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Théo Estienne1,2, Maria Vakalopoulou1, Stergios Christodoulidis1, Enzo
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Abstract. Explainability of deep neural networks is one of the most
challenging and interesting problems in the field. In this study, we inves-
tigate the topic focusing on the interpretability of deep learning-based
registration methods. In particular, with the appropriate model archi-
tecture and using a simple linear projection, we decompose the encoding
space, generating a new basis, and we empirically show that this basis
captures various decomposed anatomically aware geometrical transfor-
mations. We perform experiments using two different datasets focusing
on lungs and hippocampus MRI. We show that such an approach can de-
compose the highly convoluted latent spaces of registration pipelines in
an orthogonal space with several interesting properties. We hope that this
work could shed some light on a better understanding of deep learning-
based registration methods.
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1 Introduction

Deep learning methods provide the state of the art performance for various ap-
plications currently. This is due to their inherent property to generate highly
abstract representations hierarchically. These representations are building on
top of each other, making it possible to encode highly non-linear manifolds.
Even though such hierarchies can outperform traditional methods, they lack ex-
plainability, making their translation difficult to solve real-life problems. This
drawback is of great significance in the medical field and especially for the algo-
rithms that are intended to be adapted to clinical practice, addressing problems
of precision medicine [12,2]. For these reasons, it is essential to identify ways to
understand better the high throughput operations that are applied.
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Recently, with the introduction of the differentiable spatial transformer [13],
trainable deep learning registration methods are becoming more and more pop-
ular, reducing computational times while reporting similar to traditional meth-
ods performance [1,25,17]. Meanwhile, the deformation field, which is one of
the products of deformable registration methods, has been shown to encode
not only the spatial correspondences but also clinical relevant information that
could add valuable aspects to a variety of problems related to survival assess-
ment or anomaly detection [18]. Indeed, encoding information between subjects
can be very informative for various medical tasks such as medical image seg-
mentation [9]. However, according to our knowledge, there are not many efforts
focusing on understanding and analysing this encoding information which could
initiate the explainability of deep learning-based registration methods.

In this study, we propose a framework for interpreting the encoded represen-
tation of deep learning-based registration methods. In particular, with the appro-
priate model architecture and by using a simple linear projection, we decompose
the encoding space, generating a new basis that captures various geometrical
operations. This decomposed encoding space is then driving the generation of
the deformation field. The contributions of this work are twofold: (i) to the best
of our knowledge, this study is one of the first to explore the explainability of
deep learning-based registration methods through their encodings using linear
projections, (ii) we show empirically, using two different datasets, one focusing
on lungs and the other on the brain hippocampus that our projections are associ-
ated with different types of deformations and in particular rigid transformations.
We hope that this work can highlight the very challenging topic of explainability
of deep neural networks.

2 Related Work

Explaining how deep neural networks function is a matter of extensive research
the recent years. GradCam [21] is one of the most popular methods that can
provide some insights on deep neural networks for many applications, including
medical imaging. GradCam highlights the region of the original input that con-
tributes the most to the final prediction, producing coarse heatmaps based on
the gradients. Similar to GradCam, there are many additional methods based on
the gradient [27,3,24] that are commonly used for the explainability of the mod-
els. Moreover, in [10] the authors proposed a general framework of explanations
as meta-predictors while they also reinterpret the network’s saliency providing
a natural generalisation of the gradient-based saliency techniques. Even though
such approaches can provide information on where the models attend, they can
be mostly utilised in classification or detection schemes.

Representation disentangling methodologies is a concurrent field of research
also investigating explainability topics. Such approaches are mainly focusing on
generating interpretable latent representations by enforcing several constraints.
This can be achieved either using architecture tricks [22,20] or with appropri-
ate loss functions [4,14]. In medical image computing, several studies focus on
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Fig. 1: Overall overview of our proposed framework. The different subjects (X,Y )
are projected on the latent representation by the encoder Eψ and then a linear
decomposition of this latent space is calculated to identify a new vector space
(~ui).

approaches for generating disentangled or decomposed representations. In [19]
for example, the authors proposed a multimodal image registration method by
decomposing the volumes into a common latent shape space and separate la-
tent appearance spaces via image-to-image translation approach and generative
models. Our method shares many common points with the approaches mentioned
above, yet it focuses on exploring the registration latent space decomposition.

3 Methodology

Deep learning-based registration methods have received much attention in the
last few years [1,25]. Formally, let us consider two volumes, the moving M and
the fixed F . The goal of deep learning-based registration methods is to obtain
the best parameters θ∗ for the network gθ that will map most accurately M to
F using the predicted deformation grid Φ. The network gθ usually is composed
of an encoding Eψ and a decoding Dω part.

There are multiple ways to fuse the input volumes in deep learning-based
registration approaches. Most of the methods use an early fusion strategy on
which the two volumes are concatenated before they pass through the gθ. How-
ever, some methods investigate late fusion strategies [11,7] where the two volumes
pass independently through the encoder, and their merging operation is achieved
in the encoding representation using various operations such as concatenation
or subtraction. Thanks to this formulation, each volume has a unique encoding
representation. In this study, we adopt the second strategy using the subtraction
operation to encode each volume independently and calculate its latent space’s
linear decomposition. In Figure 1, the overall scheme is presented.

3.1 Deep learning-based registration scheme

To perform our experiments and obtain our embeddings, we defined a network
based on a 3D UNet architecture [5]. The encoder and the decoder are composed
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of a fixed number of blocks with 3D convolution layers (stride 3, padding 1), in-
stance normalisation layer and leaky ReLU activation function. The down and
up-sampling operations are performed with a 3D convolution layer with stride
and padding of 2. One of the main differences in our architecture was the ab-
sence of skip connections. Indeed, we want to enforce that all information passes
through the last encoding layer without any leak due to the skip connections.
This modification led us to reduce the downsampling operations from four to
three for the lung dataset, to maintain the spatial resolution of the bottleneck.

Different formulations have been proposed to generate the deformation from
deep learning schemes, such as displacement field formulation [1], diffeomor-
phic formulations [6,15] and formulations based on the spatial gradients [25]. In
this work, we focused on the last one, with our network regressing the spatial
gradients ∇xΦx, ∇yΦy and ∇zΦz, while the final deformation field is obtained
through a cumulative sum operation. We also followed the symmetric formula-
tion proposed in [8], predicting both the forward and backward deformations:
∇ΦM→F = Dω(Eψ(M)− Eψ(F )) and ∇ΦF→M = Dω(Eψ(M)− Eψ(F )).

The network was trained with a combination of four losses, one focusing on
the intensity similarity using normalised cross-correlation (Lsim), one focusing
on anatomical structures using dice loss (Lseg) and two losses for regularisation
of the displacements. The first one was the Jacobian loss which is exploited on
different works such as [17,16,26] (Ljac) and the second one enforcing smooth
gradients similar to [8] (Lsmooth). As such our final loss is: L = (Lsim + Lseg +
αLsmooth + βLjac)M→F + (Lsim +Lseg +αLsmooth + βLjac)F→M with α and β
being the weights of the regularisation losses.

3.2 Decomposition of latent space

Let Atrain = {Xi|i ∈ [0, n]} be the set of our n training samples. The proposed
formulation apply the encoder independently to each volume, and thus we can
obtain the set of latent vectors: Eψ(Atrain) = {Eψ(Xi)|i ∈ [0, n]}. Then, we
decompose this space using principal components analysis (PCA). That way, we
obtain a set of principal vectors UK = (−→u1, · · · ,−→uK) with K being a hyperparam-
eter fixing the number of principal components. It worth noting that each vector
~ui has the same size as the activation map of the encoder’s last layer. This size
depends on the number of channels, the size of the input images and the num-
ber of downsampling operations. We flatten each encoding representation from
its four dimensions representation (channel dimension and the three spatial di-
mensions) to a one-dimensional array to perform the PCA. Thus, the PCA is
not calculated channel-wise, but all the channels are considered together. Each
principal vector ~ui can be converted to a deformation grid φi using the corre-
sponding decoder Dω: φi = Dω(~ui). Therefore, we obtained a set of elementary
transformations {φi}i=1···K . These elementary transformations generate a basis
that can be used to approximate and decompose every new deformation. Using
such a decomposition, we can obtain a representation in small dimensions of
every training volume Xi. These representations are obtained by the projection
of Eψ(Xi) to each principal vector: aji = Eψ(Xi) · −→uj . For every volume of our
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training set we have the approximation: Eψ(Xi) ≈
∑K
j=1 a

j
i
−→uj . After calculating

the vector of the principal components UK with the training set, we projected
each image of the validation set to obtain its PCA representation.

3.3 Implementation and Training Details

The Adam optimiser was used for our training, with a constant learning rate set
to 1e−4, a batch size equal to 4 and 8 for lung and hippocampus, respectively.
Our models were trained for 600 epochs, and it last approximately 4 and 9
hours for the lung and hippocampus dataset. Concerning data augmentation,
we applied random flip, rotation, translation and zoom. Moreover, the weights
of the different loss components were set to 1 except the loss for smoothness
set to α = 0.1 for both datasets and the weight for the jacobian loss β that
was discarded for the hippocampus dataset. During the training process, we
registered random pairs of different patients. Our training has been performed
using the framework PyTorch and one GPU card Nvidia Tesla V100 with 32G
memory. The PCA decomposition was calculated using the library scikit-learn,
and the number of principal components K was set to 32. Using 32 components,
our decomposition covered 95% and 93% of the variance ratio for the lung and
hippocampus dataset, respectively, while 42% and 62% are covered by the first
four components for each dataset, respectively.

4 Experiments and Results

We performed our experiments on two different datasets, one public and one
private. Starting with the public dataset, we conduct experiments with the hip-
pocampus5 [23]. This dataset comprises 394 MRI with the segmentations of two
small structures, the head and the body hippocampus. The images have been
cropped around the hippocampus into small patches of 64× 64× 64 voxels. The
second dataset is composed of 41 lung MRI patients (12 healthy and 29 diseased
with pulmonary fibrosis) together with their lung segmentations. Each patient
had been acquired in two states, the inspiration and the expiration. Each volume
has been resampled to 1.39mm on the x and z-axis and 1.69 on the y-axis and
cropped to 128 × 64 × 128 volumes. The same normalisation strategy has been
applied for the two datasets: N (0, 1) standardisation, clip to [−5, 5] to remove
outliers values and min-max normalisation to (0, 1). Both datasets were split
into training and validation, resulting in 200 and 60 patients for hippocampus
and 28 and 13 patients for the lung dataset.

As the first step of our evaluation, we benchmarked the performance of the
registration network gθ, on which our decomposition is based on. More specifi-
cally, we obtained a Dice coefficient of 0.90± 0.04 for the lungs and 0.76± 0.05
for the hippocampus, while the initial unregistered cases reported a Dice of
0.74±0.14 and 0.59±0.15 respectively. Moreover, we calculated the registration

5 http://medicaldecathlon.com/

http://medicaldecathlon.com/
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Fig. 2: Visualisation of the displacements following the first four principal com-
ponents. For each component, we depicted coronal and sagittal views. In red,
the contours of the lungs of the M , and in gold, the W(Dω(λ−→ui),M) lung’s
contours. The deformation field is represented with arrows. The arrows’ norm
is represented with a colour map, red being the smallest and white the largest.
Other patients and components are displayed on supplementary materials.

for gθ with the skip connections to measure their impact on the registration. The
Dice is then equal to 0.92±0.02 and 0.85±0.03 respectively. Thus, by removing
the skip-connections, we decrease the performance of the registration, slightly
on the lungs, more importantly, on the hippocampus. However, both strategies
register the pair of volumes properly.

4.1 Qualitative Evaluation

To understand and evaluate the calculated components of UK per dataset, we
perform a qualitative analysis. In particular, for each principal vector −→ui , we cal-
culated the corresponding deformation {φi}i=1···K and we applied to the mov-
ing image M together with its corresponding segmentation map Mseg. More
formally, the deformed contour correspond to W(Dω(λ−→ui),Mseg) with W be-
ing the warping operation and λ the parameter to control the strength of the
displacements for better visualisation.

In Figure 2, we show the principal components obtained for one validation
subject for the lung dataset. Interestingly, one can observe that each φi corre-
sponds to a different elementary transformation. More precisely, the 1st compo-
nent is associated with translation, the 2nd with a deformation focusing on the
bottom of the lungs, the 3rd with a deformation on the right lung focusing also
on the heart region and lastly the 4th with a deformation focusing on the top
region of the lung and shoulders.



Exploring Deep Registration Latent Spaces 7

Fig. 3: Representation of the deformed MR together with its lung contours follow-
ing the first and fourth principal components u1, u4. The red contour represents
the position of the lung segmentation of the input image while the gold con-
tour the position of the deformed lung. The values of lambda range from: −200,
−100, 0, 100 and 200 (left to right). Negative values of lambda correspond to an
upward translation, while positive values to a downward translation.

In Figure 3, we show the effect of the values of λ. In the figure, we present
the lung contours of the scaled component (in red) and the corresponding com-
ponent of the warped of the first ad third components. As we have indicated,
the 1st component is associated with translation, which we can also be observed
in this visualisation. In particular, for this experiment we sample λ from the
values {−200,−100, 0, 100, 200}. One can observe that we retrieve a near iden-
tity deformation for a value of 0, while for negative and positive values, the lung
moves up and down, respectively. On the other hand, the fourth component is
responsible for deforming the shoulders and the top of the lungs. Indeed, one can
observe that through the different λ values, the top lungs region is the one that
reports the most changes. In Figure 7, similarly, the 4 deformations produced
by the first 4 principal components of the hippocampus dataset are presented.
In this case, the 1st component seems to capture rotation on the sagittal plane,

Fig. 4: Visualisation of the displacements following the first four principal com-
ponents. We depicted a sagittal view of one patient of the validation set of the
hippocampus dataset. We represented the ground truth hippocampus contours
(red) and the deformed one (gold), following the principal components.
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the 2nd translation and shrinking towards the bottom right, while the 3rd seems
to be the same operation towards the top left corner. Finally, the 4th seems to
be related to scaling, inflating both the hippocampus’s head and tail. We ob-
served that the decomposition of the two datasets created different elementary
transformations φi, with transformations closer to affine for the hippocampus
and more complex for the lung.

Fig. 5: Visualisation of the differences between the components of a reference
image and the same image to which we applied a predefined transformation. The
first ten components have been displayed. From right to left: rotation, translation
along Z-axis and scaling.

Finally, to verify the obtained decomposition, we performed a case study
for all the validation subjects of the hippocampus dataset. More specifically,
we applied some predefined translation using 10 pixels on the z axis, rotation
using 20 degrees on the z axis and scaling using a factor of 0.2, transforming
each subject X to X ′. Then we calculated the difference between the projection
of Eψ(X) and Eψ(X ′) on the PCA decomposition. In Figure 5, a box plot for
all the validation subjects of the absolute difference is presented. Specifically,
the amount ||ajEψ(X) − a

j
Eψ(X′)|| is shown for each principal component j, with

ajEψ(X) being the projection of Eψ(X) on the principal vectors UK , for the three

different applied deformations. One can observe that for rotation and translation,
only one component is significantly different from the rest. In the case of scaling,
however, two components seem to be more activated. Moreover, these findings are
in accordance with Figure 7 for the rotation and translation. In supplementary
materials, we upgraded the Figure 5 by comparing the network with and without
skip-connections. Contrary to our proposed formulation, many components are
activated with the skip-connections, demonstrating the necessity of removing
them to have a good decomposition.

5 Discussion & Conclusion

In this work, we proposed an approach to decompose and explain the repre-
sentations of deep learning-based registration methods. The proposed method



Exploring Deep Registration Latent Spaces 9

utilises a linear decomposition on the latent space projecting it to principal com-
ponents closely associated with anatomically aware deformations. Our method’s
dynamics are demonstrated in two different MRI datasets, focusing on lung and
hippocampus anatomies. We hope that these results will take some steps towards
a better understanding of latent representations learned by the deep learning reg-
istration architectures. We also explored a direct application of the PCA on the
deformation’s grid instead of the latent representation. However, we did not ob-
serve any qualitative correlations with types of deformations, which is the case
for our proposed formulation. One of the main limitations of our approach is the
difficulty of quantitative evaluation. Our future steps include the more extensive
evaluation of our method, including new anatomies such as abdominal volumes
and its clinical significance. More specifically, we want to apply our approach to
multi-temporal follow-up of patients, monitoring diseases’ progression.
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Supplementary Material

Fig. 6: Extension of the figure 2 with two others patients and the component 1
to 4.
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Fig. 7: Extension of the Figure 4 with two other patients and the components 1
to 8 (first row 1-4, second row 5-8).

Fig. 8: Comparison between the networks with and without skip connections. We
displayed the difference between the components of an image and the same image
to which we applied a predefined transformation. Only one or two components
are activated without the skip-connections, while many of them are with the
skip. The first ten components have been displayed. The results are in blue and
pink for respectively without and with the skip-connections. From right to left:
rotation, translation along Z-axis and scaling.
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