
An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 1/48

www.trafmon.org

Architectural Design
Thomas Grootaers, Luc Lechien

Software Release 1.0

2020-10

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 2/48

COPYRIGHT, LICENSE AND TRADEMARKS
Original text is © 2020 AETHIS sa/nv Belgium, Thomas Grootaers, Luc Lechien

This material is based upon work funded and supported by the European Space Agency
and the Belgian Federal Authorities (BELSPO) under GSTP Contract Nr ESRIN
4000128964/19/I-EF with AETHIS sa/nv, Belgium.

The view, opinions, and/or findings contained in this material are those of the authors and
subsequent free contributors and should not be construed as an official ESA, Government
or AETHIS position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name,
trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favouring by ESA or AETHIS.

NO WARRANTY. THIS AETHIS MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. AETHIS
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. AETHIS DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT] This material is for approved for public release and
unlimited distribution under the terms and conditions of Open Source Apache License v2.0
(https://www.apache.org/licenses/LICENSE-2.0.txt, OSI Approved
https://opensource.org/licenses/Apache-2.0), which governs its use, distribution,
modification and re-publication.
Adobe is a registered trademark of Adobe Systems Incorporated in the United States and/or other countries.
AngularJS is a trademark of Google, Inc., https://angularjs.org/
CentOS Marks and JBoss are trademarks of Red Hat, Inc. ("Red Hat").
CERT is a registered trademark owned by Carnegie Mellon University
Eclipse and BIRT are registered trademarks of the Eclipse Foundation, Inc. in the United States, other
countries, or both.
JQuery and JQuery UI are trademark of OpenJS Foundation, https://openjsf.org/
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
MaxMind, GeoIP, GeoLite, and related trademarks are the trademarks of MaxMind, Inc.
Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and/or other
countries.
OpenSSL is a registered trademark of the OpenSSL Software Foundation in the U.S. and other countries.
Oracle, Java, MySQL, WebSphere and Solaris are registered trademarks of Oracle and/or its affiliates in the
United States and other countries.
Python is a registered trademark of the Python Software Foundation.
Tomcat® and Apache HTTP Server™ are (registered) trademarks of the Apache Software Foundation.
UNIX is a registered trademark of The Open Group.
WebLogic is a registered trademark of IBM Corp. in the United States, other countries, or both
Wireshark is a registered trademark of the Wireshark Foundation.
All other trademarks are the property of their respective owners.

https://www.apache.org/licenses/LICENSE-2.0.txt
https://opensource.org/licenses/Apache-2.0

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 3/48

DOCUMENT HISTORY

Release Date Change
1.0 Oct 2020 First issue

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 4/48

ACKNOWLEDGEMENTS
The authors wish to acknowledge the valuable contributions of all ancient employees of
the AETHIS® Company in Belgium, who have worked on the successive versions of the
base software and its documentation from which the open source trafMon software is
derived.

In particular, special recognition is given to Jacques Maes, David Orban, Jonathan Van
den Schrieck, Benoît Liétaer, Julien Denis, Thomas Soupart, Fabien Coenegrachts, who
have more specifically participated to its elaboration. Also a thought is given in memory the
authors’ deceased associate, Luc Steenput, who has heavily promoted the initial idea and
subsequent enhancements of the tool, within the European Space Agency and elsewhere.

Lastly, the authors wish to acknowledge the strong support of ESA staff members:
Manfred Lugert, Erling Kristiansen, Johan Stjernevi, Manfred Bertelsmeier, Gioacchino
Buscemi, Michele Iapaolo, Andrea Cogliandro and Claudia Neroni, as well as of officers of
the Belgian BELSPO Federal Service, Jacques Nijskens, Agnès Grandjean and Hendrick
Verbeelen.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 5/48

TABLE OF CONTENT
1. TRAFMON DESIGN DRIVERS .. 9

1.1 ORIGIN .. 9
1.2 PRECISE MEASUREMENT OF ONE-WAY FLOWS ... 9
1.3 QUITE COMPACT ONE-WAY OBSERVATIONS .. 11
1.4 FULL-STACK PROTOCOL ANALYSIS AT WIRE SPEED ... 12
1.5 FULLY CONTROLLED, ALTHOUGH RELIABLE, PROBE OBSERVATIONS PROTOCOL .. 13
1.6 SINGLE CONFIGURATION FILE FOR DISTRIBUTED ONLINE FUNCTIONS AND SYNCHRONISED UPDATE ... 15
1.7 DETECTION, LOGGING AND NOTIFICATION OF REMARKABLE EVENTS BY TRAFMON COMPONENTS ... 16
1.8 CONDITIONALLY COMPILED EMBEDDED SNMP SUB-AGENT .. 16
1.9 TUNEABLE LOGGING OF SYSTEMATIC PRODUCTION OF TRACE AND ERROR MESSAGES ... 16
1.10 PRODUCTION OF RAW OBSERVATIONS AS A COLLECTION OF ASCII LOG FILES .. 17
1.11 DATA AGGREGATION IN A SQL DATABASE ... 17
1.12 FLEXIBLE DATABASE REPORT WRITER WITH CHARTING ... 18
1.13 NETWORK MODELLING PER ACTIVITY, PER LOCATION AND PER REMOTE INTERNET COUNTRIES .. 18
1.14 POSSIBLE FUTURE ENHANCEMENTS .. 19

1.14.1 Support of Passive Tap Devices: Pair of Linked Interfaces.. 19
1.14.2 Further Exploiting the Multi-processing Capabilities ... 19
1.14.3 Support of IPv6 ... 20
1.14.4 Online Threshold Detection on Raw Measurements .. 20
1.14.5 Plug-in Interface for Additional Protocol Analysers and Observations .. 20
1.14.6 Maybe Numerical FlowID’s and Table Join are More Efficient ... 21
1.14.7 Find and Use a More Modern Report Writer, Exploiting the HTML5 Dynamic Graphics Capabilities .. 21
1.14.8 Big Data Database Technology and Handling Techniques ... 21

2. TRAFMON COMPONENTS ARCHITECTURE ..22

3. SOFTWARE ARCHITECTURE OF THE PROBE PROGRAM ...23

3.1 INPUT PROCESSING AND BUFFERING ... 26
3.2 FLOW MEMBERSHIP AND GRANULAR SUB-FLOW DISCOVERY ... 26
3.3 SYSTEMATIC DISSECTION OF IPV4/UDP, IPV4/TCP OR IPV4/ICMP PROTOCOL HEADERS ... 29
3.4 EFFICIENT FLOW CLASS SINGLE PASS SIEVE TRAVERSAL ... 30
3.5 FURTHER DISSECTION OF SERVICE PROTOCOL ... 30
3.6 CACHE OF FTP SESSION PEERS ... 30
3.7 ONE-WAY FLOWS EARLY SIGNATURE HASH.. 31
3.8 IPV4 RE-ASSEMBLY IN THE PROBE CHILD PROCESS ... 31
3.9 IDENTIFICATION OF NECESSARY STATELESS AND STATEFUL ANALYSES ... 31
3.10 GRANULAR FLOW INSTANCES DISCOVERY AND MATCHING ... 31
3.11 PERFORMING STATELESS AND STATEFUL ANALYSES ... 32
3.12 PROBE DATA AGGREGATION ... 32
3.13 PROBE EVENTS ... 32
3.14 OBSERVATIONS PDU PUBLICATION .. 32

4. SOFTWARE ARCHITECTURE OF THE COLLECTOR ...34

4.1 PDU RECEPTION PROCESSING ... 34
4.2 PDU DECODING AND OUTPUT OF SINGLE-PROBE OBSERVATIONS .. 36
4.3 ONE-WAY RECONCILIATION OF PROBE PARTIAL PER-PACKET OBSERVATIONS .. 36

5. REGULAR DATABASE LOADING AND AGGREGATION ..39

5.1 REGULAR DATABASE UPDATES (EVERY 10 MINUTES) ... 39
5.2 PREPARATION OF TRAFFIC VOLUMES DATA WITH ACTIVITY/LOCATION/GEOIP AND DNS NAMES ... 40

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 6/48

5.3 FULL UPDATE OF IP ADDRESSES (WEEKLY) ... 41

6. REPORTING FUNCTIONS ...42

7. DEPLOYMENT ARCHITECTURE ..44

8. ADMINISTRATION AND MAINTENANCE ..47

8.1 UNPRIVILEGED TRAFMON ACCOUNT .. 47
8.2 TWO ACCOUNTS FOR MYSQL TRAFMON DATABASE(S) .. 47
8.3 LOGROTATE .. 47
8.4 MYSQL SERVER AND TOMCAT DAEMON .. 48
8.5 TRAFMON SCHEDULED TASKS .. 48

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 7/48

TABLE OF FIGURES
Figure 1 Principle of End-to-End One-Way Per Packet Measurement 10

Figure 2 General Case for One-Way Performance Measurement 11

Figure 3 trafMon Probe Structure: Pipeline of Two Processes 23

Figure 4 trafMon Probe Architecture 28

Figure 5 trafMon Collector Architecture 35

Figure 6 Database and Reporting Architecture 41

Figure 7 Excerpt of a trafMon Manager BIRT Report 43

Figure 8 Typical Deployment Architecture 45

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 8/48

ACRONYMS AND ABBREVIATIONS

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 9/48

1. TRAFMON DESIGN DRIVERS

1.1 ORIGIN
The trafMon platform has its origin from two developments implemented for the European
Space Agency (ESA).
A first version was designed in the frame of the Galileo Programme, for the qualification of
worldwide ground segment links, which are supporting time-critical traffic flows.
A second version was developed for the Earth Observation Programme, for the
measurements, auditing and troubleshooting of communications over the ESA’s Earth
Observation Payload Data Network. The provided services include the observations of the
files transferred during FTP sessions and the underlying TCP connections efficiency.

The initial open source version is based on a further enhancement of the platform.

1.2 PRECISE MEASUREMENT OF ONE-WAY FLOWS
One of the target environments for which the trafMon tool has been designed is that of a
(start-shaped) multilink network transporting traffic under stringent performance
requirements, in terms of latency (one-way delays) and continuity (nearly no risk that the
guaranteed latency is not respected during operational conditions).

A good candidate for such rigorous network service level is the communication network
that supports remote surgery activities, being imposed safety-of-life working conditions.

Some link could be long distance, realised by a combination of a terrestrial path and a
VSAT satellite hop. More generally, the communication links is made on a series of
segments, where the quality of each of them would be measured.

Thanks to Global Navigation Satellite Systems (GPS, Glonass, Galileo, Beidou, QZSS,
NAVIC), it is possible to have a precise and stable time reference at all sites spread
worldwide. Its distribution, over the LAN, via NTP protocol permits to keep the millisecond
accuracy.

By spreading probe devices at every site being source or destination (or both) of real-time
sensitive flows, it is possible to capture a copy of every target flows packet and measure
its timestamp of occurrence there. Provided the packet (or a part of) isn’t modified over its
network travel, it is possible to identify it uniquely by its unchanged (part of) content at
different hops over its path. Three or four bytes of hash function applied to this packet
content produces a rather reliable signature.

The disseminated probes can then centralise their per-packet pairs of observations
{packet signature, capture timestamp} to permit the measurement of one-way latencies

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 10/48

and the detection of too-late or lost packets. Ideally, a flow identifier should be added, for
permitting to distinguish network performance behaviours among different flows of different
priorities.

Of course, the probe observations would typically be injected as an additional auxiliary
data flow, mixed with the real-time one. Therefore the protocol and its encoding
mechanism, used for this probe-to-collector transmission of observations must be

• quite compact (~1 % of the observed traffic volume or less),

• fully controlled and regulated,

• reliable with acknowledges and retries at slow pace.
At the central site, the per-packet partial observations are gradually reconciled to derive
the latency measurements.

After a certain timeout, defined on the basis of maximum transfer time, incomplete per-
packet records are detected to identify and measure the lost or too-late packets.

Figure 1 Principle of End-to-End One-Way Per Packet Measurement

Network/Port Address Translation (NAT/PAT) does still permit to sign the same way each
packet before and after the modification by selectively masking the header field(s) subject
to modification. Encryption, however, does only permit to compare flow measurement on
the basis of the Quality of Service (QoS) classes, as the IPv4 Type-of-Service (TOS) byte
is copied in the (readable) outer header of VPN tunnelled packets, although, in some
cases, a heuristic based on close timestamps before and after the crypto device could
permit the per packet match.

In the more general case, the deployment of probing points at several places over the
network path, with one or multiple packet capture interfaces per probe device, is illustrated
below.

e.g. GPS-based
NTP Server source

monitoring
probe

WAN access
router Crypto

device

Crypto
device

WAN

Source site Destination site

packets source packets
destination

e.g. GPS-based
NTP Server

destination
monitoring

probe

Performance
reporting

server

Warning/alarm
SNMP notifications

Evolution
reports

Regular raw
observations reports on

actually sent
packets/messages:

incl. packets signatures

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 11/48

Figure 2 General Case for One-Way Performance Measurement

Another way to also get intermediate timestamps during the network traversal of the
packets is the exploitation of the IPv4 Timestamp Option. This does however place
constraints on the way the network travel path is implemented: intermediate timestamping
network devices must also be precisely time-synchronised,, most firewall on the market
block (silently drop) packets with IPv4 options and the IP Timestamp fields are hidden and
unmodified during their travel inside encrypted VPN tunnel.

Anyway, all above depicted interesting capabilities must be supported by the flow
matching, the packet signing and the timestamps extraction and merging trafMon
mechanisms.

In order to implement a resilient measurement architecture, the trafMon central processing
system can be duplicated. Each probe is then assigned two or more destination collectors
for its measurements. The observations PDU maximum size and minimum inter-PDU
delay can even differ between collector instances. Because every collector receives the
same set of probe observations, each can independently build the same database content
and generate the same report figures. When one fails or is (partly) unreachable, metrics
can still be available at the other(s) trafMon central site(s).

1.3 QUITE COMPACT ONE-WAY OBSERVATIONS
When monitoring a network environment supporting time-critical traffic, the transmission of
observations made by the distributed probes must not interfere with the performances of
the monitored communications.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 12/48

Therefore, the encoding of the one-way partial observations sent by the respective probes,
and probably injected with the time-critical traffic itself, must be negligible in volume.
Hence the need to implement the most compact possible encoding mechanism for the
one-way related data, where every bit is meaningful.

1.4 FULL-STACK PROTOCOL ANALYSIS AT WIRE
SPEED
Looking at every packet simply for flow identification, packet signing and timestamping is
rather limited in scope. First of all, the probe can also measure the packet sizes and derive
volumes and duration metrics similar to what classical NetFlow information provides.

Although this size information could be added by the probes to their respective per packet
observations, this would produce a gigantic amount of unprocessed data flowing through
the central collector for simply aggregating them into basic metrics (foreseen in the
configuration DTD, but never implemented). Hence it is by far more efficient that the probe
itself is able to produce higher level measurements, delivered at slower pace (with
aggregation interval varying between 10 seconds to 1 hour).

Even more, the computing resources of the distributed probes, combined with all the
amount of information available in the stack of protocol headers of the inspected packets,
allow to produce far richer indicators for network performance monitoring and
communications troubleshooting.

Not only does the probe need to aggregate raw observations from individual packets, but it
must be able to reconstitute the protocol exchanges of layered communications and
perform stateful analysis of some peer-to-peer dialogs to produce behavioural
interpretations.

The top-level currently achieved in the probe implementation is the complete follow-on of
FTP session exchanges and automatic learning and detection of data transfer
connections, established in active or passive mode, for the provision of directory content
listing and for the GET or PUT transfer of individual files. Especially, FTP passive data
connections occur between totally random TCP ports, and are therefore never qualified as
FTP communications by other existing Network performance monitoring and diagnostics
(NPMD) tools.

This being said, we are facing a big performance challenge. A tool like Wireshark provides
support for full analysis of nearly all existing communication protocols, even the more exotic
ones. But at the cost of multiple interpretation passes, which can only be conducted offline or
on low data rate exchanges.

The Linux kernel implementation of the packet capture capability has already responded, in
part, to the need of efficiently buffering packets during traffic peak, and permitting to inspect
their respective content, without copy to the user space of the probe program.

The architecture of the probe software has been split as a pipeline of two processes:

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 13/48

• The father is in charge of the stateless inspection – in situ – of captured packets,
one by one, and on the as-efficient-as-possible matching of all flow classes
combined conditions (in a single traversal) to detect the (list of) flow class(es) the
packet belongs to, or whether the packet is of no interest and can be skipped.
For TCP connections transporting actual volumes of data (e.g. file transfers over
FTP or HTTP), it was initially thought to perform 1-out-of-N sampling of packets to
conduct the further analysis, in order to cope with high data rate. Finally, this has
not been implemented, and replaced by the choice (per flow class) of retaining
every packet of the TCP connection, or only the SYN (start), FIN or RST (end)
marking the boundaries of the data transfer. This allows to measure the transfer
total duration and, provided less than 4 GBytes, the actual size of the transferred
payload. This way, most (nearly all) of the captured network packets do not require
further analyse, and can be skipped by the father probe.

• The probe child process is fed by the father with records of relevant data extracted
only from the useful packets and optionally, for those under one-way precise
monitoring, with the actual packet content (for signature hash).
It is in charge of IP reassembly, of matching the datagrams with the discovered flow
instance(s) – as per <GranularFlow> specification applicable to its flow class(es) –
of stateful protocol analysis (TCP connection and FTP session exchanges,
request/response matching for ICMP Echo and UDP SNMP/DNS/NTP
transactions), and of aggregation of numerous protocol counters.

Finally, the child implements the trafMon PDU custom UDP-based controlled
protocol to deliver its various types of raw observations to the central collector(s).

This is illustrated in Figure 3 below.

On multi-CPU/multi-core current processor architectures, the father probe process locks
itself on the processor #0, while the child process assigns an affinity for all processors but
the first one. This way, the two processes are really running independently, in parallel.

Note also that, for proper measurements, the probe must deactivate the offloading in the
NIC card of the Ethernet reassembly and checksum verification and discard, for every of
its packet capture interfaces.

The use of the portable libpcap library also permits to mimic the actual real-time packet
capture through the replay of a previously captured recording. The probe supports the
replay simulation, where packets are handled by respecting their original inter-packet
delay. More useful, the packet capture file can be processed at full speed. This permits to
measure the maximum performance that the probe can achieve on a given hardware.

1.5 FULLY CONTROLLED, ALTHOUGH RELIABLE,
PROBE OBSERVATIONS PROTOCOL
In section 1.3 above, it is highlighted that the observations conducted in a time critical
environment may not create a perturbation of the performances under precise monitoring.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 14/48

Not also those precise observations (i.e. the one-way measurements) must be compact,
but the protocol used by the trafMon probes to deliver (all) their measurements to the
central collector must be controlled and reliable.

Reliability implies that every probe protocol data unit (trafMon PDU) correctly received by
the collector must be acknowledged or retransmitted up to a reasonable amount of time.

Control of the injected data rate has several implications on the way the PDU units are
injected:

• Maximum PDU size and maximum build duration
Only small-size packets (200-300 bytes) would have a limited impact on the
transmission duration of following time critical packet(s), when serialised over a low
bandwidth WAN access link. Inversely, exploiting the largest possible packets (1500
bytes), where bandwidth capacity is not a problem, permits to limit the number of
probe packets that could clash with the measured ones.

But, during quiet traffic periods, it is necessary to limit the time a PDU stays “under
construction”, so as to avoid delays in refreshing central measurements or, worse,
that part of the observations are considered too old or already missed by the
collector. Hence the need to flush any type of PDU data after its maximum build
time.

• Minimum inter-PDU time gap
Probe PDU are sent as UDP unreliable datagram units. Where a big burst of PDU
units are ready for (re-)transmission at the same time, pushing them all in burst
could have two effects: impact the forwarding of monitored network traffic and
overflow gateway buffers that could drop some datagram units. Hence the need to
implement the probe sending time into a series of time slots, distant from each other
by the specified minimum time gap, where at most one PDU sending (initial or
retransmission) is scheduled. This way, the probe output is kept smooth, preventing
any burst.

• Maximum retries, initial timeout, timeout increment and timeout multiplier
When the acknowledge response to a given PDU is not received within a running
timeout period, it must be re-sent. The timeout for its next period could be
increased, possibly multiplied (doubtful usefulness) and incremented by specified
values.

When the number of retries is reached, after a sequence of retries + 1 successive
timeout increased delays, the PDU must be destroyed by the probe.

• Long retry mode, final timeout
When the timeout after maximum retry of a PDU exhausts, the probe is entering
into the so-called “long retry mode”. The connectivity with the collector is, at least,
bad or probably broken for a while. Hence no need to continue to bomb the
communication channel with resent of all PDU units.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 15/48

Only the one PDU that has exhausted its retry count is regularly sent at a period
corresponding to the initial timeout value.

Newly generated PDU units continue to be retried at the maximum timeout value
(slow pace) until they are older than a given final timeout.

• Break border window
When the probe PDU units are travelling over the same path as the (maybe time
critical) monitored traffic, a break of connectivity between a probe and the collector
(leading to the long retry mode) is also influencing the monitored traffic. Interesting
observations are therefore those that are made during a time window just before the
loss of connectivity. Hence those PDU units that belong to the break border window
are preserved, and continue to be perpetually sent at the maximum timeout period.
Those observations are hopefully centralised after the network connectivity is
restored, permitting later analysis of the traffic behaviour just before the break.
Younger observations are them destroyed after a while.

• Key definitions and important (low volume) observations
Some types of PDU information are however permanently retried (at maximum
timeout period): those observations are not necessary for the correct handling of
subsequent measurements (definitions of discovered flow instances, definitions of
buckets for histogram distributions), or those observations whose volume is limited
and which are considered really useful to preserve (the individual records of FTP
file transfers).

1.6 SINGLE CONFIGURATION FILE FOR DISTRIBUTED
ONLINE FUNCTIONS AND SYNCHRONISED UPDATE
All trafMon probe and collector instances share a same version of a single XML
configuration file. Tuning parameters are specified as XML attributes of the definitional
tags.

Updating the configuration may concern one or more probes and the collector(s), and
influence the observations made after the change. Hence it is useful that a switch over to a
new version of the configuration file is done at the same time by all trafMon online
components altogether.

Furthermore, a warn restart is nearly impossible to implement, due to the complexity of
internal configuration-driven data structures, and due to the probe child inheritance of
those structures initialised by the father before forking. Hence a configuration update
means the probable loss of observations under building. This creates a glitch in the raw
measurements, sufficiently short in time to be negligible.

If the configuration update (process stop and re-start) isn’t performed in synchronism,
partial data glitches would be spread over a significant duration. So the synchronisation of
the automatic restart with the new configuration causes a short glitch, general but limited in
time, and accompanied with the generation of warning events that are kept in the database

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 16/48

together with the performance measurements, allowing a proper interpretation of the
discontinuity during offline interpretation of the performance figures any time later.

1.7 DETECTION, LOGGING AND NOTIFICATION OF
REMARKABLE EVENTS BY TRAFMON COMPONENTS
The probe and the collector programs can detect several types of remarkable event
occurrence, e.g.

• stop and start of a trafMon online component, configuration switch over

• lack of traffic or saturation of the kernel-resident packet capture buffer

• saturation of the probe processing and restoration of nominal capacity

• lack of connectivity between probe and collector

• loss of partial observations in one-way measurements, detected clash (collision) of
signature hash (same signature for two or more “simultaneous” packets)

• [threshold detected on raw metrics – not implemented yet]
Those events explain possible abnormalities reported by the performance indicators.
Hence, these are handled as a specific type of observations that are gathered by the
probes and collector, and logged together with the other raw observations for regular
loading in the database.

1.8 CONDITIONALLY COMPILED EMBEDDED SNMP
SUB-AGENT
The probe and the collector programs optionally implement an embedded Net-SNMP sub-
agent.

The above-mentioned event occurrences can then be notified, in real-time, to a network
management tool as Traps or retry able Inform requests.

Furthermore, a custom MIB is defined, respectively for the trafMon probe and the trafMon
collector programs, allowing the SNMP manager to get statistics information about the
behaviour of the distributed online components.

1.9 TUNEABLE LOGGING OF SYSTEMATIC
PRODUCTION OF TRACE AND ERROR MESSAGES
Every software module (C code file) can be assigned a given level of verbosity and
destination log for the diagnostics messages that systematically decorate the program
code.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 17/48

Those messages do not only permit to verify, validate, debug the program code, but are
also useful during operations to get insights on the monitored traffic and thei handling by
the trafMon probe and collector.

1.10 PRODUCTION OF RAW OBSERVATIONS AS A
COLLECTION OF ASCII LOG FILES
Each type of raw observations made by the probe as well as the one-way metrics
produced by the collector and all trafMon online processing events result in dedicated
ASCII logs written by the collector in a spool directory.

This gives the user total freedom for the further processing of the raw data.

1.11 DATA AGGREGATION IN A SQL DATABASE
trafMon implements off-line functions for the aggregation and flexible report generation of
the protocol detail metrics.

A regularly run Python/SQL script loads the next available chunk of ASCII data logs, in
part as update of pre-aggregated tables (at 1 minute, 1 hour and 1 day), in part as new
rows of independent data records (events, TCP connections, FTP transfers) in a relational
database.

Previous trafMon implementation was using PostgreSQL and stored procedures written in
Perl (the write-only, even write-once language – I won’t make only friends here ;-).

But having faced some performance issues during operations have lead us to choose
MySQL for the current implementation.

In order to permit further aggregation of data without loss of statistical information, every
counter is represented, for a given time interval, by a population (number of observed
samples), a sum, a sum of squares (for deriving the standard deviation), a minimum value
and a maximum value.

Care has been taken to support multiple instances of databases. The name of the runtime
database can be changed in configuration file. The database instance is initially created
with the first loading of observations. All table templates (for temporary working tables as
well as for persistent tables) are provided in a separate `trafMon_template` database
instance with no actual data. This database also holds all the necessary stored
procedures, most of which take the actual database name as first argument.

The reporting menu bar let you first select the database to use as reporting source (by
convention, all names would start with ‘trafMon’ prefix.

Extensive use of physical partitioning of data tables, based on time intervals, permits to
destroy ancient fine grain data at no cost. doing the same via DELETE FROM queries

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 18/48

would kill the database server process, already rather busy in loading and aggregating
potentially large volumes of observations.

1.12 FLEXIBLE DATABASE REPORT WRITER WITH
CHARTING
Although this is a bit outdated mechanism, without exploiting all the dynamic capabilities
offered by HTML5, we have chosen Eclipse/BIRT. It is an open source tool that gives full
flexibility and offer ease of quickly designing report templates. It that can extract and
further process database values, and present them as a mix of text, tabular data and
business charts. It can generate on-demand Web based reports and can also produce
PDF documents in batch mode.

Furthermore, is extensive tuning capability, thanks to JavaScript, allowed us to layout
some meaningful reports responding to specific requirements.

A set of pre-designed reports has been drawn. But the users can adapt them through the
Eclipse/BIRT Designer, and can design their own.

1.13 NETWORK MODELLING PER ACTIVITY, PER
LOCATION AND PER REMOTE INTERNET COUNTRIES
One of the requirements for trafMon was to exploit the architectural model of a private
network belonging to an Organisation. Their IP nodes (workstations and servers) are lying
in several Locations (rooms, floors, buildings, sites, internal and DMZ LAN segments …).
Their IP nodes are also partitioned into different Activities (can be business units,
departments, missions, functions). Their network is also interfaced with the general
Internet, where peers (being clients or remote servers) can be qualified, thanks to GeoIP™
free or commercial data files, into different countries (cities and ASN numbers).

Further aggregation of flow volumes data, possibly extended with NetFlow records, can be
conducted. Daily batch preparation (at night) produce tables (hourly and daily) with dat
flows qualified peers and protocol service name. The user can then select a specific report
layout (manager, operator or conversation views), make a choice of Activity (or all), of
Location (or all) or of a specific host IP address, and specify a time span (day, week
month) to let the BIRT Engine proceed to the further aggregation of target data and the
population of the meaningful report charts.

In order to assist the user in making dynamic choices for the report parameters, based on
actual data present in the database, a JavaScript/AngularJS/PHP Web application has
been drafted. It presents a selection menu-bar for synthesis reports and an alternate
version suited to the protocol details reports.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 19/48

1.14 POSSIBLE FUTURE ENHANCEMENTS
This tool is provided as open source under permissive Apache2 license. The idea is to
permit interested contributors to join their forces and respective expertise in order to
transform this initial trafMon tool as flagship free product. Furthermore, nothing prevent
that trafMon is also later embedded in commercial products.

Hence, below is a collection of enhancements that have already been thought about while
developing and making use of the initial tool.

1.14.1 Support of Passive Tap Devices: Pair of Linked
Interfaces
The Linux capture ring buffer and the libpcap interface provides independent buffering and
next packet access function, independently for each capture interface.

Currently, the probe packet inspection loops through all pending packets at a given
capture interface, before looking at the next one.

This is not an issue when using mirror port of a switch device or active network tap device,
where the packets are delivered in proper sequence of occurrence, whatever their
direction. This way, the traffic reported by the different capture interfaces of a same probe
can be processed asynchronously from each other.

With purely passive network tap devices, that are inserted in a trunk link, the packets in
one direction are replicated at one monitor port, while the packets in the other direction are
presented at the other mirror port. Each monitor port is connected to one capture interface
of the probe. The capture buffering operated by the Linux kernel, combined with its
scheduling of the probe (father) process, implies that successive one-way packets can
accumulate in each of the two-direction probing interfaces. By handling all those in one
direction, then only those of the other direction, the correct “request/reply” handshake
sequence is not followed in chronological order. So the protocol stateful follow-on of the
exchanges (UDP-based transactions, TCP handshakes, FTP command/response dialogs)
isn’t correct anymore.

By implementing the possibility to declare pairing of interfaces in the trafMon probe
configuration, and by implementing a lookup mechanism where only the oldest packet
from the top of the two paired interfaces capture queues is next inspected, the respective
packet sequencing of the bi-directional traffic will be respected. This would add proper
support of passive tap devices to the trafMon probe.

1.14.2 Further Exploiting the Multi-processing Capabilities
A slight change in the probe code can lead to specify (configure) which CPU core ID the
father process should lock itself on (and maybe also for the child). This way, several
instances of a probe can co-exist on a same computer, each processing its own set of
capture interfaces, without competing (too much) for common hardware resources.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 20/48

This is the simplest way to increase the probe performance capacity.

But for handling 10GB network interfaces, a rework of the software architecture would be
required. The “father” process (stateless packet decoding and flow matching) could be
multiplied, for a same interface, each being assigned a partition of the traffic to capture,
thanks to specially crafted libpcap BSD Packet Filters (BPF) implemented in the Linux
kernel.

Similarly, selection criteria could be added, for instance, to the trafMon Flow Class
definitions, to direct the decoded packet observations to different instances of the “child”
process performing stateful protocol exchanges analysis and data aggregation.

1.14.3 Support of IPv6
Although foreseen initially, it has been decided not to take into account of IPv6 when
developing the initial trafMon probe.

One key issue here is the way that efficiency consideration imposed to the probe coding
has over exploited the fact that an IPv4 address can be held in a 32bit unsigned integer.
This is especially used in flow class/instance matching and in observations encoding.

Adding such support afterwards will imply to revisit the entire C source code.

1.14.4 Online Threshold Detection on Raw Measurements
A possible extension to the trafMon online functions – probably best implemented in the
collector – would be to compare specified raw real-time metrics with given thresholds
(static of dynamic derived baseline) and to generate online notifications and event log
records upon threshold trespassing and restoration.

1.14.5 Plug-in Interface for Additional Protocol Analysers and
Observations
One capability that had been implemented in the more basic initial trafMon implementation
(one-way only per packet individual observations) was to design a generic plug-in interface
in the probe and in the collector code, where additional observations could be extracted
from the packets under inspection, could be encoded the probe PDU units, then decoded
and handled by the collector for producing complementary data logs. Each pluggable
module was event implemented as a dynamically loaded shared object, as specified in the
configuration.

The incremental approach, under time pressure, for re-implementing the trafMon software
from scratch and with full-stack protocol decoding and stateful analysis, has not permitted
to re-design a comparable generic plug-in interface.

It is however possible to design such an approach, to implement a new skeleton of the C
software and to import the existing code in the new modular structure, taking inspiration
from how the wireshark code is architected.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 21/48

Nevertheless, this would be a challenge and … a significant work!

1.14.6 Maybe Numerical FlowID’s and Table Join are More
Efficient
The choice has been made to replace, for the database persistent data tables, the
numerical flow identifiers by a meaningful string describing the peer addresses and ports,
the flow direction, and the probe interface.

This way, all data tables are independent. But the same flow ID string is repeated
numerous times.

It could be more efficient that the table refer to flow instances via a unique numeric ID, part
of the table key, with search index; and the flow table can be joined when selecting per
flow or per field constituting the flow description.

This way the database tables would be kept more compact (efficient disk I/O), and the
search and join could be quicker when producing the reports.

This must be tested before concluding.

1.14.7 Find and Use a More Modern Report Writer, Exploiting
the HTML5 Dynamic Graphics Capabilities
BIRT is rather powerful and flexible. But is a bit outdated and limited in what concerns the
charting. Many reporting and charting programs that people are using today are quite more
flashy.

Exploiting the capabilities of a charting library like D3.js (d3js.org) would be welcome, but
combined with easy to draw report template designer and SQL interface.

1.14.8 Big Data Database Technology and Handling
Techniques
The volume of observation can grow quite quickly, and the production of each new report
view would require to produce optimized SQL procedure.

Even though, some synthesis reports still take too much time for interactive generation.

Modern technology and data handling techniques used for the “Big Data” discipline would
be welcome to replace the rather basic trafMon SQL schema.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 22/48

2. TRAFMON COMPONENTS ARCHITECTURE
The trafMon software is conceptually split in two parts:

• Online functions: corresponding software is in charge of real-time and near real-
time monitoring of the traffic and of producing the basic performance observations.

o One or more probes are reading (capturing in read-only stealth mode) the
operational traffic

o The probe or probes are sending their observations though custom formatted
UDP packets that are sent via their computer dedicated data port

o The collector receives the probe’s observations and sends back PDU
acknowledges

o The collector regularly output the basic observation into flat log files

• Offline functions: consists in SQL database regular batch loading and aggregation
of basic observations logs into prepared metrics and in offline querying and report
presentation of those performance metrics.

o Regularly run scripts and associated database stored procedures upload
the latest collector output files in working input tables of the relational
database.

o Regularly run scripts, invoking the BIRT reporting java runtime on pre-
defined report templates, perform SQL data retrieval queries on the database
and produce pre-built report files in batch, e.g. PDF documents or HTML
formatted reports.

o On-demand interactive access to the BIRT java runtime on Apache
Tomcat server let a human user (e.g. network operator) to instantiate,
through his Web browser, a selected BIRT report template based on custom
provided parameters. This interactive generation of BIRT reports is facilitated
by a dynamic menu bar Web application, based on AngulaJS/PHP, for
letting the user select his desired report attributes.

The online functions are optimised C programs, with a XML configuration file that follows a
DTD syntax definition.

The offline functions are implemented by a mix of

• Python scripts (and some shell scripts),

• MySQL statements and stored procedures,

• JavaScript embedded in BIRT report templates,

• JavaScript and PHP code to build the AngularJS menu bar Web application,

• Pre-designed BIRT report templates,

• crontab and logrotate configuration

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 23/48

3. SOFTWARE ARCHITECTURE OF THE PROBE
PROGRAM
In order for the probe to be able to process captured packets at wire speed, the trafMon
probe has been designed as a pipeline of two processes linked by a circular buffer
implemented in shared memory:

Figure 3 trafMon Probe Structure: Pipeline of Two Processes

The packet capture probe makes use of the portable API of the public domain libpcap
library. This allows directing the operating system kernel to capture packets at one
interface and, according to a user-specified filter, to selectively provide their content to
upper layer software. A libpcap context will be given to each capture interface.

Libpcap permits to fetch only a portion of the packet, alleviating further processing. And,
on Linux, capture filter can run inside the kernel, avoiding to handle irrelevant Ethernet
frames.

Libpcap also stamps the captured packets as soon as they enter the system. This gives
the best possible precision of their respective time of occurrence.

And libpcap gathers statistics on its activity; especially the counter of packets dropped due
to resource limitations (packets in excess such that the system cannot actually get them
all). This information is one source for trafMon health notification.

Modern version of libpcap, especially on Linux, permits to memory map a buffer of custom
specified size between the kernel and user space, thereby avoiding a copy of the capture

trafMon Probe Child Process
(other CPU core(s))

Stateful protocol
analysis and statistics

accumulation:

Single packet hash and
timestamping,

IPv4 reassembly,

TCP connection follow-
on,

FTP session follow-on,
FTP passive/active data

transfer matching,

Two-way transactions
round-trip delay

Protocol counters pre-
aggregation

Fetch
next

dissected
packet

info

Observations
transmission
to Collector

Shared
memory
queue

Queue
next

dissected
packet
info.

Wait
when

queue is
full

Per-packet
dissection of

stacked protocol
headers info:
IPv4/ICMP,

TCP, FTP
UDP, NTP, DNS,

SNMP

Efficient Flow
classification and

filtering

N
et

w
or

k
In

te
rf

ac
e

Pa
ck

et
 C

ap
tu

re

Fi
le

libpcap

Linux Kernel

Captured
packets ring

buffer

trafMon Probe Father Process
(dedicated CPU core)

Zero
copy

Performance
testing

alternative
(full speed)

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 24/48

portion of the packets. Correct sizing of this internal buffer permits to efficiently absorb
traffic bursts during one or a few seconds.

Packet analysis starts by applying custom defined flow classification. Matching a flow class
identifies which analyses are to be applied to the packet: as governed by the custom
configuration. At first this indicates which protocol information fields are to be dynamically
learned to identify a granular flow: the unit for which observations are measured and
centralised.

The analysers are of two types:

• Those that extract information from a packet are stateless. Flow identification (flow
class and granular instance) form a particular case in that it has to be conducted as
a first step, and governs further dispatching of the packet through the analysers, for
producing the user-requested statistics. The protocol header inspector, at different
layers, are part of this group.

• Those that encompass multiple packets, either seen in sequence (e.g. fragments),
or seen across probe interfaces (e.g. Network/Port Address Translation matching),
or monitoring bi-directional exchanges, from simple two-way (ICMP Echo, DNS
query/response, NTP query/response and SNMP request/response) to complex
sessions (TCP connection, FTP session). All impose to preserve specific state
information in searchable ad hoc data structures.

Output of one analyser is often required by another. For instance:

• An upper layer packet analyser needs the offset in packet where its protocol header
starts; which is computed at lower layer.

• The packet signature cannot be blindly applied to the packet content: some varying
protocol fields need to be masked, not only at IP layer but above; moreover,
obtaining the same signature for corresponding pairs of a two-way exchange
interacts with the corresponding transaction-specialised analyser; even, such
signature is not required at all when only global statistics are requested for a flow,
and no per-packet observations are to be reconciled by the collector; but it must
uniquely identify a datagram or segment that undergoes fragmentation between
probing points: signature of the fragment set must be computed the same at every
point.

• TCP window scaling option, present in the SYN/SYN+ACK must be taken into
account by the TCP connection follower over the entire sequence of further
exchanged segments.

State information maintained by the probe plays a key role in the trafMon software tool.
Protocol behaviour analysis implies to retain a large variety of information items across
subsequent packets. And the reduction of the volume of observations to be centralised
implies that the probe maintains numerous counters and global statistics to be regularly
transmitted to the collector. For most flows, these global measurements replace the central
gathering of per-data unit detailed data, for some others both are transmitted.

Therefore, state data structures permit the probe to organise its measurements. These are
organised in simple containers such as the dichotomy search table of the standard C

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 25/48

library (qsort/bsearch), custom hash table, or by the efficient home-made dictionary,
combining a balanced “btree” with doubly linked sorted list.

In order to adapt to potential large variations of the probe load, following the volume of
traffic, the probe processing chain is split in slices with interposed buffers. Some of them
are implemented on the basis of a generic circular buffer object with optional copy-in
and/or copy-out:

• A large libpcap internal buffer is assigned for kernel mapped passing of pre-filtered
captured packets;

• An additional probe circular buffer, built in shared memory, acts as a separator
between light input pre-processing of packets (performed by the father process) and
its further more in-depth analyses, in the child process;

• Observations accumulated on a per-packet or per-datagram/segment unit
granularity, the regular samples of per-protocol statistics variables and those
accumulated about individual TCP sessions, FTP sessions and FTP file transfers
are then gradually encoded into their respective types of probe observations PDU
under construction, to be regularly sent to the collector;

• Prepared PDU units are put in output queue, each assigned to a free time slot, for
regulated sending and re-transmission to the central collector. This last queue
requires careful handling for implementing the necessary regulation control as
presented in section 1.5 above.

Buffer full warning and alerts are important health indicators. Protocol analysers will also
detect abnormalities in traffic. These events can be reported in two ways:

• They are transmitted with the recent observations, in order to be stored in the
trafMon database, together with the corresponding performance measurements
allowing at least an expert user to interpret the measurements in their context.

• They can also be transmitted to an overall health monitoring tool under the form of
SNMP traps.

Health monitoring of the probe can be complemented through SNMP polling of its
embedded SNMP agent implementing a simple MIB with representative traffic
performance counters and statistics on the probe processing activity.

The sequencing of the processing slices as well as the regular timeout checkers are
triggered by a fine grain timer utility, with avoidance of pre-emptive interrupts.

The main configuration of the probe lies in an XML file shared with the collector. It is
loaded thanks to libxml2 public domain package. Each software module then learns its
own set of parameters and compiles the ad hoc data structures. The father process
creates Flow Classes and related Granular Flow data structures corresponding to the XML
configuration before forking its child, which inherits those pre-initialised information. An
update of the configuration file is detected and induces a cold restart of the probe at the
exact time at which the new version becomes valid. Because all online trafMon involved
systems need to be precisely time synchronised, the switch of configuration can happen in
synchronism over the distributed trafMon components.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 26/48

3.1 INPUT PROCESSING AND BUFFERING
Packets are captured independently at each network probing interface, according to
custom-defined packet capture filter. This is achieved through the constant non-blocking
polling of libpcap.

Modern libpcap version running on current Linux kernel makes use of a kernel ring buffer
directly mapped into the user space for avoiding one copy of the captured packets.
Although very efficient and with a custom specified size, the internal capture buffer is
unfortunately not directly accessible by the client program. The kernel resident packet
copies can only be accessed one after the other: each is passed to a callback routine and
its buffer slot is released upon callback return.

All stateless protocol decoding work of the probe can be conducted directly on the kernel
mapped packet, and the Flow Class matching is also operated in an optimized single
traversal of filter predicates. Only the pre-processing data results, for those packets
relevant for further analysis and observations reporting, need to be buffered in probe inter-
process queue.

3.2 FLOW MEMBERSHIP AND GRANULAR SUB-FLOW
DISCOVERY
The probe is fed by Ethernet frames, possibly truncated to speed-up the capture: length of
actually captured content is custom specified. Only IP packets are subject to capture. The
capture is indifferent to the presence or not of VLAN tag. Besides the upper network layer
protocol number (IP), the Ethernet header content is ignored.

After protocol headers identification, the packet enters actual analysis chain. This is
commonly applied to the input queues of all capture interfaces, which are inspected in full
before going to the next one.

The observations and analyses to be conducted is custom specified for user-defined
classes of data flows.

Theoretically, the first operation to be conducted on the packet is determining its
membership of one (maybe several) user-defined flow class(es) and therein, to which
granular flow instance it belongs:

• Custom implementation of criteria testing on protocol headers fields has been
preferred to the use of applying a sequence of per-Flow Class BPF packet filters
provided by libpcap.
Because a packet can match several Flow Classes criteria, it has been decided to
conduct first the full stack protocol dissection, gathering all relevant fields of
information about the different layers in a relevant data structure. Then this
structure is “sieved”, in a single quite efficient pass, through the combination of all
predicates taken altogether from the set of configured Flow Classes respective
criteria. This global sieve is organised in such a way that the different protocols
fields fully checked one after the other, so as to ensure that the current field value

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 27/48

lies in a CPU register as long as it is tested. As soon as a predicate is invalidated,
the corresponding Flow Classes are excluded from the list of remaining candidates.
After the single traversal, the packet is declared belonging to all the remaining
Classes.

• All IP fragments must be mapped to the datagram or segment they belong to.
IP header fields permit a first screening of flow class and granular flow membership.
But UDP or TCP header is not known by the second and subsequent fragments,
preventing full discrimination.

However, the capture interface, the pair of IP addresses and the IP identifier
together provide a key for retrieving a short-life reassembly context, dynamically
created by the first detected fragment, not necessarily the one containing the
transport layer header.

Individual packet analysis of a second or further fragment can have to be
suspended and delayed until the first fragment (containing the transport header) is
analysed: determining full granular flow identification.

Such per fragment analysis is only needed where per-packet individual
measurement is requested.

Complete datagram/segment analysis is, in any case, delayed until either the
reassembled data unit is complete or a short-life timeout occurs.

Such timeout conducts to an incomplete data unit event and, when requested, to
the processing continuation of every pending fragment:

o normal per-packet measurement as soon as the first fragment, with UDP or
TCP header, has been received,

o IP-level only processing (custom selected) otherwise
In practice, the datagram key, common to all fragments, serves to early skip the
further handling of a packet in the father process: as soon as a first fragment
occurs, and its Flow matching reveals that other fragments won’t be needed, a
short-life corresponding entry is registered in a lookup dictionary. Those subsequent
fragments that have been captured before this first will be kept for analysis by the
child (and then skipped during stateful reassembly attempt). But most often, the first
fragment occurs before, and all following fragments can then be dropped early by
the probe father process. This way, only relevant fragments are preserved for
reassembly by the child process.

An open source network traffic performance monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 28/48

Health and Events

Mini SNMP agent

Custom tuning

Packet decoding (stateless)

IPv4

C
ap

tu
re

in
te

rfa
ce

 #
1

Packet capture

libpcap

Saturation count

C
ap

tu
re

in
te

rfa
ce

 #
X

custom filter

mapped

ring

• • • 1-by-1
Queues
emptying

Fragment
detection

Signature

IP time
stamps

+

traffic slice
local dump

Flow

Class
mapping

Granular
flow

ICMPv4

error msg
Echo

UDP

DNS NTP SNMP

TCP

SYN,
FIN, RST

FTP
Control HTTP

[checksum] [checksum]

PDU
formatter

PDU
sender

O
bs

er
va

tio
ns

PD

U
Ac

kn
ow

le
dg

e

Selective
timeout

drop

Various
observations

Observations
PDU’s

• periodic global statistics:
• per protocol
• per granular flow
• saturation count

• granular flow qualifiers and ID

[C
om

m
an

d]
[A

ck
no

w
le

dg
e][Command

processor]

[Dump on
demand]

Packet capture

libpcap

Saturation count

custom filter

local
packet

ID

per data unit (packet,
datagram, segment)
observations

flow
selective?

mapped

ring

Multi-packet analysis (stateful)

NAT/PAT
matching

Two-way exchange (round-trip)

DNS NTP SNMPICMP
Echo

TCP
Ack TCP connection

follower
FTP session

follower

[HTTP
session
follower]

Configuration
file

XML

libxml2
parser and

utilities

selective per data unit
observations (two timestamps)

periodic global statistics:
• round-trip delays
• TCP connections
• file transfers

• per TCP connection observations:
• per FTP transfer characteristics
• [per HTTP transfer characteristics]

[Dynamic
configuration

request]

Configuration
loader

Synchronised
configuration

update

[Dynamic
configuration loader

and activator]

Diagnostic
tuning file

Software
activity
logging

log files

Timer

traffic abnormality detector

NetSNMP libraryAbnormality
transmission

selective per data
unit observations

SN
M

P
Tr

ap
SN

M
P

G
et

abnormality event

openSSL
MD5

per data unit (packet, datagram, segment) observations

Datagram
Fragment

Reassembly

Shared
memory
circular
buffer

Father Process

Child Process

Figure 4 trafMon Probe Architecture

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 29/48

• Auto-discovery of granular flow instances is a flexible feature:
o Each Flow Class defines what identifying fields of the packets are used to

define a flow instance.
o Even for same set of flow qualifiers values, granular flows must be kept

distinct between capture interfaces. This allows to avoid over counting a
same flow instance seen multiple times. Only those one-way flows for which
more than one probe provides partial observations (reconciled in the
collector) won’t have a probe interface in their identifier.

o A particular context has to be created under the flow class context. The first
occurring member will assign values to the set of custom identified flow
qualifiers. Efficient matching mechanism permits to map subsequent packets
to their granular flow. No more used granular flow contexts will have to be
cleaned after custom-tuned obsolescence duration.

o The characteristics of a granular flow (values for qualifiers) have to be sent
once to the collector, together with a probe-defined identifier, independently
of transmission of, possibly intermediate, related observations referring to
this identifier.

o The collector maps the per probe flow identifier to a unique value it
generates itself. So that the measurements from all probes end-up with the
same identifying number. After implementation, this choice has revealed to
be counterproductive: Indeed, most of the observed flows are distinct per
probe interface (see above); hence their per-probe unique ID is enough. And
as long as the flow definition (values of the retained protocol fields) PDU is
not delivered to the collector, the observations for the unknown flow must be
disregarded by the collector, which cannot map them to its own generated
flow ID. Because the mapping ID-to-definition are to be redone within the
database (when the collector restarts it restarts assigning new numeric IDs to
the re-discovered flows), preserving the per-probe assigned flow ID would
limit the data glitch due to collector restart.

3.3 SYSTEMATIC DISSECTION OF IPV4/UDP, IPV4/TCP
OR IPV4/ICMP PROTOCOL HEADERS
For first (or only) fragments, a systematic dissection of the IPv4 protocol header and of its
upper protocol header is conducted, filling a specific dissection data structure.

For ICMP error packets, the embedded packet headers are also dissected (the ICMP error
belongs to the data flow at the origin of the error.

This forms the subject to the Flow Class single pass sieve traversal.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 30/48

3.4 EFFICIENT FLOW CLASS SINGLE PASS SIEVE
TRAVERSAL
Without limitation of capability, any Flow Class applicability filter can be expressed in up to
three layers of Boolean connectives:

• top level 1: AND or NAND: as in [NOT] (P1 AND S2 AND S3 AND P4)

• intermediate level 2: OR or NOR as in S2::= [NOT] (p5 OR p6 OR s7)

• bottom level 3: AND or NAND: as in s7::= [NOT] (pr8 AND pr9)
Predicates are conditions on fields of information extracted from the IPv4/ICMP/TCP/UDP
headers.

Thanks to this limitation in depth of the expressions, a sieve structure with all predicates of
all filters specified by all configured Flow Classes can be built. A single traversal of this
structure where every possible protocol fields are checked one after the other, permits to
invalidate candidate Flow Classes as early as possible. Those Flow Classes whose filter
remain valid after the traversal are applicable to the packet.

3.5 FURTHER DISSECTION OF SERVICE PROTOCOL
The type of analyses defined for the set of applicable Flow Classes implies the application
protocol: ICMP Echo, DNS, SNMP, NTP, FTP.

Based on the applicable Flow Classes, the further dissection of the remaining service
protocol header is conducted.

And such packet is systematically queue for analysis by the probe child process

3.6 CACHE OF FTP SESSION PEERS
When a packet is considered member of an FTP session, its pair of IP addresses is
remembered in a cache.

Later, when a TCP packet has been dissected for an unknown service protocol, a check is
made to see whether its IP address pair is registered in the cache, together with an
important Boolean specifying how to monitor/measure the FTP data connection.

• If only initial and final TCP connection packets are needed for measuring the
duration and estimating the payload, as the difference between sequence number
at TCP connection boundaries,

o the cache matching current packet is elected for probe child processing only
if it is a TCP SYN, TCP FIN or TCP RST type packet,

• Otherwise
o the cache matching current packet is systematically elected for child

analysis.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 31/48

3.7 ONE-WAY FLOWS EARLY SIGNATURE HASH
When a packet is not fragmented and is subject to one-way measurement by two or more
probes, its full datagram content can already been hashed from the kernel-resident data.

In such case, only the signature hash must be transferred to the probe child process,
together with its header dissection results.

For one-way (incomplete) fragments, however, the full packet will unfortunately have to be
transferred to the child process, in addition with its dissected information.

3.8 IPV4 RE-ASSEMBLY IN THE PROBE CHILD
PROCESS
The probe child process handles retained per packet information one after the other.

Fragments are saved in their re-assembly context until the entire datagram is re-
constructed (or a timeout occurs).

Further analyses are delayed until this happens.

Note that the one-way individual observations can be applied to individual fragments, but
also to re-assembled datagram units. In this case, two timestamps are produced: those of
the first and last fragments to occur (oldest and youngest timestamps of the collection of
IPv4 fragments).

3.9 IDENTIFICATION OF NECESSARY STATELESS AND
STATEFUL ANALYSES
For each dissected (and reassembled) data unit, the probe child process identifies the
upper layer stateless and stateful protocol analyses required by one or more of its Flow
Classes: TCP follow-on, FTP session or FTP data connection matching, one-way hop
timestamping, round-trip delay, counters statistics

3.10 GRANULAR FLOW INSTANCES DISCOVERY AND
MATCHING
Then the child process loops over all Granular Flow specifications induced by the set of
Flow Classes the packet belongs to. It creates a new flow instance entry in its registry or
retrieves the probe flow ID already registered.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 32/48

3.11 PERFORMING STATELESS AND STATEFUL
ANALYSES
According to the outcome of the Flow Classes traversal (see 3.9 above), the child then
applies the current data unit to the concerned set of analysis in progress:

• Round-trip delay: TCP SYN/ACK or TCP RTTM option, UDP/SNMP, UDP TCP,
UDP DNS, ICMP Echo,

• TCP connection stateful follow-on,

• FTP session follow-on of the control connection or FTP data connection follow-on
(directory listing or file transfer)

3.12 PROBE DATA AGGREGATION
The probe child process makes use of timer to publish aggregated measurements ar the
required frequency. These aggregated measurements could be

• all accumulated protocol counters, for the set of discovered flow instances

• the round-trip delays

3.13 PROBE EVENTS
When the father probe detects the occurrence of a remarkable event, it passes its record
to its child, via the shared memory circular buffer.

The child process gradually builds a PDU for events with those events reported by the
father and those detected by the child process itself.

3.14 OBSERVATIONS PDU PUBLICATION
There is one “PDU under construction” for each of the following types; more precisely,
there is one per PDU type and per destination collector (multiple collectors can be used,
that receives the same probe observations independently, in order to support deployment
of disaster resistant architecture)

• Flow Instances Description

• Metrics Histogram Slices description: for instance, round-trip delay <2ms, 2-10 ms,
10-50 ms, >50 ms

• Metrics Histogram Slices data

• TCP Connections observations

• FTP File Transfers observations

• Flow Instance protocol counters (delta during one time interval)

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 33/48

• Per Packet/Datagram observations

• Per Packet/Datagram Delay observations

• Probe Events
New observations are gradually filling up the PDU, until it is detected full compared to the
configured limit. The PDU then undergoes final encoding and is passed to the
transmission module for regulated sending to the collector(s).

This empties the storage for building the PDU, where new data record can then be
appended.

Conceptually, to time for sending successive probe PDU units is discrete: cut in
successive slots separated by the minimal inter-PDU delay. When a new PDU is to be
transmitted, it is placed in the next available slot, or sent immediately if the previous one
was already delivered since a long enough time.

PDU’s are saved in a data structure associated by a timer, waiting for collector
acknowledgement (very small UDP packet containing only two times the PDU ID, to detect
transmission errors). An acknowledge PDU is then released.

When a timeout timer triggers for a given PDU, if its maximum retry count isn’t yet
reached, the new timeout value is computed, the PDU is then assigned the next
transmission slot (may be immediately), and the new acknowledge timer is started.

During nominal conditions, the first occurrence of a retry count exhaustion, without
acknowledge, induces the entrance of the long retry mode. The PDU detected exhausted
is then reties at its maximal rate (initial timeout value). Any PDU that has not yet
exhausted its retry count is also retried, but at minimal rate (maximum timeout derived
from maximum retry count, increment and multiplier attributes). The PDU with important
definitions (flow, metrics histogram slices) or observations (individual FTP file transfers)
are similarly slowly retried at maximum timeout. And same slow retries occur for PDU units
whose observations content belongs to a fixed time window (break border time parameter)
just before the start of the long retry mode (just before the border of the break of
connectivity with the remote collector). This last permits fine grain traffic behavioural
analysis leading to a potential problem of the network link.

A first reception of collector acknowledge cancels its long retry mode condition. and
nominal transmission behaviour is re-installed.

When no PDU have to be delivered for a while, empty heartbeat PDU is sent, so as to
indicate to the collector that the probe is still alive and accessible.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 34/48

4. SOFTWARE ARCHITECTURE OF THE
COLLECTOR
For all but the one-way observations PDU types, the current collector barely acts as a
PDU decoder and value printer to the corresponding output ADCII log file. However, it is
structured in a way allowing interposition of further processing (e.g. computation of specific
metrics KPI, threshold comparison for real-time detection and warning on traffic
abnormalities).

An early implementation choice has been made for the flow description by the probe,
which reveal in fact counterproductive. Each flow instance is assigned its unique numeric
flow ID by the originating probe. The collector assigns a collector-unique numeric flow ID
to replace that from the probe, in order to keep distinct IDs across all probes. But all probe
observations, besides the one-way measurements, are individual, per probe interface. So
the probe flow ID is already unique per probe ID. The drawback of the current
implementation is that, when restarting a collector, all probes must be restarted, or must
resend their flow descripts as soon as possible. all observations data from a probe,
pertaining to a collector-unknown flow ID, must be dropped until the collector receives the
corresponding flow description.

4.1 PDU RECEPTION PROCESSING
The PDU reception mechanism adapts to variable length UDP data gram units. First, a
non-blocking check is made on the socket, to see whether there are pending data or to
learn the size to be read all at once after dynamic memory allocation.

Every PDU has a CRC code. Sanity checking is made, then the PDU is acknowledged
(except for empty heartbeat). The probe alive time is refreshed.

When the PDU hasn’t been already received, it is queued in a collector input circular
buffer.

For one-way partial observations, it was initially thought to implement a special mechanism
to handle arrival of late PDU from a probe whose connectivity was broken during a while.
Indeed, when partial observations are still missing after a timeout, if this probe is detected
silent at that time, the validity of the partly reconciled packet observations could be
enlarged, waiting for late PDU. Those could then bypass input queueing for immediate
processing. Finally, the queueing doesn’t really lapse, so such a queue bypass wouldn’t
reveal useful.

An open source network traffic performance monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 35/48

per-Data Unit
Ancient Records

Abnormalities Processing

TCP connections
• definitions
• observations
• FTP [HTTP] file transfer description

Observations Processing

Probe
Observations

PDU
Acknowledge

Observations
PDU’s

PDU Receiver

Ack responder

Input queuing

Probe
alive

update Probes
Status and
Health Statistics

Granular flows
• definitions
• observations
• measurements

Flow classes definitions
PDU Decoder

Global
Probe

Statistics

Granular
Flow

Definitions

Granular
Flow

Statistics

per-Data Unit Observations

Granular flow ID mapping

Multi-
Timestamps

Probe
detected

Abnormality

per-Data Unit
Partial Records

per-Data Unit
Complete Records

per-Data Unit Observations

Recording Reconciliation
Latency Computation

Packet Reassembled Unit

Partial Observations
Timeout

[in-Collector
Histogram

pre-Aggregation]

[Threshold Detector]

Collector Self

Configuration
file

XML

Diagnostic
tuning file

Software
activity
logging

log files

Custom tuning
libxml2

parser and
utilities

Configuration
loader

Synchronised
configuration

update

[Dynamic
configuration loader

and activator]

Health
Monitoring

?

Packet
Loss

Event

Threshold
Event

Events

[Events
Aggregation]

Collector
Health
StatisticsSilent

Probe
Event

Timer

Mini SNMP agent

NetSNMP library

SN
M

P
Tr

ap
SN

M
P

G
et

Probes
Silence
Detector

Health
Event

Collector
Output

Selected Events

Abnormalities
Output

[Traffic Dump
Probe

Commanding]
Event

Counts
Individual

Events

All Events

Output of
selected per-

Data Unit
Records

?

Output of File
Transfer
Records

Output of TCP
Connection

Records

Output of
Granular Flow

• definitions

• measurements
• observations

Output of Self
Health

observations

ASCII
Observations

(CSV)

Mix of
• buffered records and of
• periodic snapshot

Figure 5 trafMon Collector Architecture

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 36/48

4.2 PDU DECODING AND OUTPUT OF SINGLE-PROBE
OBSERVATIONS
As said above, all specific collector processing of observations, except for one-way flow
measurements, hasn’t been implemented (bracketed italics modules in the figure).

So, after PDU decoding, all types of single probe observations are simply appended to the
corresponding type of observations output ASCII log file.

4.3 ONE-WAY RECONCILIATION OF PROBE PARTIAL
PER-PACKET OBSERVATIONS
For partial observations, the handling is quite more sophisticated.

Due to the quite compact PDU encoding, the decoding algorithm is rather intricate (see the
Detailed design document or the fully commented source code for explanations).

Per packet records (with flowID, packet signature, size and timestamp(s)) are reconstituted
one by one from the decoding.

An attempt is made to retrieve the collector record for the corresponding packet, which
serves to gather the set of timestamps reports by the several concerned probes. Because
the few bytes of content signature risks to collide with that of another packaet for the same
Flow Class/Flow Instance, we need to find the best match in terms of timestamps: the
packet whose reference time (seen by another probe) is the closest to that of the new partial
observation record.

For this, a special kind of dictionary has been implemented. It is made of BTree (balanced
2-3 tree, where each tree node has 2 or 3 children) whose leafs are anchors of a doubly
linked list of the dictionary elements, maintained in increasing key order. This list allows
easy travel, from the head/tail or from any element, and easy insertion/extraction.

For our per-packet (per datagram) observations, the key also embeds the oldest timestamp
known timestamp of the record to search. Hence, most of the search won’t lead to an exact
match (same packet timestamp at different locations of the network traversal path). But the
BTree search routine produces either the matched leaf, or the one either at right or at left.
So, in case of an approximate match, we can get the element of the dictionary which is the
closed to the search key (also embedding a timestamp value).

Upon a signature clash, we can then match the records with the closest known timestamp.
Not only do we then detect the signature clashes, we are tolerant to them and continue to
consolidate individual sets of per packet observations for different packets that exhibit the
same signature hash value.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 37/48

Per packet (per datagram) observations are gradually complemented with partial records
from the several probes on the path. Note that a partial observation can consist in one or
several timestamps, and the packet/datagram size. Timestamps can be

• the capture time at a probe interface,

• the value of an entry in the IP Timestamp Option from the IPv4 header,

• the value of a specified (type of) NTP timestamp extracted from the NTP packet
content.

Alternative paths (routes) in the network travel of a data flow are supported by giving the
same hop name to different timestamps (typically different probe capture interfaces at
alternative nodes in the network.

When all specified hop timestamps have received a value, the packet observations is
completed. Either the record, with a list of timestamps, is produced as-is in the output,
available for further custom processing (database or other data handling), or the latency is
requested between two identified hops. In this case, the collector directly computes the one-
way delay and maintains a set of latency histogram slices, which are output and reset at
regular time intervals.

The partial observations dictionary is also regularly traversed for finding ancient incomplete
records.

• If a missing observation has lapsed the maximum lifetime inside a probe, the probe
would have already dropped it from its PDU retry queue. Hence the collector
declares the one-way record has “dropped”.

• If the expected probe for missing observation has been silent (maybe due to loss of
connectivity) around the time it would have produced the timestamp(s) and sent them
to the collector, the observations is kept waiting for late arrival of still missing
observations.

• If the missing timestamp(s) is(are) at the end of the ordered hop list, the obsolete
record induces the declaration of a “packet lost”.

• Otherwise, for a reason or another, we have observations for the packet (datagram)
at the end of its travel but not at the start or an intermediate hop. The record is then
declared “incomplete” or “partly missed”.

Either each of those three type of one-way incomplete hops are output individually, each in
their log file corresponding to the exception type (lost, dropped or missed), or these
exception counters are aggregated by the collector.

In case of collector aggregation, because observations can finally become complete after a
delay longer than the period of reporting aggregated one-way statistics (latency histograms
and/or exception counters), successive slots of aggregation are maintained in the collector:
each slot represent one reporting interval. Those slots form a time window that ends with

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 38/48

the still open interval containing “now”. So the consolidated one-way observations are
output with a delay of several slots.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 39/48

5. REGULAR DATABASE LOADING AND
AGGREGATION
The output of the collector, as well as the extracted NetFlow records from the optional SiLK
add-on, consists of ASCII log files forming a flexible boundary between the online and
offline trafMon function.

5.1 REGULAR DATABASE UPDATES (EVERY 10
MINUTES)
However, due to the continuous generation of observations, among others, pre-aggregated
counters at 1 minute granularity or below, there is a need of quite regularly

• loading the individual description records (TCP connections, FTP transfers),

• loading counters in temporary database tables, visible only by the loading process
which also determine the end of their lifetime; for those records that participate to the
same one minute interval for which aggregate values already exist in the permanent
table, the one minute records are update, and for those new values, the one-minute
records are simply appended,

• splitting the long duration optional NetFlow records into successive slots of one
minute intervals, which can update the table as described here above.

Before first data for a new day are loaded in a persistent table, a new partition is created for
that day. Normally, the last partition, called pFuture, is always kept empty.

The structure of temporary and persistent tables is defined in the `trafMon_template`
MySQL database, which also contains the trafMon stored procedures and the protocol table
defining the known application service TCP and UDP port numbers, and their optional
precedence.

When the target MySQL database (named `trafMon` by default) doesn’t yet exist, it is
created, then each persistent destination table is also created when initial data are available
for it.

After the persistent table at 1 minute is updated, it is used to update that at 1 hour. Then the
1 hour persistent table is used for updating the head of the table at 1 day granularity.

After such process (trafMon_loader.py), the non-resolved IP addresses (including the newly
discovered ones) are subject to mapping, either in terms or Activity/Location, or through
GeoIP, and a reverse DNS lookup is attempt (trafMon_updateIpInfo.py).

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 40/48

Following tables are aggregated at 1 minute, 1 hour and 1 day:

• IPv4 counters,

• IPv4 sizes distribution (histograms),

• ICMPv4 counters,

• UDP counters,

• TCP counters,

• FTP counters,

• Two-way round-trip delays (histograms),

• One-way latencies (histograms),

• One-way counters
Following are definitional tables:

• Flow instance descriptions,

• histogram slices definitions of metric instances,

• or one-way hops definitions (optional)

• trafMon probes and collector events
Following tables contain individual data records:

• TCP connections,

• FTP transfers,

• one-way hops timestamps (optional)

• and, separately, one-way lost, one-way missed, one-way dropped counters (optional)
After merging, the original data log files are archived in a compressed tar file.

5.2 PREPARATION OF TRAFFIC VOLUMES DATA WITH
ACTIVITY/LOCATION/GEOIP AND DNS NAMES
Once a day, the volumes of passive FTP data connections are merged with those of
corresponding FTP session flows. Then the aggregation per Activity/Location/peer Location
or Country is conducted.

Once a day, but later, the same aggregation is performed on NetFlow data.

So the synthesis reports are up-to-date up to yesterday.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 41/48

5.3 FULL UPDATE OF IP ADDRESSES (WEEKLY)
Once a week or less, preferably at a quiet period at night, the full set of DNS names are
queried again. This is done in successive batches, but generates bursts of DNS traffic by
the trafMon central server (trafMon_updateIpInfo.py --all).

trafMon Web Portal

trafMon Reporter

Apache
HTTPServer

Definitions/Descriptions
• of granular flows
• of TCP connections
• of File Transfers

Probe/Collector Health

CSV log files

MySQL DMBSBatch Reports
Templates

Stored
procedures

Batch Reports Generator

Granular Flow
• Basic Observations
• pre-Computed Measurements

TCP Connections Records
File Transfer Records

per-data Unit Records

Individual Events

Optional NetFlow
(SiLK™)

JDBC SQL

DB Loader
Reformatting

Bulk COPY

Metrics Computation &
Aggregation

BIRT Report Engine

Command-line Web-based

Apache Tomcat

on-Demand Reports
Templates

BIRT Report Designer

PDF Report
documents

BIRT Report Viewer

Local printout

PDF

XLS

DOC PPT
Export Report

CSV
Export Data

Select
• Template
• Values

AngularJS + PHP

Figure 6 Database and Reporting Architecture

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 42/48

6. REPORTING FUNCTIONS
Once the data are available in persistent tables, any reporting tool could be used for
presenting views on the data.

Based on HTML5, there exist quite powerful data visualising libraries, such as the d3.js
open source JavaScript graphical library. But we wanted to rely on a free tool that permits
easy and flexible design of report templates, mixing textual, tabular and charting
representations, whose output would be suited for Web browser for on-demand drill-down
as well as supporting the automatic generation of electronic report instances.

For these reasons, we selected to rely on Eclipse/BIRT (https://www.eclipse.org/birt/).

The BIRT Designer, run as a perspective in the Eclipse Integrated Development
Environment, or available as a standalone application, allows a non-expert user to draw or
update report templates through a relatively intuitive GUI, although sometimes surprising in
what concerns the WISIWIG mapping from design view and laid down report, especially
when pagination (for PDF documents) is applied.

Anyway, reports can be designed on Linux or Windows systems (with some issues
concerning font equivalence e.g. Helvetica vs Arial).

A BIRT Runtime Engine is then able to apply a custom report template, with assigned
attribute values for its parameters, to SQL queries retrieving the underlying data from the
database and laying down an actual report instance, either as a multi-page PDF document,
or in HTML. The BIRT Engine is a Java EE application that can either run as a command,
producing report in batch mode, or interactively as part of the Java EE application server. In
this case, either the report is produced as a continuous single Web page, with attribute
values assigned to report parameters via the URL encoding. Or it can involve the BIRT
Viewer Web application, which produce and displays the paginated report and allows
printing or exporting the PDF or some of the underlying data sets.

https://www.eclipse.org/birt/

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 43/48

Figure 7 Excerpt of a trafMon Manager BIRT Report

A set of pre-designed BIRT report templates have been produced, with standardised
arguments and some tricky JavaScript. Anyway, the user is able to adapt them or to create
new ones though the Eclipse BIRT open-source Designer.

Those reports are foreseen for installation within the BIRT Runtime Engine and Report
Viewer J2EE application in Apache Tomcat server environment.

For simplifying the selection of parameters for on-demand report generation, a basic
JavaScript/AngularJS/JQuery and PHP Web application has been produced for the Apache
HTTP Server, which displays a dynamic top-screen menu bar and launches the
Tomcat/BIRT report generation for display in the frame below.

Two example scripts, respectively for synthesis reports and for protocol details reports, are
also provided that automatically generate PDF report files in batch mode.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 44/48

7. DEPLOYMENT ARCHITECTURE
The figure below depicts a typical deployment architecture of the trafMon components.

The underlying model is that of an Organisation being spread over two or more production
sites (could be buildings or even rooms), where the Local Area Network segments are
structured as internal LAN and Demilitarised Zone (DMZ), with server typically providing
services to external users, over the internet, and to staff at other sites. With two sites, this
typically leads to four know ‘Locations‘:

• Site 1 Internal,

• Site 1 DMZ,

• Site 2 internal,

• Site 2 DMZ
Also part of the model, while not visible in the topology diagram, is the partitions of the
computer systems according to the different ‘Activities’ which structure the Organisation,
e.g.: Administration (ADM), Engineering (ENG) and Production (PROD). For instance, this
leads to the following partitioning of IP addresses:

• @ Site 1 Internal: ADM hosts and ENG hosts,

• @ Site 1 DMZ: ADM servers and PROD servers,

• @ Site 2 Internal: ADM hosts, ENG hosts , and PROD hosts ,

• @ Site 2 DMZ: ENG servers and PROD servers.
In order to cover the monitoring of all data flows, we need to capture the incoming/outgoing
traffic over the connection of all four LAN segments with their local firewall. This is
represented by the probe “lasso”, which is materialised by the plug of a probe computer
monitoring port (typically without IP address) to a span port (or mirror port) of the LAN
switch, where the required packets are replicated. It could also be achieved through the use
of Ethernet tap devices, but note that supporting pure passive tap devices (where IN and
OUT traffic are replicated to two separate physical mirror ports) would require a slight
change in the probe software, to preserve the respective order of occurrences of packets in
both directions while analysing the protocol exchanges.

A same traffic probe can capture traffic via two or more monitoring interfaces, as for probe3
below. But due to the processing load and computer hardware dimensioning constraints, it
can be sometimes more appropriate to use one probe device per probing interface, as with
probe1 and probe 2 in our example.

For observations derived from protocol analysis, the probe unique interface name is part of
the name of each detected data flow instance. This avoid problems when a same flow is

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 45/48

seen at different probing points, which is then appropriately handled upon aggregation of
observation in the central database.

Some flows can also be monitored for their one-way latency and packet loss metrics. For
instance regular SNMP requests from a Site 1 internal computer towards the switch of Site
2 DMZ. In this case, probe1 reports the source timestamp of the flow packets, together with
their per-packet identifying MD5 signature hash; and probe2 reports the destination
timestamps and packet signature. Both probes refer to the same one-way flow identified by
‘srcIP:high>dstIP:161‘, without probe interface identifier in the name.

WAN & Internet
SITE 2 SITE 1

Firewall Firewall

SITE 2 DMZ SITE 1 DMZ

SITE 2 INTERNAL SITE 1 INTERNAL

probe2

probe3

SITE 1 INTERNAL Systems

INTERNET Peers
(per Country)

probe1

Port mirroring

Port mirroring
Port mirroring

Port mirroring

SITE 2 DMZ Servers SITE 1 DMZ Servers

SITE 2 INTERNAL Systems
collector

ADM & ENG hostsADM & ENG & PROD hosts

ENG & PROD servers ADM & PROD servers

Figure 8 Typical Deployment Architecture

At a convenient place in the network, typically on one side of the WAN data-link or at the
centre of a star shaped topology, a Central Processing system gathers the probe
observations. It runs the online trafMon collector.

The MySQL Database is typically co-located on this central server, where all the raw and
pre-aggregated data are regularly stored and updated. Stored procedures are also

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 46/48

scheduled on a daily basis for the further aggregation implied by synthesis views, in terms
of Activity/Location/Host and peer Internet Countries

The Eclipse BIRT database reporting tool, with its runtime Engine for batch PDF reports
generation, and its Apache Tomcat interactive runtime Engine can also run on the same
central server, together with the Apache HTTP server and the trafMon menu bar Web
application.

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 47/48

8. ADMINISTRATION AND MAINTENANCE

8.1 UNPRIVILEGED TRAFMON ACCOUNT
Thanks to Linux setcap, it is possible to run the tmon_probe under an unprivileged account
(e.g. trafmon) member of the group (e.g. trafmon) for which the capabilities are applied.

The tmon_collector does even not need privileged capabilities, provided it has write
access to its data logs output directory.

Both components generates diagnostic trace logs (under /var/log/trafMon/ or
elsewhere) and both must be able to rename their new update of XML configuration file to
overwrite the previous one (under /etc/tmon/xml/).

8.2 TWO ACCOUNTS FOR MYSQL TRAFMON
DATABASE(S)
A MySQL account (e.g. tmon_db) has full permission on all databases whose names are
starting with ‘trafMon’ as a prefix.

Another (e.g. tmon_birt) has only read-only and execute-only rights. For this user, the
MySQL password should be implicit when executing mysql command-line locally. This is
used by the trafmon Linux account for scheduling database aggregation or clean-up
maintenance tasks: thanks to a read-only ~trafmon/.my.cnf protected file containing the
password for the tmon_birt database user.

8.3 LOGROTATE
By convention, all log files generated by the trafMon programs and scipts are names with
the ‘.log’ suffix and placed in a same directory (e.g. /var/log/trafMon/*.log).

A sample logrotate file for trafMon is provided with the distribution.

It must be invoked every hour through the root account crontab file on probe and central
servers. It ensures that the Linux account:group trafmon:trafmon stays owner of every
log files (archived and runtime).

An open source network traffic performance
monitoring and diagnostics tool.

© 2020 AETHIS sa/nv Belgium - All rights reserved - trafMon Architectural Design
Document version 1.0, 2020-10 Open Source Apache License v2.0 Page: 48/48

8.4 MYSQL SERVER AND TOMCAT DAEMON
On the central server, the root account crontab file should run a script, every minute, that
detects the absence (crashed or not yet started) of either mysqld or tomcat service and
automatically relaunch them upon need.

Also, Tomcat could quickly become thick in virtual and resident memory, after generation of
several reports. Hence this root account crontab should also systematically restart the
tomcat service every night at a quiet time, in order to recuperate memory.

8.5 TRAFMON SCHEDULED TASKS
Both the tmon_probe and tmon_collector programs could be started manually (e.g.
within the virtual connection environment provided by the screen utility). But in production
environment, it is important that those components are re-started as soon as crashed, to
minimise the impact of of glitch in the observations. So the trafmon account crontab file
can be used, respectively on the robe and central servers, to detect absence and
automatically launch the corresponding trafMon online program automatically. This
corresponding script must be run every minute.

On the central server, the trafmon account crontab file is used to also schedule the
several necessary database update and cleanup tasks and, when required, the generation
of PDF reports.

A sample crontab file, with comments, and corresponding scripts are provided, for the two
types of systems, as part of the trafMon distribution.

The generation of protocol counters reports induce the creation of working tables that
cannot be made temporary. The MySQL stored procedure
`trafMon_template`.`Drop_working_tables`() destroys them from all candidate
trafMon database instance.

Another MySQL stored procedure
`trafMon_template`.`Drop_working_tables`(DBname, tablename, daysToKeep)
permits to selectively remove obsolete partitions from those fast growing granular data
tables. After some experimentations, the user can carefully schedule such automatic clean-
up of selected database tables, to avoid that the database explodes.

	1. trafMon Design Drivers
	1.1 Origin
	1.2 Precise Measurement of One-Way Flows
	1.3 Quite Compact One-Way Observations
	1.4 Full-stack Protocol Analysis at Wire Speed
	1.5 Fully Controlled, Although Reliable, Probe Observations Protocol
	1.6 Single Configuration File for Distributed Online Functions and Synchronised Update
	1.7 Detection, logging and notification of Remarkable Events by trafMon Components
	1.8 Conditionally Compiled Embedded SNMP Sub-agent
	1.9 Tuneable logging of systematic production of trace and error messages
	1.10 Production of raw observations as a collection of ASCII Log Files
	1.11 Data Aggregation in a SQL Database
	1.12 Flexible Database Report Writer with Charting
	1.13 Network Modelling per Activity, per Location and per Remote Internet Countries
	1.14 Possible Future Enhancements
	1.14.1 Support of Passive Tap Devices: Pair of Linked Interfaces
	1.14.2 Further Exploiting the Multi-processing Capabilities
	1.14.3 Support of IPv6
	1.14.4 Online Threshold Detection on Raw Measurements
	1.14.5 Plug-in Interface for Additional Protocol Analysers and Observations
	1.14.6 Maybe Numerical FlowID’s and Table Join are More Efficient
	1.14.7 Find and Use a More Modern Report Writer, Exploiting the HTML5 Dynamic Graphics Capabilities
	1.14.8 Big Data Database Technology and Handling Techniques

	2. trafMon Components Architecture
	3. Software Architecture of the Probe Program
	3.1 Input Processing and Buffering
	3.2 Flow Membership and Granular Sub-Flow Discovery
	3.3 Systematic Dissection of IPv4/UDP, IPv4/TCP or IPv4/ICMP Protocol Headers
	3.4 Efficient Flow Class Single Pass Sieve Traversal
	3.5 Further Dissection of Service Protocol
	3.6 Cache of FTP Session Peers
	3.7 One-Way Flows Early Signature Hash
	3.8 IPv4 Re-assembly in the Probe Child Process
	3.9 Identification of Necessary Stateless and Stateful Analyses
	3.10 Granular Flow Instances Discovery and Matching
	3.11 Performing Stateless and Stateful Analyses
	3.12 Probe Data Aggregation
	3.13 Probe Events
	3.14 Observations PDU Publication

	4. Software Architecture of the Collector
	4.1 PDU Reception Processing
	4.2 PDU Decoding and output of single-probe observations
	4.3 One-way Reconciliation of Probe Partial Per-Packet Observations

	5. Regular Database Loading and Aggregation
	5.1 Regular database updates (every 10 minutes)
	5.2 Preparation of Traffic VoLumes Data with Activity/location/GeoIP and DNS Names
	5.3 Full Update of Ip Addresses (Weekly)

	6. Reporting Functions
	7. Deployment Architecture
	8. Administration and Maintenance
	8.1 Unprivileged trafmon Account
	8.2 Two Accounts for MySQL trafMon Database(s)
	8.3 Logrotate
	8.4 MySQl server and Tomcat daemon
	8.5 trafMon Scheduled Tasks

