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Abstract. Cancer is a complex disease that provides various types of
information depending on the scale of observation. While most tumor
diagnostics are performed by observing histopathological slides, radi-
ology images should yield additional knowledge towards the efficacy
of cancer diagnostics. This work investigates a deep learning method
combining whole slide images and magnetic resonance images to clas-
sify tumors. In particular, our solution comprises a powerful, generic
and modular architecture for whole slide image classification. Experi-
ments are prospectively conducted on the 2020 Computational Preci-
sion Medicine challenge, in a 3-classes unbalanced classification task. We
report cross-validation (resp. validation) balanced-accuracy, kappa and
f1 of 0.913, 0.897 and 0.951 (resp. 0.91, 0.90 and 0.94). For research
purposes, including reproducibility and direct performance comparisons,
our finale submitted models are usable off-the-shelf in a Docker im-
age available at https://hub.docker.com/repository/docker/marvinler/
cpm_2020_marvinler.

Keywords: Histopathological classification - Radiology classification -
Multimodal classification - Tumor classification - CPM RadPath.

1 Introduction

Gliomas are the most common malignant primary brain tumor. They start in
the glia, which are non-neuronal cells from the central system that provide sup-
portive functions to neurons. There are three types of glia, yielding different
types of brain tumor: astrocytomas develop from astrocytes, tumors starting in
oligodendrocytes lead to oligodendrogliomas, and ependymomas develop from
ependymal cells. The most malignant form of brain tumors is glioblastoma mul-
tiforme, which are grade IV astrocytomas. Additionally, some brain tumors may
arise from multiple types of glial cells, such mixed gliomas, also called oligo-
astrocytomas.

In the clinical setting, the choice of therapies is highly influenced by the
tumor grade [I7]. In such a context, glioblastoma are grade IV, astrocytoma
are grade II or IIT and oligodendroglioma are grave II. With modern pushes
towards precision medicine, a finer characterization of the disease is considered
for treatment strategies. Such therapeutic strategies can be surgery, radiation
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therapy, chemotherapy, brachytherapy or their combinations such as surgery fol-
lowed by neoadjuvant radiation therapy. Historically, the classification of brain
tumors has relied on histopathological inspection, primarily characterized with
light-microscopy observation of H&E-stained sections, as well as immunohisto-
chemistry testing. This histological predominance has been contrasted with the
recent progress in understanding the genetic changes of tumor development of
the central nervous system. Additionally, while it is not used in neoplasm di-
agnostic, neuro-imaging can bring other information regarding the state of the
disease.

This work deals with a novel strategy for classifying tumors with several im-
age types. We present a strategy to classify whole slide images and/or radiology
images extracted from a common neoplasm. Experiments are conducted on a
dataset made of pairs of histopathological images and MRIs, for a 3-categories
classification of brain tumor.

1.1 Related work

Whole slide image classification Whole slide images (WSI) are often at
gigapixel size, which drastically impede their processing with common com-
puter vision strategies. By essence, a WSI is obtained at a certain zoom (called
magnification), from which lower magnifications can be interpolated. Therefore,
a first strategy for WSI classification would consist in downsampling a full-
magnification image sufficiently to be processed by common strategies. How-
ever, since the constituent elements of WSIs are the biological cells, downsam-
pling should be limited or the loss of information could completely prevent the
feasibility of the task.

One first strategy therefore consists of first classification tiles extracted from
a WSI, which is equivalent to WSI segmentation, and then combining those tile
predictions into a slide prediction. This was investigated for classifying glioma
in [§], breast cancer in [5], lung carcinoma in [3], and prostate cancer, basal
cell carcinoma, and breast cancer metastases to axillary lymph nodes in [2].
More generally, the segmentation part of these works has been unified in [I6].
For combining tile predictions into slide predictions, numerous strategies exist
such as ensembling or many other techniques that fall under the umbrella of
instance-based multiple instance learning [4].

One limitation with such a decoupled approach is that the tile classifier
method does not learn useful features to embed tiles into a latent space which
could be sampled by a slide classification method. A generalization consists in
having a first model that converts tiles into an embedded (or latent) vector, and
a second model which combines multiples such vectors from multiple tiles into
a single WSI prediction. This is known as embedded-based multiple instance
learning [4]. The function that maps the instance space to the slide space can
be max-pooling, average-pooling, or more sophisticated functions such as noisy-
or [24], noisy-and [I3], log-sum-exponential [20], or attention-based [10].
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Magnetic resonance imaging classification There are two major approaches
for MRI classification. The first is called radiomics [I5] and consists in first ex-
tracting a set of features for all images of a training set. Such features typically
consist in clinical features such as age, first-order features such as descriptors of
tumor shape or volume, and second order features describing textural proper-
ties of a neoplasm. These features are then used by common machine learning
algorithms as a surrogate of crude MRIs. Examples of such approaches for brain
tumor classification are illustrated in [25] and [I2]. The major limitation of
radiomics lies in the fact that tumor volumes must be annotated beforehand in
order to extract meaningful features.

The other general approach of tumor classification from MRIs consists in
using end-to-end deep learning systems. Deep learning bypasses the necessity
of delineating the tumor volume and is more flexible than traditional machine
learning since features are learned on-the-fly. Compared to machine learning
methods, deep learning is known to require more training samples, but out-
competes the former when the number of data is sufficient. The majority of
variability of brain tumor classification studies relying on deep learning lies in
the architecture used. Examples of such studies are [2I] or others identified in
[23].

Combined radiographic and histologic brain tumor classification The
2018 instance of the Computational Precision Medicine Radiology-pathology
challenge [14] is the first effort towards providing a publicly available dataset
with pairs of WSIs and MRIs. It provided 32 training cases as well as 20 test-
ing cases, balanced between the two brain tumor classes oligodendroglioma and
astrocytoma. 3 methods were developed by the participating teams. The top-
performing method [T] used a soft-voting ensemble based on a radiographic model
and a histologic model. The MRI model relies on radiomics with prior automatic
tumor delineation, while the histologic model classifies tiles extracted from WSIs
which priorly are filtered using an outlier detection technique. The second-best
performing team [I8] also used two models for both modalities. The radiographic
model is an end-to-end deep learning approach, while the histologic model uses
a deep learning model to perform feature extraction by dropping its last layer,
to further classify a set of extracted tiles into a WSI prediction. While these two
models are trained separately, authors combine features extracted from both of
them into an SVM model for case classification, that relies on dropout as reg-
ularization to counter the low number of training samples. Finally, the third
best performing team used a weighted average of predictions obtained with two
end-to-end deep-learning-based classification models for both histologic [19] and
radiographic modalities, where weights are empirically estimated.
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2 Methods

Our proposed method leverages both imaging and histological modalities through
an ensemble. Specifically, a first deep learning model is intended to classify WSIs,
while a second network classifies MRIs.

2.1 Whole slide image classification with a generic and modular
approach
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Fig. 1: Schematic representation of the end-to-end WSI classification strategy. A
set, of tiles is extracted from a WSI and are each inferred into a unique learnable
CNN embedder (i.e. CNN classifier whose last layer has been discarded). Each
of the tiles is thus converted into a latent vector (blue vectors) of size L, where
L =9 in this figure. Each latent dimension is then maxed, and simultaneously
averaged, into two vectors of size L, which are then concatenated into a vector
of size 2L. This WSI latent vector is then forwarded into a dropout and a finale
classification layer.

Our WSI classifier bears most concepts in multiple instance learning ap-
proaches as depicted in Fig[l] At training and inference, a WSI is split into
non-overlapping tiles. Each tile is forwarded into a standard 2D image classifier,
such as a ResNet [7] or an EfficientNet [22], whose classifier layer has been re-
moved. Each tile is thus embedded into a latent vector of size L. For a bag of n
tiles, a latent matrix of size n x L is obtained. Then, a max-pooling operation is
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performed on each feature - that is, across the n dimension. Similarly, average
pooling is performed for each feature. Both max-pooled and average-pooled are
concatenated, making a resulting vector of size L + L = 2L. Finally, a classifier
network ("head”) processes this pooled latent vector into a 1 class prediction.
This head is made of a dropout layer, followed by a final classification layer with
softmax activation.

This system can be implemented end-to-end in a single network, for standard
deep learning optimization. The head part can be more sophisticated, with the
addition of an extra linear layer, followed by an activation function such as
ReLu, and batch normalization. This implementation was kept simple due to
the low number of training samples in our experiments. Of major interest, the
slide embedding output of size 2L is independent of the size n of the input bag.
Consequently, bags of any size can be fed into the network during training or
inference.

During inference, it is common that the number of non-overlapping tiles is
above the memory limit induced by the network, which is roughly the memory
footprint of the embedding model. For instance, the number of tiles per slide is
depicted in Fig. [4] for the training samples at magnification 20. Typically, for
EfficientNet_b0 as an embedding model, only 200 tiles can be fitted in a 16Gb
graphic card. Therefore, during inference, a random set of tiles is sampled from
a WSI, each yielding one predicted class. The resulting finale predicted class is
obtained by hard-voting the latter.

2.2 Magnetic resonance imaging classification

Our MRI classification pipeline is straightforward and consists in a single net-
work direct classification of the 4D volumes made of all 4 modalities. Specifically,
we use a Densenet [9] made of 169 convolutional layers, whose architecture is
displayed in Fig. 2] The Densenet family was used due to its low number of
parameters, which seems appropriate to the low number of experiment train-
ing samples, as well as its high number of residual connections which alleviate
much gradient issues. To accommodate with the 3D spatial dimensions of input
volumes, the 2D convolutions, and the pooling operators have been modified to
3D. Furthermore, all convolutional kernels are cubic, i.e. with the same size in
all 3 dimensions. Various kernel sizes are used throughout the architecture, as
specified in Fig. [2| In particular, inputs MRI made of 4 3-dimensional modalities
are stacked on their modality dimension such that the first convolution treats
MRI modalities as channels. In practice, the first convolution is of kernel size 7
with stride 2, padding 3 and 64 channels, effectively converting an input MRI
volume of size (4,128,128,128) into a output volume of size (64,64, 64,64).

2.3 Multimodal classification through ensembling

Ensembling was performed for multiple reasons. First of all, without any a priori,
histopathological classification could detect different features at various scales,
thus producing different or complementary diagnostics depending on the input
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Fig. 2: Hlustration of the Densenet169 architecture made of 169 convolutional
layers. The macro representation (a.) shows a feature extractor module made
of an input processing head (d.) followed by a combination of dense (b.) and
transition (c.) layers. The extracted features are then processed into probabilities
by a classification head (e.). All elements are detailed in the legend (f.).

magnification. In our implementation, multiple networks were trained at various
magnifications. Secondly, ensembling allow to use both histopathological and ra-
diological modalities to determine a final diagnostic. Finally, ensembling several
neural networks is known to significantly improve the performance and robust-
ness of a neural network system [6]. For these reasons, our final classification uses
an ensemble of multiple histopathological networks, radiological networks in a
soft-voting way. Besides, as shown in [20], it may be advantageous to ensemble
some of the at-hand neural networks rather than all of them. As discussed in
[3:2] a portion of the trained networks is discarded in the finale decision system.
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3 Experiments

Experiments were conducted during the 2020 Computational Precision Medicine
Radiology-Pathology challenge (CPM-RadPath 2020). All the data is provided
by the organizers, i.e. a training set and an online validation set. Additionally,
final results are computed on a hidden testing set with only one try, such as to
minimize testing fitting. Our team name was marvinler.

3.1 Data

Dataset The training data consists in 221 cases extracted from two cohorts: The
Cancer Image Archive (TCIA) and the Center for Biomedical Image Computing
and Analytics (CBICA). For each case, one formalin-fixed, paraffin-embedded
(FFPE) resection whole slide image was provided, along with one MRI, which
consists in 4 modalities: T1 (spin-lattice relaxation), T1-contrasted, T2 (spin-
spin relaxation), and fluid attenuation inversion recovery (FLAIR) pulse se-
quences.

Each case belongs to one of three diagnostic categories among astrocytomas,
oligodendrogliomas, and glioblastoma multiforme. This information was pro-
vided for each training case. On top of that, a similar validation set made of 35
cases was available for generalization assessment. For these cases, ground-truth
labels were hidden, although up to 50 submissions were possible, with feedback
containing balanced accuracy, f1 score, and kappa score. Fig. [3]shows an example
from the validation set.

Fig. 3: Example of data point from the online validation set. The image on the
left is a downscaled version of the whole slide image which is initially of width
96224 pixels and of height 82459 pixels. The four images on the right represent
the MRI of the same case, and are, by order, the T1, the T1 contrast-enhanced,
the T2, and the FLAIR modalities. For the MRI, the same slice extracted from
each 3D volume is represented. Each 3D volume is initially of size 240x240x155
pixels.

Pre-processing No data pre-processing was performed on MRIs which have
already been skull-stripped by data providers. Further MRI processing was sub-
contracted to the radiology data augmentation step, as detailed in [3.2]
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Whole slide images were available in non-pyramidal .tiff format. They were
first tiled in a pyramidal scheme using libvips, with a tile width of 512 pixel
and no tile overlap. For each resulting magnification level, all tiles considered
background were discarded. This was done by detecting tiles where at least 75%
of pixels have both red, green, and blue channels above a value of 180 (where
255 is absolute white and 0 is black), which saved more than two third of disk
space by discarding non informative tiles from further processing. After this
filtering, the number of tiles per slide is depicted in the histogram of Fig. 4| for
magnification 20. The complete WSI pre-processing was applied to both training,
validation, and testing sets.

30

= ] ]
wn o i

Number of training slides
=
o

0 1000 2000 3000 4000 5000 6000 7000
Number of non-background tiles per slide at magnification 20

Fig. 4: Histogram of the number of tiles considered non-background for all train-
ing slides at magnification 20, or equivalently micrometer per pixel (mpp) of
0.5.

3.2 Implementation details

A pre-trained Efficientnet_b0 was selected as the histopathological model embed-
der, converting 224 pixel-wide images into an embedded vector of size L = 1280.
During training, 50 tiles were selected from 4 WSIs, resulting in a batch of size
200. Each tile was data augmented with random crop from 512 pixel width to
224 pixel width, color jitter with brightness, contrast, saturation of 0.1, and
hue of 0.01, and was normalized by dividing the mean and standard deviation
of each RGB channel as computed on the training dataset. To counter the low
number of training samples, dropout of 0.5 was used in the head of the network.
The final softmax activation was discarded during training, and cross-entropy
loss was used to compute the error signal (which contains a log softmax opera-
tion for numerical stability). To handle class imbalance, weights were computed
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as the inverse of the frequency of each of the 3 classes and used in the error
computation. Adam [I1] optimizer was used to back-propagate the error signal,
with default momentum parameters and learning rate of 5e — 5 for 50 epochs.
This process was applied for the 5 magnifications of 40, 20, 10, 5, and 2.5, or
equivalently and respectively of micrometers per pixel of 0.25, 0.5, 1, 2, and 4.
During inference, 200 tiles were randomly sampled from each WSI and for all
magnifications, with data augmentation independently applied from tile to tile.
Due to poor results on the online validation set, the models from magnification
40 were discarded.

For the classification from MRIs, data augmentation first consisted of crop-
ping the foreground, which roughly crops the MRI to their contained brain.
These cropped volumes were resized to a unique size of 128 x 128 x 128, and each
modality was standard scaled such that 0 values (corresponding to background)
were not computed in mean and standard deviation computations. Then, a ran-
dom zoom between 0.8 and 1.2 was applied, followed by a random rotation of
10 degrees on both sides for all dimensions. Random elastic deformations with
parameter values of sigma in range (1, 10) and magnitude in range (10, 200). All
of the data augmentation was implemented using the Medical Open Network for
AT (MONATI) toolkitﬁ which is also the source of the Densenet169 architecture
implementation. Error signal was computed with cross-entropy loss and back-
propagated with Adam optimizer for 200 epochs at learning rate 5e — 4 with a
batch size of 3. The same class imbalance was used than the histopathological
networks.

For both 5 models (4 histopathological and 1 radiological), rather than se-
lecting the best performing models on cross-validation, two snapshots in a well
performing region were selected. Specifically, the last epoch weights snapshot,
as well as the snapshot from the 10 epochs to the end were collected for each
model. Following [26], the 2 least performing (on the local validation) out of the
10 networks were discarding, which consisted in one radiology-based model and
one model from magnification 5. Soft-voting was performed on the 8 resulting
models for all slides, and the class with highest probability was assigned as the
predicted class.

3.3 Results

After 3 online submissions, the hidden validation performance was a balanced
accuracy of 0.911, a kappa score of 0.904, and an fl score (with micro aver-
age) of 0.943 which ranked us second overall. Unseen testing results are still
awaiting. Our cross-validation results are similar, with a balanced accuracy of
0.913, a kappa score of 0.897 and an f1 score of 0.951, denoting a certain high
generalization capacity from our approach.

For each diagnostic category, a histogram of validation predicted probabilities
was computed, resulting in 3 plots depicted in Fig. Notably, there seems to be
less hesitation for the prediction of the glioblastoma multiforme class (G), where

* https://github.com/Project-MONAT/MONAI
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Fig.5: Analysis of validation predicted probabilities. (a) Histogram of predicted
probabilities for all 35 validation cases. Each plot (3 in total) refers to one of the
3 predicted classes, as indicated in the x-axis label. (b) Scatterplot of predictions
of astrocytoma vs oligodendrogliomas. Color and size of points are proportional
to the sum of predictions of the latter class, or equivalently inversely proportional
to the predicted probability of glioblastoma multiforme.
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only 3 cases were predicted with a probability between 0.2 and 0.8. In compari-
son, 7 (resp. 9) cases are predicted with a probability between 0.2 and 0.8 for the
astrocytoma (A) (resp. oligodendrogliomas (O)). Fig. [5b| further highlights that
most hesitation comes from both classes A and O, with all probabilities of class
A that are not below 0.2 or above 0.8 predicted mostly as class O compared
to G. Besides, 6 out of 9 unsure probabilities for the O class were split with
the A class compared to the G one. This could illustrate that some cases seem
to exhibit both oligodendrogliomas and astrocytoma, known as mixed gliomas.
Notably, while mixed gliomas are a valid diagnostic in clinical settings, this class
was absent in the challenge data, with a decision between class A and O taken
by the challenge annotators for such cases.

An ablation study was performed on the online validation set to understand
the impact of both radiographic and histologic models. The MRI-only model
obtained a balanced accuracy of 0.694, a kappa score of 0.662 and an f1 score of
0.800, which is significantly lower than the WSI-only model which had the same
performance than our finale model combining both MRI and WSI modalities.
However, upon inspection of class predictions, there were 2 differences between
the predictions of the latter and the ensemble of WSI-only models. Specifically,
one ensemble predicted an oligodendroglioma while the other predicted astrocy-
toma, and the opposite. Both WSI-only and WSI coupled with MRI models had
a consensus on the glioblastoma class.

4 Conclusion & Discussion

Our work illustrates the feasibility of the classification of tumor types among 3
pre-defined categories. Although testing results are still pending, the proposed
approach appears to generalize well to unseen data from the same distribution.
The proposed pipeline heavily relies on histopathological slides, which have been
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the golden standard for tumor diagnosis for a hundred years. This system is
an end-to-end trainable decision system that relies on a learnable embedding
model (e.g. a convolutional neural network) and combines a set of any size of
tiles embedded vectors into a slide latent vector for further classification. This
generic deep learning pipeline can be taken off-the-shelf and applied to many
other histopathological classification tasks, would it be grading, diagnostic, pri-
mary determination or prognosis purposes. For this reason, we open-source our
complete whole slide image classification method in a Docker image at https://
hub.docker.com/repository /docker/marvinler /cpm_2020_marvinler, ensuring its
use off-the-shelf on any platform. Such a resource can be used to perform direct
comparisons of future research contributions on combined WSI and MRI brain
tumor classification, while also ensuring reproducibility of results.

While our use of the radiology modality has not been heavily in this work,
there should be improvement in classifying cases with more information than
in a histopathological context only. We believe that, with more training data,
diagnosis could be further improved with multimodal solutions that embed both
radiographic images and histologic images into a common latent space.
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