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A B S T R A C T

Purpose: The purpose of this study was to determine whether a single reconstruction kernel or both high and
low frequency kernels should be used for training deep learning models for the segmentation of diffuse lung
disease on chest computed tomography (CT).
Materials and methods: Two annotated datasets of COVID-19 pneumonia (323,960 slices) and interstitial lung
disease (ILD) (4,284 slices) were used. Annotated CT images were used to train a U-Net architecture to seg-
ment disease. All CT slices were reconstructed using both a lung kernel (LK) and a mediastinal kernel (MK).
Three different trainings, resulting in three different models were compared for each disease: training on LK
only, MK only or LK+MK images. Dice similarity scores (DSC) were compared using the Wilcoxon signed-
rank test.
Results: Models only trained on LK images performed better on LK images than on MK images (median
DSC = 0.62 [interquartile range (IQR): 0.54, 0.69] vs. 0.60 [IQR: 0.50, 0.70], P < 0.001 for COVID-19 and median
DSC = 0.62 [IQR: 0.56, 0.69] vs. 0.50 [IQR 0.43, 0.57], P < 0.001 for ILD). Similarly, models only trained on MK
images performed better on MK images (median DSC = 0.62 [IQR: 0.53, 0.68] vs. 0.54 [IQR: 0.47, 0.63], P <
0.001 for COVID-19 and 0.69 [IQR: 0.61, 0.73] vs. 0.63 [IQR: 0.53, 0.70], P < 0.001 for ILD). Models trained on
both kernels performed better or similarly than those trained on only one kernel. For COVID-19, median DSC
was 0.67 (IQR: =0.59, 0.73) when applied on LK images and 0.67 (IQR: 0.60, 0.74) when applied on MK images
(P < 0.001 for both). For ILD, median DSC was 0.69 (IQR: 0.63, 0.73) when applied on LK images (P = 0.006)
and 0.68 (IQR: 0.62, 0.72) when applied on MK images (P > 0.99).
Conclusion: Reconstruction kernels impact the performance of deep learning-based models for lung disease
segmentation. Training on both LK and MK images improves the performance.
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1. Introduction

Over the last decade, deep learning (DL) has become the method
of choice for many applications in medical image analysis, especially
for segmentation tasks [1−3]. The performance gain in image seg-
mentation achieved with DL methods over traditional machine learn-
ing methods makes it now possible to accurately segment complex
entities within the lung, such as interstitial lung disease (ILD) or coro-
navirus disease 2019 (COVID-19) pneumonia [4−7].
A particularity of chest computed tomography (CT) is that images
are usually reconstructed using two different reconstruction kernels, a
high frequency kernel, lung kernel (LK) for the evaluation of the lung
parenchyma and a standard reconstruction kernel, mediastinal kernel
(MK) for the evaluation of the mediastinum. Recent studies have
shown that the performance of DL-based tools for lung nodule detec-
tion and characterization is influenced by the acquisition and recon-
struction settings, such as the choice of the reconstruction kernel [8,9].
However, there are currently no data regarding the influence of the
reconstruction kernels on lung disease segmentation using data-
driven methods. We hypothesized that combining the reconstruction
kernels could improve model performances by allowing the model to
get rid of the variability related to the reconstruction parameters.

The purpose of this study was to determine whether a single
reconstruction kernel or two reconstruction kernels should be used
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when training DL for segmentation of diffuse lung disease on chest
CT. For this, a DL architecture [10] was evaluated on two different CT
datasets of diffuse lung disease

2. Material and methods

2.1. Image datasets and annotation transfer

This retrospective multi-center study was performed in accor-
dance with The Code of Ethics of the World Medical Association (Dec-
laration of Helsinki).

Data from two independent and previously published datasets
were used to assess the impact of reconstruction kernels on DL-based
segmentation. One dataset has been created to develop segmentation
models for COVID-19 pneumonia (COVID dataset) [7] while the other
was created to develop segmentation models ILD in systemic sclero-
sis (ILD dataset) [5]. Both datasets originally only included images
reconstructed with a LK (LK images). For the purpose of this study,
the corresponding images reconstructed with a MK (MK images)
were retrieved. Annotations produced by the annotation of original
LK images were projected on the MK images.

When the LK and MK images had the same slice thickness and
reconstruction field of view, the mask of annotation was directly
transferred to MK images. When the slice thickness and/or recon-
struction field of view were different, the metadata were used to per-
form the required rescaling and cropping, so that the two acquired
lung volumes could correspond.

2.2. COVID-19 dataset

This dataset comprised 180 unenhanced chest CT examinations
from COVID-19 patients acquired at six university hospitals using
four different CT models from three manufacturers. All images had
been reconstructed using iterative reconstruction and a slice thick-
ness ranging from 0.625- to 1 mm. Images had been annotated by 15
radiologists with one to seven years of experience in chest imaging.
On each CT slice, all the COVID-19 related CT abnormalities (ground
glass opacities, band consolidations, and reticulations) [11−13] had
been segmented as a single

Fifty patients from three centers composed the training and vali-
dation dataset. All images of these 50 CT examinations (321,360 sli-
ces) had been annotated slice-by-slice. The 130 patients from the
remaining three centers composed the test dataset. In this test data-
set, only 20 slices per CT examination (2600 slices), equally spaced
from the superior border of aortic arch to the lowest diaphragmatic
dome had been annotated and each slide had been annotated by two
different radiologists.

2.3. ILD dataset

This dataset comprised 31 unenhanced chest CT examinations
from systemic sclerosis patients acquired at one university hospital
using four different CT scanners from two manufacturers. Six patients
out of the 37 patients from the original cohort were excluded because
of the unavailability of MK images. Lung CT images were recon-
structed with a slice thickness of 0.625- to 1.5 mm, using filter back
projection or iterative reconstruction algorithms. ILD segmentation
had been performed by four radiologists with one to four years of
experience in chest imaging. All the ILD-related anomalies (ground
glass opacities, reticulations, traction bronchiectasis and honeycomb-
ing) were segmented as a single class (ILD).

Chest CT examinations from 11 patients composed the training
and validation dataset. All images of this dataset had been annotated
by one radiologist (3884 slices). Chest CT examinations from the
remaining 20 patients composed the test dataset. For each CT exami-
nation, 20 CT slices equally spaced from the lung apices to the right
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diaphragmatic dome (20 slices) had been annotated by three differ-
ent radiologists (400 images in total).

2.5. DL-based segmentation methods

For benchmarking the performance of the DL architecture, a stan-
dard U-Net architecture [10] consisting of five blocks with a down-
sampling operation applied every two consequent Conv2D-BN-ReLU
layers was used. Additionally, five decoding blocks were used for the
decoding path, were at each block a transpose convolution was per-
formed to up-sample the input. Skip connections were also employed
between the encoding and decoding paths. Each two-dimensional
slice extracted from the CT examination was given as an input to the
network together with its annotation of the abnormal regions.
Weighted cross entropy has been used as loss function for the train-
ing of the model with the weight of the pathological regions being
inverse proportional to the appearance of each class, corresponding
to 60 for the COVID dataset and to 65 for the ILD dataset. Adam opti-
mizer was used with a learning rate of 0.0001 for the optimization.
For fair comparison, the same number of iterations was kept for the
training of all models.

Three different trainings, resulting in three different models were
compared for each disease: training on LK images only, MK images
only or LK+MK images. Thus, the same CT slices were used for each of
the trainings but these CT slices had been reconstructed with only
one kernel (LK or MK) or the two kernels (LK and MK).

2.6. Statistical analysis

Statistical analysis was performed using ‘R’ software (version
3.6.3, R Foundation, Vienna, Austria). The quality of the segmenta-
tions was assessed using the Dice similarity coefficient (DSC) [14]. As
manual segmentations from several radiologists were available for
the two test datasets, for each CT examination the average DSC
between the model and the observers was calculated. Comparison
between models was performed using the Wilcoxon signed-rank
test. To compensate for multiple comparisons, a Bonferroni correc-
tion was applied. A P value < 0.05 was considered to indicate signifi-
cant difference.

3. Results

3.1. Impact of the reconstruction kernel to build models

To evaluate the impact of the reconstruction kernel on models’
generalizability, we first compared the performance of the segmenta-
tion models in test datasets combining LK and MK images from the
same CT slices (Table 1, Fig. 1). For COVID-19 pneumonia segmenta-
tion, the model trained on LK images performed better than the one
trained on MK images (median DSC = 0.61 [interquartile range (IQR):
0.52, 0.70] vs. 0.57 [IQR: 0.50, 0.67], respectively; P < 0.001). Con-
versely, for ILD segmentation, the model trained on MK images per-
formed better than the one trained on LK images (median DSC = 0.65
[IQR: 0.58, 0.70] vs. 0.53 [IQR: 0.49, 0.63], respectively; P = 0.007). For
both COVID-19 and ILD segmentation, training on a dataset combin-
ing the two reconstruction kernels (median DSC = 0.67 [IQR: 0.59,
0.72] for COVID-19 and 0.69 [IQR: 0.63, 0.73] for ILD) significantly
improved the performance compared to models trained on LK images
alone (P < 0.001 for COVID-19 and ILD segmentations) or MK images
alone (P < 0.001 for COVID-19 and ILD segmentations).

When applying the model to a test dataset consisting solely of LK
or MK images, models trained on both kernels performed as well as
or better than models trained only on one of the two kernels. For
COVID-19 pneumonia segmentation, the model trained on both ker-
nels performed better than the one trained on LK images when
applied on LK images only (median DSC = 0.67 [IQR: 0.59, 0.73] vs.



Table 1
Dice similarity scores for automated and manual segmentations depending on the reconstruction kernel used in the training and test datasets. The pre-
sented Dice similarity scores are the ones measured in the test cohorts.

Applied on lung kernel Applied on mediastinal kernel Applied on both kernels

COVID-19 ILD COVID-19 ILD COVID-19 ILD

Trained on
lung kernel

0.62
(0.54, 0.69) [0.27−0.90]

0.62
(0.56, 0.69)
[0.38−0.87]

0.60
(0.50, 0.70)
[0.24−0.90]

0.50
(0.43, 0.57)
[0.31−0.83]

0.61
(0.52, 0.70)
[0.26−0.90]

0.53
(0.49, 0.63)
[0.37−0.85]

Trained on mediastinal kernel 0.54
(0.47, 0.63)
[0.24−0.89]

0.63
(0.53, 0.70)
[0.27−0.80]

0.62
(0.53, 0.68)
[0.24−0.89]

0.69
(0.61, 0.73)
[0.34−0.88]

0.57
(0.50, 0.67)
[0.24−0.89]

0.65
(0.58, 0.70)
[0.30−0.84]

Trained on
both kernels

0.67
(0.59, 0.73)
[0.30−0.92]

0.69
(0.63, 0.73)
[0.32−0.88]

0.67
(0.60, 0.74)
[0.29−0.92]

0.68
(0.62, 0.72)
[0.29−0.88]

0.67
(0.59, 0.72)
[0.30−0.92]

0.69
(0.63, 0.73)
[0.30−0.88]

Note: Dice similarity scores are presented as median with interquartile ranges in parentheses and ranges in brackets; ILD = Interstitial lung disease.

Fig. 1. Results of the COVID-19 segmentation models in a 42-year-old man with COVID-19 pneumonia. The deep learning model trained on the images reconstructed with the two
kernels performs better than the models trained on the images reconstructed with only one of the kernels, whatever the kernel on which it is applied. The better performances are
illustrated by the greater dice similarity score (DSC). Models trained on only one kernel are responsible for greater oversegmentation.
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0.62 [IQR: 0.54, 0.69]; P < 0.001) and better than the model trained on
MK images when applied on MK images only (median DSC = 0.67
[IQR: 0.60, 0.74] vs. 0.62 [IQR: 0.53, 0.68]; P < 0.001). For the ILD seg-
mentation, the model trained on both kernels performed better than
the one trained on LK images when applied on LK images (median
DSC = 0.69 [IQR: 0.63, 0.73] vs. 0.62 [IQR: 0.56, 0.69]; P = 0.006) and
as well as the model trained on MK images when applied on MK
images (median DSC = 0.68 [IQR: 0.62, 0.72] vs. 0.69 [IQR: 0.61, 0.73];
P > 0.99).

3.2. Selection of the reconstruction kernel for application of trained
models

To assess the impact of reconstruction kernel selection for model
application, the performances of the models depending on the recon-
struction kernel used in the test datasets were compared (Table 1,
Fig. 1). Models trained only on LK images performed better on LK
images than on MK images (median DSC = 0.62 [IQR: 0.54, 0.69] vs.
0.60 [IQR: 0.50, 0.70]; P < 0.001 for COVID-19 segmentation and 0.62
[IQR: 0.56, 0.69] vs. 0.50 [IQR: 0.43, 0.57]; P < 0.001 for ILD segmenta-
tion). Similarly, models trained only on MK images performed better
on MK images (median DSC = 0.62 [IQR: 0.53, 0.68] vs. 0.54 [IQR:
0.47, 0.63]; P < 0.001 for COVID-19 segmentation and 0.69 [IQR: 0.61,
0.73] vs. 0.63 [IQR: 0.53, 0.70]; P < 0.001 for ILD segmentation).

When the segmentation models had been trained on a combina-
tion of the two kernels, the differences in performance according to
the reconstruction kernel of the test dataset were smaller with a
slight advantage to the LK. For COVID-19 segmentation, DSC was not
significantly different whether applied to LK images (median
DSC = 0.67 [IQR: 0.59, 0.73]) or MK images (median DSC = 0.67 [IQR:
0.60, 0.74]) (P > 0.99). On the opposite, the DSC was slightly greater
when the ILD segmentation model was applied to LK images (median
DSC =0.69 [IQR: 0.63, 0.73] vs. 0.68 [IQR: 0.62, 0.72]; P < 0.001).

4. Discussion

To our knowledge, no studies have assessed the influence of the
reconstruction kernel on image segmentation using DL. Using two
different datasets and a popular DL architecture, we demonstrated
that the choice of the reconstruction kernel significantly impacts the
performance of the models and that training algorithms on a combi-
nation of lung and mediastinal kernels significantly improves the
performance.

Regardless of the lung disease, our results show that the models
performed better when reconstruction kernels were the same in the
training and the test datasets. This demonstrates that while being
more efficient than traditional machine learning methods, DL is still
sensitive to image characteristics such as the reconstruction kernel.
Decreasing the sharpness of the reconstruction kernel reduces the
amount of noise in the image, which is already known to have a sig-
nificant impact on emphysema quantification [15,16]. For systemic
sclerosis-related ILD, Kim et al. demonstrated that by using image
denoising methods, they increased the performance of their ILD seg-
mentation model based on texture analysis with classical machine
learning methods [17]. Although images reconstructed with a MK are
less noisy, our study does not demonstrate the superiority of this ker-
nel over LK in the setting of lung disease segmentation using DL. LK is
usually the preferred kernel for visual analysis of lung parenchyma.

For pulmonary nodules, a few studies have also reported an
impact of the reconstruction kernel on the performance of DL-based
computer-aided detection tools and showed conflicting results
regarding the best kernel to be used [8,9]. The selection of the recon-
struction kernel is also known to impact the results of tools based on
radiomics and texture analysis approaches, such as for pulmonary
nodule characterization [18−22]. Recently, Choe et al. have suggested
that the use of chest CT image conversion using CNN can reduce the
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effect of the reconstruction kernels on radiomics parameters for lung
nodule assessment [23].

An important result of our study is that we demonstrated that
combining images reconstructed from the same CT slice using LK and
MK improves learning performances. This combination is easy to per-
form as all chest CT acquisitions are usually reconstructed with both
kernels and both sets of images are routinely stored. Moreover, the
annotation time is not increased because manual segmentations per-
formed on images reconstructed with one kernel can be easily
applied on those reconstructed with the other kernel and has more
influence when the dataset is smaller. Thus, the combination of the
two kernels allows data augmentation without having to increase the
number of patients or the annotation time, which are two factors lim-
iting the size of medical imaging datasets. Combining the two kernels
may allow the algorithm to free itself from the variability due to
image noise. Interestingly, when the algorithm was trained on a data-
set combining images reconstructed with both kernels, the choice of
the kernel for test had almost no impact on the results and depended
on the lung disease.

This study has several limitations. First, all the manual segmenta-
tions we used were performed on LK images. However, the fact that
models trained on MK images performed better on the test dataset
containing images also reconstructed with a MK suggests this had no
significant impact. Second, only one DL architecture was used. Yet,
the U-Net architecture is the most popular for segmentation tasks in
medical imaging, while the small size of the ILD dataset did not allow
the training of 3D deep learning architectures.

In conclusion, our work highlights the importance of the recon-
struction kernel when working on a DL-based method to segment
diffuse lung diseases. We have shown that learning on a combination
of LK and MK images from the same CT slice should be done as it
improves the performance and generalizability of the models. Impor-
tantly, this can be done without increasing the annotation time. The
combination of two different kernels could also improve segmenta-
tion tasks for extra-thoracic applications, such as musculoskeletal
imaging where images are commonly reconstructed with standard
and bone reconstruction algorithms.
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