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Abstract. Image registration is one of the most challenging problems
in medical image analysis. In the recent years, deep learning based ap-
proaches became quite popular, providing fast and performing regis-
tration strategies. In this short paper, we summarise our work pre-
sented on Learn2Reg challenge 2020. The main contributions of our
work rely on (i) a symmetric formulation, predicting the transforma-
tions from source to target and from target to source simultaneously,
enforcing the trained representations to be similar and (ii) integration
of variety of publicly available datasets used both for pretraining and
for augmenting segmentation labels. Our method reports a mean dice
of 0.64 for task 3 and 0.85 for task 4 on the test sets, taking third
place on the challenge. Our code and models are publicly available at
https://github.com/TheoEst/abdominal_registration and
https://github.com/TheoEst/hippocampus_registration.

1 Introduction

In the medical field, the problem of deformable image registration has been
heavily studied for many years. The problem relies on establishing the best
dense voxel-wise transformation (Φ) to wrap one volume (source or moving, M)
to match another volume (reference or fixed, F ) in the best way. Traditionally,
different types of formulations and approaches had been proposed in the last
years [18] to address the problem. However, with the recent advances of deep
learning, a lot of learning based methods became very popular currently, pro-
viding very efficient and state-of-the art performances [10]. Even if there is a lot
of work in the field of image registration there are still a lot of challenges to be
addressed. In order to address these challenges and provide common datasets
for the benchmarking of learning based [5,6] and traditional methods [11,1], the
Learn2Reg challenge is organised [4]. Four tasks were proposed by the organisers
with different organs and modalities. In this work, we focused on two tasks: the
CT abdominal (task 3) and the MRI hippocampus registration (task 4).
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Fig. 1: Schematic representation of the proposed methodology.

In this work, we propose a learning based method that learns how to obtain
spatial gradients in a similar way to [19,7]. The main contributions of this work
rely on (i) enforcing the same network to predict both ΦM→F and ΦF→M defor-
mations using the same encoding and implicitly enforcing it to be symmetric and
(ii) integrating noisy labels from different organs during the training, to fully
exploit publicly available datasets. In the following sections, we will briefly sum-
marise these two contributions and present our results that gave to our method
the third position in the Learn2Reg challenge 2020 (second for task 3 and third
for task 4).

2 Methodology

An overview of our proposed framework is presented in the Figure 1. Our method
uses as backbone a 3D UNet [3] based architecture, which consists of 4 blocks
with 64, 128, 256 and 512 channels for the encoder part (E). Each block consists
of a normalisation layer, Leaky ReLU activation, 3D convolutions with a kernel
size of 3× 3× 3 and convolution with kernel size and stride 2 to reduce spatial
resolution. Each of the F,M volumes passes independently through the encoder
part of the network. Their encoding is then merged using the subtraction op-
eration before passing through the decoder (D) part for the prediction of the
optimal spatial gradients of the deformation field ∇Φ. We obtained the deforma-
tion field Φ from its gradient using integration which we approximated with the
cumulative summation operation. Φ is then used to obtain the deformed volume
together with its segmentation mask using warping Mwarp = W(M,ΦM→F ).
Finally, we apply deep supervision to train our network in a way similar to [14].

Symmetric training Even if our grid formulation has constraints for the spa-
tial gradients to avoid self-crossings on the vertical and horizontal directions
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for each of the x,y,z-axis, our formulation is not diffeomorphic. This actually
indicates that we can not calculate the inverse transformation of ΦM→F . To
deal with this problem, we predict both ΦM→F and ΦF→M and we use both
for the optimization of our network. Different methods such as [13,9] explore
similar concepts using however different networks for each deformation. Due to
our fusion strategy on the encoding part, our approach is able to learn both
transformations with less parameters. In particular, our spatial gradients are
obtained by: ∇ΦM→F = D(E(M)−E(F )) and ∇ΦF→M = D(E(F )−E(M)).

Pretraining and Noisy Labels Supervision has been proved to boost the per-
formance of the learning based registration methods integrating implicit anatom-
ical knowledge during the training procedure. For this reason, in this study, we
investigate ways to use publicly available datasets to boost performance. We ex-
ploit available information from publicly available datasets namely KITS 19 [12],
Medical Segmentation Decathlon (sub-cohort Liver, Spleen, Pancreas, Hepatic
Lesion and Colon) [17] and TCIA Pancreas[16,8]. In particular, we trained a 3D
UNet segmentation network on 11 different organs (spleen, right and left kidney,
liver, stomach, pancreas, gallbladder, aorta, inferior vena cava, portal vein and
oesophagus). To harmonise the information that we had at disposal for each
dataset, we optimised the dice loss only on the organs that were available per
dataset. The network was then used to provide labels for the 11 organs for ap-
proximately 600 abdominal scans. These segmentation masks were further used
for the pretraining of our registration network for the task 3. After the train-
ing the performance of our segmentation network on the validation set in terms
of dice is summarised to: 0.92 (Spl), 0.90 (RKid), 0.91 (LKid), 0.94 (Liv) 0.83
(Sto), 0.74 (Pan), 0.72 (GBla), 0.89 (Aor), 0.76 (InfV), 0.62 (PorV) and 0.61
(Oes). The validation set was composed of 21 patients of Learn2Reg and TCIA
Pancreas dataset.

Furthermore, we explored the use of pretraining of registration networks on
domain-specific large datasets. In particular, for task 3 the ensemble of the pub-
licly available datasets together with their noisy segmentation masks were used to
pretrain our registration network, after a small preprocessing including an affine
registration step using Advanced Normalization Tools (ANTs)[2] and isotropic
resampling to 2mm voxel spacing. Moreover, for task 4, we performed an un-
supervised pretraining using approximately 750 T1 MRI from OASIS 3 dataset
[15] without segmentations. For both tasks, the pretraining had been performed
for 300 epochs.

2.1 Training Strategy and Implementation Details

To train our network, we used a combination of multiple loss functions. The
first one was the reconstruction loss optimising a similarity function over the
intensity values of the medical volume Lsim. For our experiments, we used the
mean square error function and normalized cross correlation, depending on the
experiment, between the warped image Mwarp and the fixed image F . The
second loss integrated anatomical knowledge by optimising the dice coefficient
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between the warped segmentation and the segmentation of the fixed volume:
Lsup = Dice(Mwarp

seg , Fseg). Finally, a regularisation loss was also integrated to
enforce smoothness of the displacement field by keeping it close to zero deforma-
tion : Lsmo = ||∇ΦM→F ||. These losses composed our final optimization strategy
calculated for both ∇ΦM→F and ∇ΦF→M

L = (αLsim + βLsup + γLsmo)M→F + (αLsim + βLsup + γLsmo)F→M

where α, β and γ were weights that were manually defined. The network was
optimized using Adam optimiser with a learning rate set to 1e−4.

Regarding the implementation details, for task 3, we used batch size 2 with
patch size equal to 144×144×144 due to memory limitations. Our normalisation
strategy included the extraction of three CT windows, which all of them are used
as additional channels and min-max normalisation to be in the range (0, 1). For
our experiments we did not use any data augmentation and we set α = 1, β = 1
and γ = 0.01. The network was trained on 2 Nvidia Tesla V100 with 16 GB
memory, for 300 epochs for ≈ 12 hours. For task 4, the batch size was set to
6 with patches of size 64 × 64 × 64 while data augmentation was performed by
random flip, random rotation and translation. Our normalisation strategy in this
case included: N (0, 1) normalisation, clipping values outside of the range [−5, 5]
and min-max normalisation to stay to the range (0, 1). The weights were set to
α = 1, β = 1 and γ = 0.1 and the network was trained on 2 Nvidia GeForce
GTX 1080 GPUs with 12 GB memory for 600 epochs for ≈ 20 hours.

The segmentation network, used to produce noisy segmentations, was a 3D
UNet trained with batch size 6, learning rate 1e−4, leaky ReLU activation func-
tions, instance normalisation layers and random crop of patch of size 144 ×
144× 144. During inference, we kept the ground truth segmentations of the or-
gans available, we applied a normalisation with connected components and we
checked each segmentations manually to remove outlier results.

3 Experimental Results

For each task, we performed an ablation study to evaluate the contribution of
each component and task 3, we performed a supplementary experiment inte-
grating the noisy labels during the pretraining. The evaluation was performed
in terms of Dice score, 30% of lowest Dice score, Hausdorff distance and stan-
dard deviation of the log Jacobian. These metrics evaluated the accuracy and
robustness of the method as well as the smoothness of the deformation. Our
results are summarised in Table 1, while some qualitative results are represented
in Figure 2. For the inference on the test set, we used our model trained on
both training and validation datasets. Concerning the computational time, our
approach needs 6.21 and 1.43 seconds for the inference respectively for task 3
and 4. This is slower than other participants to the challenge, probably due to
the size of our deep network which have around 20 millions parameters.

Concerning task 3, one can observe a significant boost on the performance
when the pretraining with the noisy labels was integrated. Due to the challenging
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(a) Example for task 3 (b) Example for task 4

Fig. 2: Results obtained on the validation set. From left to right : moving, fixed,
deformed images and the deformation grid. For the task 3, we displayed an
axial view with the different organs (second row). For the task 4, we displayed
a sagittal view with the head and tail masks (second row)

nature of this registration problem, the impact of the symmetric training was
not so high in any of the metrics. On the other hand, for task 4, the symmetric
component with the pretraining boosted the robustness of the method while the
pretraining had a lower impact than on task 3. One possible explanation is that
for this task, the number of provided volumes in combination with the nature
of the problem was enough for training a learning based registration method.

Task 3 Task 4
Dataset Dice Dice30 Hd95 StdJ Dice Dice30 Hd95 StdJ

Val Unregistered 0.23 0.01 46.1 0.55 0.36 3.91

Val Baseline 0.38 0.35 45.2 1.70 0.80 0.78 2.12 0.067
Val Baseline + sym. 0.40 0.36 45.7 1.80 0.83 0.82 1.68 0.071
Val Baseline + sym. + pretrain 0.52 0.50 42.3 0.32 0.84 0.83 1.63 0.093
Val Baseline + sym. + pretrain + noisy labels 0.62 0.58 39.3 1.77

Test Baseline + sym. + pretrain + noisy labels 0.64 0.40 37.1 1.53 0.85 0.84 1.51 0.09

Table 1: Evaluation of our method for the Tasks 3 & 4 of Learn2Reg Challenge
on the validation set (val) and on the test set (test).

4 Conclusions

In this work, we summarise our method that took the 3rd place in the Learn2Reg
challenge, participating on the tasks 3 & 4. Our formulation is based on spatial
gradients and explores the impact of symmetry, pretraining and integration of
public available datasets. In the future, we aim to further explore symmetry in
our method and investigate ways that our formulation could hold diffeomorphic
properties. Finally, adversarial training is also something that we want to explore
in order to be deal with multimodal registration.
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