic): the connection is in progress, after establishment stage and
before closing stage;

o FIN (possible): one side as released the connection (or reset or both) but the
other side hasn’t (yet) responded to this.

o CLOSED: both ends have sent their FIN and/or RST packet.
The initiator is ‘A’ or ‘B’ or, when SYN packet not observed: \N for NULL.

The terminator is ‘A’ or ‘B’ or, when FIN packet not yet observed: \N for NULL.

The reset is ‘no’ when no RST packet is (yet) observed on the connection. Or it indicates
which side has send a RST: ‘A’ or ‘B’ or ‘A+B’.

The tcpOptions is either ‘\N’ for NULL, or a string of one or more keywords, separated
by a + sign: winScale, tcpRTTM, mssA>B, mssB>A, sack (or sackAnotB or sackBtoA).

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 238/248

Unlike the case of FTP file transfer (below), the TCP payloadBytesAB (and BA) are
counted by summing the TCP payload sizes of every inspected packet relative to the
corresponding TCP connection and direction.

The firstSegments are those not detected, by the probe, as retransmission: Their TCP
payload chunks are above the current wouldAckNext. Also counts the first SYN and FIN
or RST.

On the contrary, the retransmittedSegments are those whose TCP payload chunks
are either below the wouldAckNext, or inside an optional selective Acknowledge range
prior sent by the destination peer. Also counts duplicated SYN and FIN or RST.

The emptyAck counts the number of TCP packet containing an ACK flag, but with no TCP
payload data. These are typically sent as unique traffic in the reverse direction of a data
transfer.

The wouldAckNext indicates the first byte, in consecutive stream order since the start of
connection, that isn’t yet acknowledged by the destination peer. In this ordering, the first
SYN counts for first (pseudo) data byte: depending on direction, wouldAckNext is
therefore the amount of contiguously received data stream bytes +1 or +2.

The firstWindow, lastWindow and maxWindow take into account the optional window
multiplier agreed at connection start (provided this is observed by the probe). This gives an
indication whether the TCP connection suffered from poor performances or if the widow
size could be enlarged enough during its progress for taking party of a reliable
communication link.

Note:

The following behaviour has been detected at end of some FTP connections: one end in
ending a connection by a FIN. The other end does not properly end the connection from its
side. After a long while a RST packet is finally sent. Although the connection remembering
timeout, TMTCP_CONN_TIME_WAIT has been set to a long period of 30s of inactivity, it
happens that the RST occurs after the probe has timed-out the connection and cleaned
out its record after last report. This late RST is therefore seen a sign of not yet discovered
TCP connection. This leads to the creation of a new record for a TCP connection that

• consists only in one (maybe a few) packet(s), only in one direction;

• as no packet is observed in the reverse direction, its last seen time and duration are
NULL

4.6.9 Flow FTP File Transfers Log
SUFFIX: ".ftpxfr"

CONTENT:

flowID | firstSeenTime | duration | ctlSessionTime | clientAddress |
clientDataPort | clientControlPort | serverAddress | serverDataPort |
serverControlPort | fileDirection | fileName | workDir | skippedFileOffset |

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 239/248

fileSize | payloadBytes | transferType | transferMode | connectionMode |
userName | connectionState | probeInterface | interfaceDescription

Example:

14131941135125 | '2020-10-13 10:23:58' | 282 | '2020-10-13 10:08:38' |
'141.253.245.248' | 57886 | 39344 | '141.253.221.100' | 20 | 21 | 'PUT' |
'transferred02.tar0.tar' | '"/testdir"' | 0 | 0 | 1048576 | 'BINARY' | \N |
'Active' | 'ftptest2' | 'CLOSED' | 'hutch:eth1' | 'LOCAL DMZ'
14131941135125 | '2020-10-13 10:25:35' | 184 | '2020-10-13 10:12:25' |
'141.253.245.248' | 38653 | 39366 | '141.253.221.100' | 10065 | 21 | 'PUT' |
'transferred01.tar0.tar' | '"/testdir"' | 0 | 0 | 1048576 | 'BINARY' | \N |
'Passive' | 'ftptest2' | 'CLOSED' | 'hutch:eth1' | 'LOCAL DMZ'
14131941665865 | '2020-10-13 10:28:44' | 1 | '2020-10-13 10:27:11' |
'141.253.11.100' | 52180 | 46767 | '141.253.221.100' | 20 | 21 | 'PUT' |
'long0long1long2long3long4long5long6long7long8long9long10long11long12long13name'
|
'tmpdir0/tmpdir1/tmpdir2/tmpdir3/tmpdir4/tmpdir5/tmpdir6/tmpdir7/tmpdir8/tmpdir9
/tmpdir10/tmpdir11/tmpdir12/tmpdir13' | 1048576 | 0 | 1048576 | 'BINARY' | \N |
'Active' | 'ftptest0' | 'CLOSED' | 'hutch:eth1' | 'LOCAL DMZ'
14131941665863 | '2020-10-13 10:28:44' | 1 | '2020-10-13 10:27:11' |
'141.253.11.100' | 52180 | 46767 | '141.253.221.100' | 20 | 21 | 'PUT' |
'long0long1long2long3long4long5long6long7long8long9long10long11long12long13name'
|
'tmpdir0/tmpdir1/tmpdir2/tmpdir3/tmpdir4/tmpdir5/tmpdir6/tmpdir7/tmpdir8/tmpdir9
/tmpdir10/tmpdir11/tmpdir12/tmpdir13' | 1048576 | 0 | 1048576 | 'BINARY' | \N |
'Active' | 'ftptest0' | 'CLOSED' | 'hutch:eth2' | 'LOCAL Internal LAN'
14131941665865 | '2020-10-13 10:28:45' | 0 | '2020-10-13 10:27:11' |
'141.253.11.100' | 53468 | 46767 | '141.253.221.100' | 20 | 21 | 'GET' |
'long0long1long2long3long4long5long6long7long8long9long10long11long12long13name'
|
'tmpdir0/tmpdir1/tmpdir2/tmpdir3/tmpdir4/tmpdir5/tmpdir6/tmpdir7/tmpdir8/tmpdir9
/tmpdir10/tmpdir11/tmpdir12/tmpdir13' | 0 | 3145728 | 3145728 | 'BINARY' | \N |
'Active' | 'ftptest0' | 'CLOSED' | 'hutch:eth1' | 'LOCAL DMZ'
14131941665863 | '2020-10-13 10:28:45' | 0 | '2020-10-13 10:27:11' |
'141.253.11.100' | 53468 | 46767 | '141.253.221.100' | 20 | 21 | 'GET' |
'long0long1long2long3long4long5long6long7long8long9long10long11long12long13name'
|
'tmpdir0/tmpdir1/tmpdir2/tmpdir3/tmpdir4/tmpdir5/tmpdir6/tmpdir7/tmpdir8/tmpdir9
/tmpdir10/tmpdir11/tmpdir12/tmpdir13' | 0 | 3145728 | 3145728 | 'BINARY' | \N |
'Active' | 'ftptest0' | 'CLOSED' | 'hutch:eth2' | 'LOCAL Internal LAN'
14131941665865 | '2020-10-13 10:28:45' | 0 | '2020-10-13 10:27:11' |
'141.253.11.100' | 58580 | 46767 | '141.253.221.100' | 54995 | 21 | 'GET' |
'long0long1long2long3long4long5long6long7long8long9long10long11long12long13name'
|
'tmpdir0/tmpdir1/tmpdir2/tmpdir3/tmpdir4/tmpdir5/tmpdir6/tmpdir7/tmpdir8/tmpdir9
/tmpdir10/tmpdir11/tmpdir12/tmpdir13' | 20 | 3145728 | 3145708 | 'BINARY' | \N |
'Passive' | 'ftptest0' | 'CLOSED' | 'hutch:eth1' | 'LOCAL DMZ'
14131941135125 | '2020-10-13 10:00:55' | 81 | '2020-10-13 10:00:37' |
'141.253.245.248' | 39922 | 39255 | '141.253.221.100' | 28879 | 21 | 'PUT' |
'transferred01.tar0.tar' | '' | 0 | 0 | 1048576 | 'BINARY' | \N | 'Passive' | ''
| 'CLOSED' | 'hutch:eth1' | 'LOCAL DMZ'
14131941665863 | '2020-10-13 10:27:21' | 83 | '2020-10-13 10:27:11' |
'141.253.11.100' | 44638 | 46767 | '141.253.221.100' | 41696 | 21 | 'PUT' |
'long0long1long2long3long4long5long6long7long8long9long10long11long12long13name'
|
'tmpdir0/tmpdir1/tmpdir2/tmpdir3/tmpdir4/tmpdir5/tmpdir6/tmpdir7/tmpdir8/tmpdir9

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 240/248

/tmpdir10/tmpdir11/tmpdir12/tmpdir13' | 0 | 0 | 1048578 | 'ASCII' | \N |
'Passive' | 'ftptest0' | 'CLOSED' | 'hutch:eth2' | 'LOCAL Internal LAN'

Explanations:

The FTP file transfer record is mapped to its (primary) flow instance via flowID, as well
as to the corresponding Data TCP Connection record (via firstSeenTime +
clientAddress + clientDataPort + serverAddress + serverDataPort) and
also to the FTP session (TCP control connection) via ctlSessionTime +
clientAddress + clientControlPort + serverAddress +
serverControlPort.

The fileName is expressed exactly as the client mentions it (pure basename, relative or
absolute pathname)

During the FTP session, the user’s navigation is tracked in such a way the trafMon probe
attempts to continuously remember the position of the server-side current working
directory. When the resulting workDir pathname is too long, the start and end of the
string is preserved and a ‘...’ is inserted.

When the transfer is a restart, the skippedFileOffset is non zero.

When discovered as a result of a SIZE command, or displayed in a server message, the
actual fileSize on server file system is mentioned (otherwise zero).

The payloadBytes presents the number of data bytes that are transferred, counting
possible retransmissions. This value can be obtained in two different ways:

• Either <FileTransfers ftpdata=”full” >: each TCP data segment is
inspected and its payload size is summed. The resulting value is the exact amount
of file bytes transferred to the peer (incl. retransmissions), but at the expense of
inspecting numerous packets!

• Or <FileTransfers ftpdata=”start-stop” >: this proceeds heuristically by
only inspecting the SYN and FIN packets, which significantly alleviates the work of
the probe (intermediate TCP packets being reject in the probe father process, just
after TCP dissection). By subtracting the acknowledge value of reverse FIN packet
from that of the reverse SYN, one obtains (1+transferred payloadBytes) modulo
4GiBytes – the SYN counts for one byte of payload, the acknowledge value is
truncated to 32bit, hence to 4294967295. Unfortunately, this very efficient heuristics
shouldn’t be used when monitoring transfer of files potentially larger than 4GBytes.

The transferType is one of

o ‘BINARY’: the file content is transferred as-is.
o ‘ASCII’: translation of end-of-line character(s) and maybe others is attempted

to adapt to the diverging conventions of operating systems of client and
server (note that this is quite often the source of problems).

o Never used in practice: ‘EBCDIC’ and ‘LOCAL’.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 241/248

The transferMode is in practice always NULL as this is never explicitly negociated over
the FTP control session. In fact there is only one default mode used: Stream (the file is a
stream of bytes). Other theoretical possible values are Block or CompressedBlock.

The connectionMode:

o ‘Active’ – the default mode (although less recommended due to potential
security barrier): the data connection is established by the server
(typically using TCP port 20) to the client at a port number dynamically
transmitted via the PORT command (or equivalent).

o ‘Passive: the data connection is established by the client (as for the
control connection) to the server at a port number dynamically transmitted in
response to a PASV command (or equivalent): neither of both port numbers
are typically pre-defined, hence those data connections cannot be statically
matched by a pre-configured Flow Class filter.

The userName is that learned from the USER command at start of the FTP control
session.

The connectionState is that of the underlying TCP connection. When the reporting is
only at end (<Measure> interval="each"), the state is either ‘CLOSED’ or, after a
timeout TMTCP_CONN_TIME_WAIT==30s ‘FIN’. Otherwise it could reflect an
intermediate state among:

o ‘SYN’ (improbable): connection requested by one peer, but not yet agreed by
the other;

o DATA (realistic): the connection is in progress, after establishment stage and
before closing stage;

o FIN (possible): one side as released the connection (or reset or both) but the
other side hasn’t (yet) responded to this.

o CLOSED: both ends have sent their FIN or RST packet.

4.6.10 Metric Slices Definitions Log
SUFFIX: ".metrc"

CONTENT:

flowID | metrictype | metricSubType | sliceNum | lower | upper

Example:

14134675419548 | 2way_delay | withInitiator | 1 | 147483648 | 0
14134675419548 | 2way_delay | withInitiator | 2 | 0 | 50
14134675419548 | 2way_delay | withInitiator | 3 | 50 | 100
14134675419548 | 2way_delay | withInitiator | 4 | 100 | 150
14134675419548 | 2way_delay | withInitiator | 5 | 150 | 200
14134675419548 | 2way_delay | withInitiator | 6 | 200 | 250

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 242/248

14134675419548 | 2way_delay | withInitiator | 7 | 250 | 300
14134675419548 | 2way_delay | withInitiator | 8 | 300 | 2147483647
14134675419554 | 2way_delay | withResponder | 1 | 147483648 | 0
14134675419554 | 2way_delay | withResponder | 2 | 0 | 333
14134675419554 | 2way_delay | withResponder | 3 | 333 | 666
14134675419554 | 2way_delay | withResponder | 4 | 666 | 999
14134675419554 | 2way_delay | withResponder | 5 | 999 | 1332
14134675419554 | 2way_delay | withResponder | 6 | 1332 | 1665
14134675419554 | 2way_delay | withResponder | 7 | 1665 | 1998
14134675419554 | 2way_delay | withResponder | 8 | 1998 | 2147483647
14134675419554 | 2way_delay | withInitiator | 1 | 147483648 | 0
14134675419554 | 2way_delay | withInitiator | 2 | 0 | 50
14134675419554 | 2way_delay | withInitiator | 3 | 50 | 100
14134675419554 | 2way_delay | withInitiator | 4 | 100 | 150
14134675419554 | 2way_delay | withInitiator | 5 | 150 | 200
14134675419554 | 2way_delay | withInitiator | 6 | 200 | 250
14134675419554 | 2way_delay | withInitiator | 7 | 250 | 300
14134675419554 | 2way_delay | withInitiator | 8 | 300 | 2147483647
14134675419557 | 2way_delay | withResponder | 1 | 147483648 | 0
14134675419557 | 2way_delay | withResponder | 2 | 0 | 333
14134675419557 | 2way_delay | withResponder | 3 | 333 | 666
14134675419557 | 2way_delay | withResponder | 4 | 666 | 999
14134675419557 | 2way_delay | withResponder | 5 | 999 | 2147483647
14134675419557 | 2way_delay | withInitiator | 1 | 147483648 | 0
14134675419557 | 2way_delay | withInitiator | 2 | 0 | 333
14134675419557 | 2way_delay | withInitiator | 3 | 333 | 666
14134675419557 | 2way_delay | withInitiator | 4 | 666 | 999
14134675419557 | 2way_delay | withInitiator | 5 | 999 | 2147483647

Explanations:

The metrictype is always 2way_delay in phase I.

The metricSubType is either withResponder or withInitiator for 2way_delay in
phase I:

• the responder is the destination for ICMP Echo (ping) requests, is the server for
DNS, NTP, SNMP, is the listener that responds to a SYN for TCP;

• the initiator is the peer that first send a transaction packet (request).
The meaning of histogram definitional parameters, sliceNum, lower and upper, is fully
described in section 4.4.8 above.

4.6.11 Flow Round-Trip Delay Metrics Data Log
SUFFIX: ".2way"

CONTENT:

flowID | timestamp | interval | withInitiator | sliceNum | population | minimum
| maximum | average | sum | sumOfSquares

Example:

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 243/248

14134675419548 | '2020-101 09:49:36' | 10 | 't' | 2 | 1 | 40 | 40 | 40 | 40 |
1600
14134719958249 | '2020-101 09:49:36' | 10 | 'f' | 8 | 1 | 6892 | 6892 | 6892 |
6892 | 47499664
14134675419548 | '2020-101 09:49:46' | 10 | 'f' | 8 | 1 | 4800 | 4800 | 4800 |
4800 | 23040000
14134719958249 | '2020-101 09:49:46' | 10 | 'f' | 6 | 1 | 1335 | 1335 | 1335 |
1335 | 1782225
14134719958249 | '2020-101 09:49:46' | 10 | 'f' | 8 | 1 | 6979 | 6979 | 6979 |
6979 | 48706441
14134719958249 | '2020-101 09:49:46' | 10 | 't' | 2 | 1 | 0 | 0 | 0 | 0 | 0
14134679871516 | '2020-101 09:49:56' | 10 | 'f' | 2 | 1 | 1 | 1 | 1 | 1 | 1
14134675419557 | '2020-101 09:49:56' | 10 | 'f' | 2 | 1 | 0 | 0 | 0 | 0 | 0
14134675419548 | '2020-101 09:49:56' | 10 | 't' | 2 | 1 | 1 | 1 | 1 | 1 | 1
14134719958249 | '2020-101 09:49:56' | 10 | 'f' | 8 | 1 | 2602 | 2602 | 2602 |
2602 | 6770404
14134719958249 | '2020-101 09:49:56' | 10 | 't' | 2 | 1 | 0 | 0 | 0 | 0 | 0
14134675419548 | '2020-101 09:50:06' | 10 | 't' | 2 | 1 | 0 | 0 | 0 | 0 | 0
14134719958249 | '2020-101 09:50:06' | 10 | 't' | 2 | 1 | 0 | 0 | 0 | 0 | 0

Explanations:

The timestamp marks the start of the interval whose duration is expressed in
seconds.

The withInitiator is a Boolean: ‘t’ for true and ‘f’ for false.

The sliceNum is referring to the Metric Slice definition (see above) for the corresponding
Flow, metric type and sub-type..

The slice aggregates contains the necessary statistical values permitting to further
aggregate, between slices or over longer time periods.

The population is the number of individual measurements.

The average is sum/population.

Delays do not follow a classical Gaussian distribution, but a Poisson law: where the
histogram peak is close to the minimum, while the right part of the histogram looks more
like that of a Gaussian curve. It is therefore reasonable to consider that the histogram peak
is approximated by the average and that the 95 percentile is more or less corresponding
to the range [minimum .. average+2sigma], where sigma is the (Gaussian) standard
deviation:

sigma = SQRT(((population*sum_sq)-(sum * sum))
 / (population * (population-1)))

ICMP Echo round-trip delay can only be correctly measured where regular ping traffic is
probed from a representative client site vis-à-vis a relevant remote site. It measures the
sum of network-only latency for both directions. But it is only representative of user’s
experienced performance when 1) the user’s traffic is shaped with small packets and 2)
the ICMP protocol is handled the same way as the actual user’s protocol over the network
path.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 244/248

DNS round-trip delay can measure different things, without knowing what the several
observed transactions actually consist in. When the server is efficient and has direct
knowledge of the response (resolved locally, maybe cached), then the individual
measurement covers only the network round-trip latency from the probe to the server and
back. But when the server has to query any undetermined other remote server, this
auxiliary transaction time is also counted in the individual observed longer delay. Here,
careful histogram slicing can give a hint in discriminating between transaction types.

SNMP round-trip delay is typically measuring the 2-way network performance from one
location (the probe at control centre) with the remote sites. But querying loaded network
devices could suffer extra delay in that the responding device gives a low task priority to
SNMP compared to its primary traffic switching and routing activity.

NTP round-trip delay is dual. With the responder, the probe located at client site is
actually measuring its 2-way network latency with the server (expected located at a
representative site of the monitored network). But NTP is actually implemented in such a
way that it is possible to match the previous response packet from a given server with the
next query sent by the client. Wherever the probe is actually located, this delay with
initiator is totally dominated by the current poll time period the client has dynamically
assigned to sample the server time (several seconds, up to 1024): the longer this delay,
the most reliable and stable is the NTP time distribution service quality.

Although the TCP SYN/ACK delay is actually measuring the real user’s traffic, it provides
only one single measurement per connection and for a single side (probe vs. responder).

The TCP Data/ACK has been replaced by the more accurate monitoring of the (known
quasi systematically enabled) TCP RTTM option (Round-Trip Time Measurement).

The TCP RTTM delay attempts to provide two measurements: probe with initiator, probe
with responder. When the probe is close to one peer, the corresponding observed delay is
meaningless. When the data traffic is asymmetric, only one round-trip delay can be
measured: between the probe and the consumer of the transferred data. The RTTM
intends only to dynamically measure a reasonable upper bound to the actual TCP round-
trip time (network latencies + buffering time), including voluntarily delayed acknowledge,
and quite volatile in case of burst sending of data packets. In this last case, it has been
observed that the first sent packet is acknowledged within a delay close to the 2-way
network latency; but each successive packet of the burst is ack’ed later and later (buffering
of individually ack’ed TCP segments). here also, the proper segmentation of delays into
histogram slices in necessary.

4.6.12 Flow Classes Hop Lists
SUFFIX: ".hops"

CONTENT:

classID | className | classDesc | time | cfgVersion | cfgStart | hopCount |
hop1Name | hop2Name | hop3Name ... | Hop10Name

Example:

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 245/248

12345 | 'withIPTS' | 'UDP with port==21 and IP Timestamps' | '2020-10-16
13:51:41' | 100 | '2020-08-04 13:29:00' | 6 | 'remint1' | 'remint' | 'alkuf' |
'hiros' | 'kuching' | 'locdmz' | \N | \N | \N | \N

Explanations:

When specifying the measurement of 1-way network path latency, the Flow Class provides
an ordered list of measured network hops.

Several distinct physical hops, over alternate routes, can be assigned the same hop name
(where they materialise equivalent intermediate latency steps for different packets of a
same flow that follow distinct routes).

A hop can be the probing point of a packet capture interface.

But a hop can also correspond to a timestamp extracted from the packet:

• one of origin, receive or transmit time from the NTP request or from the NTP
response packet;

• the nth timestamp stored in the IP option part of the header of specially crafted
packets: corresponding to the (n-1)th network routing hop over its path (unlike other
variants of operating system, the Linux kernel at the sender side places its own time
in first position).

In the Flow Class definition, hops are expected to be given meaningful names. The
ordered list of such names must be saved in the database together with the corresponding
observations records. Hence, when the collector (re)starts and parses its XML
configuration, it generates the hop list per Flow Class in a dedicated output file.

Due to technical constraint, it has been hardcoded that the maximum number of hops is
10.

This information permits to correctly interpret following 1-way observations log records.

4.6.13 Flow Individual 1-Way Observations Log
SUFFIX: ".1wobs"

CONTENT:

flowID | timestamp | flowClass | signature | size | fragmentNumber | hop1FirstMS
ec | hop1LastMSec | hop2FirstMSec | hop2LastMSec ... | hop10FirstMSec | hop10Las
tMSec

Example:

14134675419538 | '2020-10-11 20:46:26.338' | 12345 | [37f198] | 11440 | 0 | 1413
924386338 | \N | 1413924386338 | 1413924386338 | 1413924386340 | \N | 1413924394
684 | \N | 1413924394684 | \N | 1413924394684 | 1413924394716 | \N | \N | \N | \
N | \N | \N | \N | \N
14134675419538 | '2020-10-11 20:46:26.365' | 12345 | [6d56ba] | 11440 | 0 | 1413
924386365 | \N | 1413924386365 | 1413924386365 | 1413924386367 | \N | 1413924394
828 | \N | 1413924394828 | \N | 1413924394828 | 1413924394860 | \N | \N | \N | \
N | \N | \N | \N | \N

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 246/248

14134675419538 | '2020-10-11 20:46:26.392' | 12345 | [7908b0] | 11440 | 0 | 1413
924386392 | \N | 1413924386392 | 1413924386392 | 1413924386396 | \N | 1413924394
932 | \N | 1413924394932 | \N | 1413924394932 | 1413924394964 | \N | \N | \N | \
N | \N | \N | \N | \N
14134675419538 | '2020-10-11 20:46:26.419' | 12345 | [7dbe03] | 11440 | 0 | 1413
924386419 | \N | 1413924386419 | 1413924386419 | 1413924386421 | \N | 1413924394
996 | \N | 1413924394996 | \N | 1413924394996 | 1413924395024 | \N | \N | \N | \
N | \N | \N | \N | \N
14134675419538 | '2020-10-11 20:46:27.838' | 12345 | [d3822d] | 11440 | 0 | 1413
924387838 | \N | 1413924387838 | 1413924387838 | 1413924387840 | \N | 1413924396
764 | \N | 1413924396764 | \N | 1413924396764 | 1413924396800 | \N | \N | \N | \
N | \N | \N | \N | \N
14134675419538 | '2020-10-11 20:46:27.865' | 12345 | [dda899] | 11440 | 0 | 1413
924387865 | \N | 1413924387865 | 1413924387865 | 1413924387867 | \N | 1413924396
884 | \N | 1413924396884 | \N | 1413924396884 | 1413924396916 | \N | \N | \N | \
N | \N | \N | \N | \N
14134675419538 | '2020-10-11 20:46:27.892' | 12345 | [3d9ba3] | 11440 | 0 | 1413
924387892 | \N | 1413924387892 | 1413924387892 | 1413924387894 | \N | 1413924396
940 | \N | 1413924396940 | \N | 1413924396940 | 1413924396976 | \N | \N | \N | \
N | \N | \N | \N | \N
14134675419538 | '2020-10-11 20:46:27.919' | 12345 | [c775ba] | 11440 | 0 | 1413
924387919 | \N | 1413924387919 | 1413924387919 | 1413924387921 | \N | 1413924397
028 | \N | 1413924397028 | \N | 1413924397028 | 1413924397060 | \N | \N | \N | \
N | \N | \N | \N | \N
14134675419538 | '2020-10-11 20:46:27.946' | 12345 | [140cb4] | 11440 | 0 | 1413
924387946 | \N | 1413924387946 | 1413924387946 | 1413924387949 | \N | 1413924397
116 | \N | 1413924397116 | \N | 1413924397116 | 1413924397148 | \N | \N | \N | \
N | \N | \N | \N | \N
14134675419538 | '2020-10-11 20:46:29.365' | 12345 | [09a435] | 11440 | 0 | 1413
924389365 | \N | 1413924389365 | 1413924389365 | 1413924389368 | \N | 1413924398
356 | \N | 1413924398356 | \N | 1413924398356 | 1413924398396 | \N | \N | \N | \
N | \N | \N | \N | \N
14134675419538 | '2020-10-11 20:46:29.392' | 12345 | [71a787] | 11440 | 0 | 1413
924389392 | \N | 1413924389392 | 1413924389392 | 1413924389395 | \N | 1413924398
424 | \N | 1413924398424 | \N | 1413924398424 | 1413924398452 | \N | \N | \N | \
N | \N | \N | \N | \N
14134675419538 | '2020-10-11 20:46:29.419' | 12345 | [0aca66] | 11440 | 0 | 1413
924389419 | \N | 1413924389419 | 1413924389419 | 1413924389422 | \N | 1413924398
480 | \N | 1413924398480 | \N | 1413924398480 | 1413924398516 | \N | \N | \N | \
N | \N | \N | \N | \N
14134675419538 | '2020-10-11 20:46:29.446' | 12345 | [ba177e] | 11440 | 0 | 1413
924389446 | \N | 1413924389446 | 1413924389446 | 1413924389449 | \N | 1413924398
592 | \N | 1413924398592 | \N | 1413924398592 | 1413924398628 | \N | \N | \N | \
N | \N | \N | \N | \N

Explanations:

As said above, there are up to ten observed timestamp per packet.

But when a probe is directed to report its packet capture times at one or several of its
interfaces, it can be configured to report at reassembled datagram level <Delay
for="datagram" granularity="individual">, and not individually for
"allFragments" or only for "firstFragment". In this "datagram" case it provides
two timestamps for one capture interface hop: that of first seen fragment and that of last
seen fragment, so each timestamp is potentially doubled. The one-way latency of
datagram is the difference between youngest time at destination side minus oldest time at

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 247/248

origin side. Also inter-datagram time at a given probing point (hop) can be the delay
between first (oldest) times of successive datagrams, but the delay from youngest time of
one datagram and oldest time of its successor is also relevant.

The timestamp is the date/time of oldest observed hop times, at millisecond accuracy.

The flowClass identifier permits to link with the corresponding hop names list as
depicted in the above section.

The signature is expected to uniquely define this packet record inside the given flow
instance. It is the N bytes of MD5 hashing of the specified data chunk(s) of the
packet/datagram, where N is the specified pktSignBytes="N" global parameter of the
XML configuration.

The IP size of the packet (fragment) or datagram (reassembled as a long IP packet) is
also given (expected reported the same by the several probing points).

Each hopXFirstMS (and maybe hopXLastMS) timestamp is expressed as a UNIX
integer time in millisecond (inside a 64bit big integer). NULL value (\N) is given to
irrelevant timestamps (only first or single fragment, over the corresponding specified
hopCount).

In the case of granularity="allFragments", each record is also providing the
corresponding fragmentNumber (first is 1). When not relevant (for "datagram" or only
for "firstFragment"), fragmentNumber==0.

4.6.14 Flow 1-Way Latency Log
SUFFIX: ".latcy"

CONTENT:

flowID | timestamp | interval | perDatagram | sliceNum | population | minimum |
maximum | average | sum | sumOfSquares

Example:

145944288284407 | '2020-04-01 07:10:00' | 60 | 'f' | 7 | 104 | 20662 | 29545 |
25171 | 2617839 | 66474461081
145944289208282 | '2020-04-01 07:10:00' | 60 | 'f' | 2 | 18 | 0 | 1 | 0 | 2 | 2
145944289208269 | '2020-04-01 07:10:00' | 60 | 'f' | 2 | 18 | 0 | 0 | 0 | 0 | 0
145944288284407 | '2020-04-01 07:11:00' | 60 | 'f' | 7 | 86 | 19422 | 29075 |
24290 | 2088946 | 51738985494
145944289208282 | '2020-04-01 07:11:00' | 60 | 'f' | 2 | 16 | 0 | 7 | 0 | 7 | 49
145944289208269 | '2020-04-01 07:11:00' | 60 | 'f' | 2 | 16 | 0 | 1 | 0 | 1 | 1
145944288284407 | '2020-04-01 07:12:00' | 60 | 'f' | 7 | 28 | 23816 | 28362 |
26494 | 741853 | 19701893881
145944289208282 | '2020-04-01 07:12:00' | 60 | 'f' | 2 | 19 | 0 | 11 | 0 | 12 |
122
145944289208269 | '2020-04-01 07:12:00' | 60 | 'f' | 2 | 19 | 0 | 1 | 0 | 1 | 1
145944288284407 | '2020-04-01 07:13:00' | 60 | 'f' | 7 | 48 | 24093 | 29808 |
26616 | 1277606 | 34096160516
145944289208282 | '2020-04-01 07:13:00' | 60 | 'f' | 2 | 17 | 0 | 0 | 0 | 0 | 0

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Detailed Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 248/248

145944289208269 | '2020-04-01 07:13:00' | 60 | 'f' | 2 | 17 | 0 | 0 | 0 | 0 | 0
145944288284407 | '2020-04-01 07:14:00' | 60 | 'f' | 7 | 52 | 23686 | 29634 |
26082 | 1356278 | 35518732644
145944289208282 | '2020-04-01 07:14:00' | 60 | 'f' | 2 | 24 | 0 | 10 | 0 | 20 |
166
145944289208269 | '2020-04-01 07:14:00' | 60 | 'f' | 2 | 24 | 0 | 9 | 0 | 14 |
92

4.6.15 Flow 1-Way Abnormality Counters Log
For instance, all three counters in a single file:

SUFFIX: ".1wct"
 (also, separately, ".1wlost" and, as exceptions, ".1wmiss" and ".1wdrop")

CONTENT:

flowID | timestamp | interval | lost | partlyMissed | dropped

Example:

145944288284407 | '2020-04-01 06:30:00' | 60 | 0 | 8 | 0
145944288284407 | '2020-04-01 06:34:00' | 60 | 1 | 0 | 0

	1. trafMon Software Structure
	1.1 Overview of trafMon Software Components
	1.2 Software Code Structure
	1.2.1 C Programs
	1.2.2 Diagnostics Messages Logging
	1.2.3 C Coding Convention
	1.2.4 trafGen: TCP/UDP Packet Generator

	1.3 trafMon Measurement Mechanism
	1.3.1 Probing
	1.3.2 Filtering for Flow Classes Matching
	1.3.3 Retaining FTP Data Connection Packets and IPv4 Second and Subsequent fragments
	1.3.4 Protocol Stateful Analysis and Probe Measurements
	1.3.5 Probe PDU Protocol with Collector
	1.3.6 Collector Further Processing and Output
	1.3.7 One-Way Flows Observations Consolidation and Measurement

	2. trafMon C-code On-Line Software Components
	2.1 trafMon Measurement Mechanism
	2.1.1 Probing
	2.1.2 Filtering for Flow Classes Matching
	2.1.3 Retaining FTP Data Connection Packets and IPv4 Second and Subsequent fragments
	2.1.4 Protocol Stateful Analysis and Probe Measurements
	2.1.5 Probe PDU Protocol with Collector
	2.1.6 Collector Further Processing and Output

	2.2 Probe: Main data Structures
	2.2.1 Capture Interfaces
	2.2.2 Dissected Packet Information
	2.2.3 IP Fragments to Skip
	2.2.4 Flow Class Parsed Specifications
	2.2.5 Single-Pass Combined Flow Classes Filtering
	2.2.6 Granular Flows and Discovered Flow Instances
	2.2.7 IP Reassembly Queues
	2.2.8 TCP Connection Record
	2.2.9 FTP Control Session Record
	2.2.10 FTP Data Connection
	2.2.11 Packet Counters
	2.2.12 Histograms and Delay Metrics
	2.2.13 Probe PDU Pending ACK

	2.3 Collector: Main Data Structures
	2.3.1 Peer Probe Records
	2.3.2 Input PDU Ring Buffer
	2.3.3 Flow Instance Records
	2.3.4 Flow Class Hops Records
	2.3.5 Consolidated Packet Observations Records

	2.4 trafMon Common Core C Data Structures
	2.4.1 Probe PDU structures
	2.4.2 Histograms and Metrics
	2.4.3 Efficient Flexible Dictionary and BTree
	2.4.4 Circular Buffers
	2.4.5 Hash Table
	2.4.6 Timers

	3. trafMon Database Processing and Reporting
	3.1 Database Schema
	3.1.1 Persistent Tables Templates
	3.1.2 Temporary Input Tables Templates

	3.2 Database Stored Procedures
	3.2.1 Protocol Details Aggregates Update
	3.2.2 Partitioning Process
	3.2.3 Data Preparation Procedures
	3.2.4 Additional Stored Procedures
	3.2.5 Data Computations upon Report Generation

	3.3 Netflow data collection
	3.4 Database Regular Loading and Aggregating Python Script
	3.4.1 IP Addresses Geolocation
	3.4.2 Database Regular Aggregation
	3.4.3 Database Partitions and Efficient Clean-up

	3.5 Database Users
	3.5.1 Database management user
	3.5.2 Database reporting user

	3.6 BIRT Reporting
	3.6.1 Selected Tools
	3.6.2 Expert User
	3.6.3 BIRT Report Templates
	3.6.3.1 Protocol Details Reports
	3.6.3.2 Synthesis Reports
	3.6.3.3 Report Template Editor

	3.6.4 Apache Tomcat Environment for On-demand Generation of trafMon Reports
	3.6.5 Apache Httpd Environment for On-demand Generation of trafMon Reports
	3.6.5.1 trafMon_web App Source Structure
	3.6.5.2 trafMon_web App Packages Dependencies.

	3.6.6 Apache Tomcat Environment for Batch Generation of trafMon Reports

	3.7 Data Maintenance

	4. trafMon Interface Control Documentation
	4.1 trafMon Online Functions XML Configuration Interface
	4.1.1 Definition of XML Configuration
	4.1.2 Example of XML Configuration File

	4.2 trafMon Diagnostic Logging Control Interface
	4.3 Probe Capture Interface
	4.4 Probe PDU to Collector Protocol
	4.4.1 General Mechanism
	4.4.2 Common PDU Header
	4.4.3 Heart Beat PDU
	4.4.4 Flow Instance Description Records PDU
	4.4.5 Flow Instance Protocol Counters Records PDU
	4.4.6 Compact per-Packet/Datagram One Way Observations PDU
	4.4.6.1 Assumptions
	4.4.6.2 Encoding Format

	4.4.7 Individual Delays PDU
	4.4.7.1 Encoding Format

	4.4.8 Metric Single or Multi-Slice (Histogram) Aggregate Description PDU
	4.4.9 Metric Instances Data PDU
	4.4.10 Per-TCP Connection Stateful Observation Data PDU
	4.4.11 Per-File Transfer Information PDU
	4.4.12 Events PDU

	4.5 Probe Local Saving of PDU’s (unused)
	4.6 Collector Output Log Files
	4.6.1 Flow Description Log
	4.6.2 Flow IP Counters Log
	4.6.3 Flow IP Sizes Distribution Log
	4.6.4 Flow ICMP Counters Log
	4.6.5 Flow UDP Counters Log
	4.6.6 Flow TCP Counters Log
	4.6.7 Flow FTP Counters Log
	4.6.8 Flow TCP Connections Log
	4.6.9 Flow FTP File Transfers Log
	4.6.10 Metric Slices Definitions Log
	4.6.11 Flow Round-Trip Delay Metrics Data Log
	4.6.12 Flow Classes Hop Lists
	4.6.13 Flow Individual 1-Way Observations Log
	4.6.14 Flow 1-Way Latency Log
	4.6.15 Flow 1-Way Abnormality Counters Log

