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reference contour. Calculations were performed in R using the RadOnc

package and manually segmented contours were approved by an expert

radiation oncologist with 19 years of experience.

Results: A total of 112 patients were identified for inclusion after

manual review of treatment planning CTs. Contours were generated

using two atlas/model-based segmentation products and a deep learn-

ing segmentation method. The mean DSC for the prostate, bladder,

rectum was calculated for each segmentation method (Table 1). Deep

learning segmentation outperformed model-based methods for all

structures with the highest mean DSC but still had significant dis-

agreement with manually segmented structures. Hip arthroplasty in

particular reduced overall performance more than other anatomical

edge cases, followed by prostatic hypertrophy.

Conclusion: Anatomic edge cases present a challenging and relevant con-

sideration in clinical implementation of autosegmentation software.
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Artificial Intelligence Guided Physician Directive Improves
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Purpose/Objective(s): Heterogeneity of clinical practice is a common

challenge, especially for head and neck cancer. Our in-house built artificial

intelligence (AI) dose prediction model holds promise to predict the best

possible dose distribution without going through planning process. Our

prior single physician study demonstrated that hybrid of physician intelli-

gence and artificial intelligence achieved better plan than solely using AI

estimated directive or physician directive. In this work, we implemented

hybrid directive approach in four head and neck physicians with different

practice styles and prospectively studied the improvement in head and

neck planning quality and practice uniformity.

Materials/Methods: Definitive and post-operative AI models were fully

integrated with treatment planning system via application programming

interface (API). The physicians run the prediction upon the completion of

contour to preview the predicted 3D dose and the uncertainty estimation.

As a hybrid approach, physicians compare the AI estimation with their

own directive to make final decision on the directives for treatment plan-

ning. A group of 60 retrospective cases and 60 prospective cases were

included in this study. The physician directive before AI guidance (PD)

and the AI guided physician directive (AG-PD) were compared as well as

the achieved plans. A dose difference of 3 Gray (Gy) was considered clini-

cally significant.

Results: Among the four H&N physicians, there are three different prac-

tice styles and led to a large variation in PD before AI employed. There is

only 51% frequency that resulted plan achieved within 3 Gy from the PD.

With the AI-guidance, the variations among the physicians significantly

improved. Despite the fact that the AG-PD are more mostly strict than the

PD, the frequency that the resulted plan achieved within 3 Gy from the

AG-PD significantly improved to 86%. The improvements were mostly

statistically significant (P < 0.05) at the organs at risk that physicians fre-

quently make planning tradeoff, such as oral cavity, larynx, and salivary

glands. (Table 1)
Conclusion: AI guided physician decision support improved the unifor-

mity of practice, directive achievability, and the final plan metrics in a sig-

nificant percentage of patients.

Abstract 83 − Table 1

OAR
MD Directive Achieved Plan

Before AI (Gy) After AI (Gy) Before AI (Gy) After AI (Gy)

Spinal Cord Max 39 § 6 * 33 § 2 36 § 5 * 30 § 3

Constrictor Mean 34 § 22 21 § 1 34 § 23 19 § 1

Larynx Mean 31 § 9 * 20 § 4 33 § 14 * 20 § 3

Oral Cavity Mean 21 § 5 19 § 3 25 § 14 21 § 3

SMG_CL Mean 34 § 4 25 § 13 33 § 10 25 § 13
* Statistical significance of the dose comparison, P < .05

Author Disclosure: M. Mashayekhi: None. R. McBeth: None. D.
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Purpose/Objective(s): Magnetic resonance imaging guided radiotherapy

(MRgRT) offers the ability of daily treatment adaptation: a game changer

for various cancers. Contouring of organs at risk (OAR) during adaptation

is time-consuming and lacks reproducibility across physicians, hampering

the accuracy of high precision MRgRT and diminishing its adoption poten-

tial. Artificial intelligence (AI) can accelerate and homogenize OAR delin-

eation. This study aims at (i) assessing the reproducibility of clinicians

OAR delineation, (ii) comparing the precision between clinical experts

(CEs) and AI based contours (AC) and (iii) evaluating the clinical benefit

of AI tools for treatment standardization.

Materials/Methods: For the case of low field abdominal MR-based daily

treatment adaptation, transfer learning was applied on a CE/FDA-cleared

deep learning solution. Models were re-trained using 270 retrospectively

selected annotated fractions samples treated with a MR-LINAC at two

European cancer care excellence centers. Validation was performed using

2 cohorts of (i) 15 double-blindly annotated patients and (ii) a random 50/

50 mix of 30 CEs and AI based annotations. Contours of 8 OARs (right/

left kidneys, stomach, liver, duodenum, inferior vena cava, bowel and,

abdominal aorta) were scored by 3 CEs as A/ acceptable, B/ acceptable

after minor corrections, and C/not acceptable.

Results: The average interobserver variability among the 8 OARs in terms

of DICE score coefficient (DSC) was 84.38% with the highest and lowest

scores being observed for stomach (95%) and bowel (68%), respectively.

The average DSC between CEs and AI annotations was 85.88% with the

left/right kidneys (94%) and the duodenum/vena cava (76%) depicting the

highest and lowest values, respectively. CE and AI produced annotations

scored as A for 89.36% and 71.89% and were considered acceptable (A

+B) for 100% and 92.49% of the cases, respectively. AI solutions seem to

suffer in organs whit significant discrepancies across CEs for top and the

bottom slices.
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Conclusion: The results show that AI-driven contours are clinically use-

able in most cases. Disagreement between experts reflect the subjectivity

of scoring. Objective metrics should be used in complement.

Abstract 84 − Table 1: DSC and clinical acceptability
comparison between CE and AI based annotations

Dice (%) Accept (A+B) (%)

Organ CE AI CE AI

Aorta 85 85 100 100

Duodenum 75 76 100 92.6

Bowel 68 78 100 53.7

Left Kidney 92 94 100 100

Liver 91 92 100 100

Right Kidney 92 94 100 100

Stomach 95 92 100 95.5

Vena Cava 77 76 100 98.1
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Purpose/Objective(s): We aim to develop deep learning (DL) models to

accurately detect and segment intraprostatic lesions (IL) on biparametric

MRI (bp-MRI).

Materials/Methods: Three patient cohorts with ground truth IL delineated

on different modalities were collected. 158 patients from two datasets had

suspicious ILs delineated based on bp-MRI: 97 patients were from PROS-

TATEx-2 Challenge with biopsy result independent from bp-MRI based

delineation, 61 patients were from IMPROD clinical Trial with biopsy

done for each delineation; 64 patients from IMPROD clinical Trial had

ILs identified and delineated by using whole mount prostatectomy speci-

men sections as reference standard; 40 private patients were unlabeled.

We proposed a non-local Mask R-CNN to improve segmentation accuracy

by addressing the imperfect registration issue between MRI modalities.

We also proposed to post aggregate 2D predictions to estimate IL volumes

within the whole prostatic gland and keep top-5 3D predictions for each

patient. In order to explore the small dataset problem, we employed differ-

ent learning techniques including transfer learning and semi-supervised

learning with pseudo labelling. We experimented with two label selection

strategies to see how they affected model performance. The first strategy

kept only one prediction by referring to biopsy result, in order to minimize

false positives; while the second strategy kept all top-5 predictions. 3D

top-5 detection rate, dice similarity coefficient (DSC), 95 percentile Haus-

dorff Distance (95 HD, mm) and true positive ratio (TPR) were our evalua-

tion metrics. We compared DL model prediction with prostatectomy-based

ground truth delineation to accurately evaluate the boundary and malig-

nancy level. We separately evaluated ILs of all Gleason Grade Group

(GGG) and clinically significant ILs (GGG > 2).
Results:Main results are summarized in Table 1.

Conclusion: Our proposed method demonstrates state-of-art performance

in the detection and segmentation of ILs and shows great effectiveness for

clinically significant ILs.

Abstract 85 − Table 1: Results of models

Model BMP NMP fNMBP S1-1 S2-3

All GGG

Detection Rate 68.3% 78.0% 75.6% 80.5% 80.5%

DSC 0.429 § 0.165 0.504 § 0.165 0.543 § 0.159 0.548 § 0.165 0.513 § 0.191

95 HD 7.65 § 4.50 6.66 § 3.64 6.28 § 3.47 5.72§ 3.17 5.81 § 2.89

TPR 0.558 § 0.268 0.589 § 0.222 0.625 § 0.190 0.613 § 0.193 0.749 § 0.190

GGG ≥ 2

Detection Rate 89.5% 89.5% 89.5% 94.7% 84.2%

DSC 0.469 § 0.171 0.516 § 0.176 0.579 § 0.155 0.604 § 0.135 0.631 § 0.122

95 HD 8.10 § 5.26 7.51 § 4.09 6.72 § 3.73 6.36§ 3.44 6.16 § 3.08

TPR 0.539 § 0.270 0.544 § 0.217 0.593 § 0.196 0.580 § 0.190 0.746 § 0.165
The number of ILs in GGG 1, 1+, 2, 2+, 3, 3+, and 4 were 4, 2, 16, 1, 7, 3, and 8 respec-

tively. BMP, baseline Mask R-CNN; NMP, non-local Mask R-CNN; fNMBP, non-local Mask

R-CNN trained with bp-MRI based delineation then fine-tuned with prostatectomy-based

delineation; S1-1, strategy 1 at 1st iteration; S2-3, strategy 2 at 3rd iteration. Statistically sig-

nificant (a = 0.05), H0 = model performs worse than BMP.
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Purpose/Objective(s): Current GI toxicity models are limited by the

uncertainty in the estimated delivered dose used to develop the models.

The purpose of this study is to assess the benefit of harnessing deep learn-

ing and biomechanical models to improve the understanding of the dose-

toxicity relationship.

Materials/Methods: Retrospective dose accumulation was conducted on 75

patients with primary and metastatic liver cancer treated with external beam

radiotherapy guided by daily CT-on-rails (CTOR), based on a novel deform-

able image registration (DIR) approach that applies biomechanical model-

based and intensity-based DIR inside and outside the liver, respectively. The

liver was auto-segmented on all images using a clinically validated 2D deep

learning model. On a sub-cohort, the combination of stomach and duodenum

region of interest (GI ROI) was auto-contoured using a 3D UNet model

trained independently on 102 patients. These contours were compared to

physician-drawn contours on CTOR, using Dice similarity coefficient

(DSC), mean distance to agreement (DTA), Hausdorff distance (HD), and

planned dose metrics. Intra-observer variability was evaluated. Doses were

converted to equivalent dose in 2Gy fractions (EQD2) for analysis

(a/b = 3.5). Differences between planned and delivered dose were calcu-

lated, as well as GI ROI daily dose variation. Toxicity probability was calcu-

lated based on previously developed accumulated dose normal tissue

complication probability (NTCP) models for duodenum and stomach.

Results: Average (SD) DSC, DTA, and HD between the deep learning

model and physician-drawn GI ROI were 0.9 (0.1), 0.2 (0.1) cm, and 2.4
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