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Systemic sclerosis (SSc) is a rare systemic autoimmune 
disease predominantly found in women (3:1) with an 

incidence of 0.3–2.8 per 100 000 people per year (1). SSc 
is characterized by fibrosis and vascular remodeling of the 
skin and many visceral organs and is categorized as limited 
or diffuse depending on the extent of skin involvement 
(2). Among visceral organs, pulmonary involvement rep-
resents the leading cause of mortality (3,4). The prevalence 
of interstitial lung disease (ILD) is significantly higher in 
patients with diffuse SSc (5), and some of these patients 
may not be symptomatic. In the European League Against 
Rheumatism (EULAR) Scleroderma Trials and Research 
(EUSTAR) cohort of more than 7600 patients, 53% of 

patients had lung fibrosis at CT, whereas only 35% pre-
sented with dyspnea (5). Disease extent on CT images has 
been identified as an independent predictor of disease pro-
gression and mortality in patients with SSc (6,7). Quanti-
fication of ILD extent is also needed for treatment initia-
tion and evaluation of its efficacy (8). Evaluation of disease 
extent cannot rely on pulmonary function tests (PFTs) 
alone because there are causes of functional impairment 
other than progression of disease extent such as infection 
or development of pulmonary hypertension.

A simple staging system that differentiates between lim-
ited and extensive ILD was proposed by Goh et al (6) on 
the basis of the combination of visual CT evaluations and 
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Purpose: To develop a deep learning algorithm for the automatic assessment of the extent of systemic sclerosis (SSc)–related interstitial 
lung disease (ILD) on chest CT images.

Materials and Methods: This retrospective study included 208 patients with SSc (median age, 57 years; 167 women) evaluated between 
January 2009 and October 2017. A multicomponent deep neural network (AtlasNet) was trained on 6888 fully annotated CT images 
(80% for training and 20% for validation) from 17 patients with no, mild, or severe lung disease. The model was tested on a dataset of 
400 images from another 20 patients, independently partially annotated by three radiologist readers. The ILD contours from the three 
readers and the deep learning neural network were compared by using the Dice similarity coefficient (DSC). The correlation between 
disease extent obtained from the deep learning algorithm and that obtained by using pulmonary function tests (PFTs) was then evalu-
ated in the remaining 171 patients and in an external validation dataset of 31 patients based on the analysis of all slices of the chest CT 
scan. The Spearman rank correlation coefficient (r) was calculated to evaluate the correlation between disease extent and PFT results.

Results: The median DSCs between the readers and the deep learning ILD contours ranged from 0.74 to 0.75, whereas the median 
DSCs between contours from radiologists ranged from 0.68 to 0.71. The disease extent obtained from the algorithm, by analyzing the 
whole CT scan, correlated with the diffusion lung capacity for carbon monoxide, total lung capacity, and forced vital capacity (r = 
−0.76, −0.70, and −0.62, respectively; P , .001 for all) in the dataset for the correlation with PFT results. The disease extents corre-
lated with diffusion lung capacity for carbon monoxide, total lung capacity, and forced vital capacity were r = −0.65, −0.70, and −0.57, 
respectively, in the external validation dataset (P , .001 for all).

Conclusion: The developed algorithm performed similarly to radiologists for disease-extent contouring, which correlated with pulmo-
nary function to assess CT images from patients with SSc-related ILD.

Supplemental material is available for this article.
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Langue Française (Comité d’évaluation des protocoles de re-
cherche observationnels [CEPRO]–2017-023), which waived 
the need for patient consent. Patients who met the American 
College of Rheumatology and EULAR 2013 criteria for SSc 
(15) were recruited from the database of the Reference Cen-
ter for Rare Systemic Autoimmune Diseases of Ile de France. 
Between January 2009 and October 2017, 591 patients from 
this reference center underwent chest CT. A total of 17 of these 
patients were selected for a training and validation dataset. This 
dataset included 6888 thin-section axial CT images in three 
patients without SSc ILD and 14 patients with SSc ILD of 
various degrees of severity.

CT images of the other 574 patients were reviewed for 
features typically found in SSc ILD, including ground-glass 
opacities, reticulations, traction bronchiectasis, and/or bron-
chiolectases, with or without honeycombing in a predominantly 
subpleural location. Exclusion criteria included motion artifacts, 
signs of lung disease other than SSc ILD, acquisitions in the 
prone position, contrast media injection, and unavailability of 
complete PFT measurement within 3 months before or after 
CT. Of the 191 patients included in the final dataset, 20 pa-
tients were randomly assigned to compose a test dataset. Images 
of the patients from the training and validation and test datasets 
(training dataset, 17 patients; test dataset, 20 patients; total, 37 
patients) were previously used to develop a preliminary version 
of the deep learning algorithm used in this study. The correla-
tion between PFT results and ILD extent assessed by deep learn-
ing was evaluated for the other 171 patients, referred to as the 
correlation-with-PFTs dataset (Fig 1).

An external validation dataset (31 patients) was composed 
of patients with scleroderma from another institution (Hôpital 
Saint-Antoine, Paris) who were evaluated between March 2009 
and March 2014. The same inclusion and exclusion criteria 
were used.

For all patients, PFT measurements obtained within 3 
months of chest CT were retrieved from the patients’ charts. 
They included the percentage of predicted forced vital capacity, 
total lung capacity, diffusion lung capacity for carbon monoxide, 
and carbon monoxide transfer coefficient, and the last two cor-
rected for measured hemoglobin.

CT Examinations
At our institution, whole-lung CT examinations were performed 
with four different CT scanners with 16–128 multi–detector 
rows from two different manufacturers (Somatom Sensation 16, 
Somatom DS, and Somatom AS+, Siemens Healthineers, Erlan-
gen, Germany; and Revolution HD, GE Healthcare, Milwau-
kee, Wis) by using nonstandardized acquisition parameters (tube 
voltage, 100 or 120 kVp, tube current modulation). Images were 
reconstructed with a slice thickness of 0.625–1.5 mm by using 
filter back projection or iterative reconstruction algorithms and 
a high-frequency kernel (Lung, B70f or I70F). In the three data-
sets, the majority of CT examinations had been performed with 
Siemens equipment (three of 17 in the training dataset, four of 
20 in the validation dataset, and 25 of 171 in the correlation-
with-PFTs dataset).

measurements of forced vital capacity. The distinction between 
limited and extensive disease is based on whether the extent of 
ILD is visually greater than 20% of lung volume. A more precise 
visual assessment of ILD extent is difficult to obtain in clinical 
practice, and the development of automated quantitative meth-
ods could be of substantial clinical relevance and interest. Further-
more, automated methods could overcome the reported interob-
server variability in the visual assessment of ILD extent (9,10).

Advances in artificial intelligence have led to the develop-
ment of prospective imaging biomarkers to provide new indexes 
for patient care (11). Deep learning has become a major topic of 
interest over the past decade in this field because it can be used 
to develop automated methods for time-consuming or repeti-
tive classification tasks. Deep convolutional neural networks and 
their variants have become the most frequently adopted meth-
ods for medical analysis (12,13). Unlike classic machine learning 
approaches that use hand-crafted features, deep convolutional 
neural networks learn directly and select features from the train-
ing data to optimize their output, with respect to the considered 
classification task. However, deep convolutional neural networks 
are sensitive to data variability and require large datasets for 
training. A major issue for the development of clinically valid 
algorithms is the lack of annotated images from routine clini-
cal CT examinations. To the best of our knowledge, the largest 
publicly available annotated ILD dataset only contains partially 
annotated noncontiguous CT slices (3238 images) from 13 dif-
ferent ILDs (14).

Therefore, the goal of our study was to develop a robust deep 
learning–based quantification tool trained from a fully anno-
tated dataset of contiguous CT images of the same ILD, allow-
ing for automated quantification of ILD extent in patients with 
SSc. Adaptation of such a tool within the clinic could be used to 
help improve staging of patients with SSc-related ILDs.

Materials and Methods

Study Design and Participants
This single-center, retrospective study was approved by the 
institutional review board of the Société de Pneumologie de 

Abbreviations
DSC = Dice similarity coefficient, ILD = interstitial lung disease, 
IQR = interquartile range, PFT = pulmonary function test, SSc = 
systemic sclerosis

Summary
The reported deep learning–based method can be used to evaluate 
the extent of interstitial lung disease in systemic sclerosis with results 
comparable to those of radiologists.

Key Points
 n The developed algorithm performs equally to radiologists for 

contouring disease extent on chest CT images; the Dice similarity 
coefficient ranged from 0.74 to 0.75 between the algorithm and 
radiologists compared with 0.68–0.71 between radiologists.

 n The disease extent calculated by the algorithm correlates well with 
pulmonary function (r = −0.76 for correlation with diffusion lung 
capacity for carbon monoxide; P , .001).
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Figure 1: Flowchart of patient cohort. ILD = interstitial lung disease, PFT = pulmonary function test, SSc = systemic sclerosis.

CT examinations in the test 
dataset were annotated by three 
independent radiologists with 
1–4 years of experience in chest 
imaging (G.C., C.M., N.J.). 
Each of the readers manually 
annotated 20 CT slices equally 
spaced from the lung apices to 
the right diaphragmatic dome, 
representing a total of 400 an-
notated slices for each radiolo-
gist. In the training dataset, they 
contoured the whole ILD extent 
without separately accounting 
for each class of anomaly.

Deep Learning–based 
Algorithm
The model was developed in 
the training dataset by using a 
variant of AtlasNet (Center for 
Visual Computing, Ecole Cen-
traleSupelec, Gif-sur-Yvette, 
France), a recently described 
multicomponent deep learning 
architecture (16). Briefly, the 
AtlasNet architecture trains a 

number of deep convolutional neural networks (n) and each of 
them uses a predefined anatomy on which all training patient 
cases are mapped through elastic registration, which results 
in a natural data augmentation. In this study, we augmented 
the AtlasNet network through a dual autodecoder architec-
ture. This architecture choice was motivated by the need to 
guarantee anatomically plausible disease-segmentation results, 
which was achieved through the introduction of spatial inter-
dependencies between lungs and disease classes, predicted by 
two different decoder parts. Our proposed architecture for this 
problem is based on a network similar to SegNet (Computer 
Vision and Robotics Group, University of Cambridge, Cam-
bridge, England) (17), which is composed of one encoding 
part and two decoding branches: one for lung segmentation 
and the other one for disease segmentation. Five convolutional 
blocks are included, with each one containing two convolu-
tional, batch-normalized, rectified-linear-unit layer succes-
sions. The first block increases the number of input channels 
to 64, whereas the rest of the blocks increase the channels to 
twice their size, resulting in 1024 planes at the end of the en-
coder. Max-pooling layers are also distributed at the end of 
each convolutional block except for the last one, bringing the 
input volumes down to one-fourth of their original resolution. 
Then the produced features are given as the input to two iden-
tical decoding branches, one responsible for detecting the dis-
ease category and the other responsible for detecting the lung 
category. Similar to the encoder, each decoding part involves 
convolutional blocks, but this time, upsampling layers are used 
instead of max-pooling layers to bring the feature vectors back 
to their original dimensions.

For the external validation dataset, CT examinations were 
performed by using a different multi–detector row CT scanner 
(Somatom Sensation 64; Siemens Healthineers) and nonstan-
dardized acquisition parameters. Images were reconstructed with 
a slice thickness of 1.5 mm by using filter back projection only 
and a high-frequency kernel (B60f) different from that used at 
our institution.

Image Assessment and Annotation
Images from the original 591 patients were assessed by two 
radiologists (M.P.R. and G.A., with 18 and 19 years of experi-
ence in chest imaging, respectively) to determine which pa-
tient cases to include or exclude. A total of 191 patients were 
included in the final assessment (data from 20 patients were 
used for testing and data from the other 171 were used to as-
sess the correlation of PFT results with ILD extent). In the 
training and test datasets, lung segmentations were performed 
with software (Myrian XP-Lung version 1.19.1; Intrasense, 
Montpellier, France) and manually corrected by one radiolo-
gist (G.C., with 4 years of experience in chest imaging).

Disease segmentation was performed by manually outlining 
the extent of ILD on axial CT images, including all anomalies, 
such as ground-glass opacities, reticulations, traction bronchiec-
tasis, and honeycombing, with no attempt to separately outline 
each class of anomaly. CT images in the training dataset were 
fully annotated (manually contoured on each CT image show-
ing signs of ILD) by one radiologist (G.C.). To assess intraob-
server variation of image annotation in the training dataset, 20 
CT slices equally spaced from the lung apices to the right dia-
phragmatic dome were reannotated for each patient.

http://radiology-ai.rsna.org
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request for comparison, data augmentation was performed for 
the U-Net architecture, involving random rotations (between 
−10° and 10°) and translations (between 0 and 20 pixels per 
axis), but local deformations were not considered because gen-
erating anatomically consistent disease patterns is challenging.

The two developed algorithms (proposed AtlasNet and U-
Net) were then applied to the test dataset, and ILD contours 
provided by the algorithm were compared with those from three 
independent radiologists. To assess the clinical relevance of the 
deep learning method, the correlation between disease extent 
(analysis of the whole CT) and the PFT measurements was 
evaluated in the remaining 171 patients from the database who 
underwent chest CT and PFTs within a 3-month interval (here-
after, referred to as the correlation-with-PFTs dataset). The cor-
relation with PFT measurements was also evaluated in the exter-
nal validation dataset. To calculate disease extent, the volume of 
the diseased lung was divided by the volume of the whole lung.

Statistical Analysis
Statistical analysis and the development of the deep learning 
framework were performed with Python software (version 
2.7; Python Software Foundation, Wilmington, Del) by using 
Scipy and Keras libraries. Patient characteristics were compared 
by using the Fisher exact test, the Kruskal-Wallis test, and the 
Mann-Whitney U test. The Dice similarity coefficient (DSC) 
was calculated in the test dataset to evaluate the agreement 
among radiologists’ contours and between each radiologist and 
the contours generated by the two different deep learning al-
gorithms (AtlasNet and U-Net). The DSC is a statistic used to 
compare the similarity of two segmentations. It is commonly 
used in image segmentation, in particular for comparisons 
against reference masks in medical applications. It is calculated 
according to the following formula:

1 2

1 2

2
DSC

S S
S S
×

=
+
∩ ,

where S1 and S2 are the areas of the first and second segmen-
tation, respectively (19). A DSC of 1 corresponds to a per-
fect match between two segmentations, whereas a DSC of 0 
means no overlap. The Spearman rank correlation coefficient 
(r) was calculated to determine the correlation between the 
normalized volume of diseased lung and the pulmonary func-
tion parameters.

Results

Patient Characteristics 
Images in 208 patients (median age, 57 years; interquartile 
range [IQR], 48–66 years; 167 women) from our institution 
were evaluated and split among a training and validation da-
taset (n = 17), test dataset (n = 20), and a correlation-with-
PFTs dataset (n = 171) (Fig 1). There was no significant differ-
ence in patient characteristics among those from the training 
and validation, test, and correlation-with-PFTs datasets (P 

We used a loss function that optimized each decoder sepa-
rately while at the same time applying semantic constraints, pe-
nalizing detections of the disease class that were not also detected 
within the lung class. In particular, each decoder optimized the 
weighted cross-entropy loss for each class as follows:

1
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where K = {0, 1} for the classes of background and lung, respec-
tively, and M = {0, 1} for the classes of background and disease, 
respectively. yl,k and yd,m are binary indicators for class labels k 
and m in the lung and disease decoders, respectively, whereas 
pl,k and pd,m are the predicted probability of classes k and m in 
the lung and disease decoders, respectively. Finally, vk and vm 
are the weights used for each class. For our experiments we 
used vk = {1, 4} for the lung decoder and vm = {1, 65} for the 
disease decoder.

Moreover, we integrated the semantic constraints, as follows:

  ( ,1) (1 ,1)s d lL log p y=− ⋅ − ,

where pd,l is the predicted probability for the class disease and yl 
is the label for the lung class. The entire loss is then defined as

1 2 3ol l d sL L L Lω ω ω= + + ,
where v1, v2, and v3 are the weights that define how much 
each of the components will participate in the final loss. For 
our experiments, we kept all the weights equal to one. The ar-
chitecture is in Figure 2. For the training of AtlasNet, we used 
six different deep convolutional neural networks with a Seg-
Net autoencoder architecture. After the training of the six deep 
convolutional neural networks, AtlasNet combined their pre-
dictions by using an ensemble strategy and applied a simple-
majority voting principle.

For comparison purposes, we also trained a U-Net (Depart-
ment of Computer Science, University of Freiburg, Freiburg, 
Germany) (18) architecture on the same data (Fig 3). The same 
parameters for training all networks (initial learning rate = 0.01, 
decrease of learning rate = 2.5 3 1023 every 10 epochs, mo-
mentum = 0.9, and weight decay = 5 3 1024) were used. The 
training of a single network was completed in approximately 16 
hours by using a graphics processing unit (GeForce GTX 1080; 
NVIDIA, Santa Clara, Calif ), whereas the prediction for a single 
CT scan was completed in a few seconds. A total of 6888 images 
containing annotations for both lung and disease, each with a 
dimension of 512 3 512 pixels, were used for training (80%) 
and validation (20%). AtlasNet does not use any conventional 
data augmentation method. AtlasNet is based on the principle 
of mapping all training examples to several different templates 
through deformable registration, which can be seen as an ana-
tomically plausible data-augmentation approach. To address the 
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 .05; Table 1), except for a 
significantly lower proportion 
of patients without detectable 
autoantibodies (P = .017). 
There was also a slightly larger 
ILD extent in the test dataset 
(17.5% vs 12.7% with Atlas-
Net segmentation [P = .043] 
and 19.0% vs 13.1% with U-
Net [P = .049]).

Patients from the correla-
tion-with-PFTs dataset were 
mainly women (137 of 171; 
80.1%), with a median age of 
58 years (IQR, 48–67 years). 
The proportions of diffuse (83 
of 171; 48.5%) and limited 
(88 of 171; 51.5%) SSc were 
similar. Most patients had pos-
itive anti–Scl-70 autoantibod-
ies (92 of 171; 53.8%). The 
mean interval between CT 
and PFTs was 0 days (IQR, 
0–0 days; range, 0–92 days). 
The median forced vital capac-
ity was 88% of the predicted 
value (IQR, 72%–104%), and 
the median total lung capac-
ity was 89% of the predicted 
value (IQR, 74%–103%). 
Pulmonary gas exchange was 
also impaired, with a median 
corrected-for-hemoglobin 
diffusion lung capacity for 
carbon monoxide of 51% of 
the predicted value (IQR, 
36%–65%) and a median cor-
rected-for-hemoglobin carbon 
monoxide transfer coefficient 
of 74% of the predicted value 
(IQR, 59%–82%).

Additionally, 31 patients 
from another institution were 
included in the external valida-
tion dataset. Patients from this 
dataset were mainly women (24 
of 31; 77%) with a median age 
of 60 years (IQR, 46–71 years). 
Their clinical characteristics were 
not significantly different from 
those from the correlation-with-
PFTs set (P  .05), except for a 
significantly higher carbon mon-
oxide transfer coefficient (P = 
.026), but the disease extent was 
not different (P  .05) (Table 1).

Figure 2: Architecture of the AtlasNet framework. ReLU = rectified linear unit.

Figure 3: Visual representation of the U-Net framework. Conv = conversion, max pool = max pooling, ReLU = rectified 
linear unit.

http://radiology-ai.rsna.org
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Segmentation Comparisons
Regarding the intraobserver variation in the training dataset, 
the median DSC was 0.75 (IQR, 0.70–0.78). The median 
DSC between the readers’ assessment of the test dataset ranged 
from 0.68 to 0.71. By using AtlasNet, the median DSCs be-
tween the deep learning and manually outlined ILD extent for 
each radiologist (Fig 4) ranged from 0.74 (IQR, 0.65–0.77) to 
0.75 (IQR, 0.63–0.79) (Table 2). DSCs between the U-Net 
and manually outlined ILD extent were lower, ranging from 
0.71 (IQR, 0.61–0.77) to 0.72 (IQR, 0.63–0.78). For the 
lung segmentation, AtlasNet achieved a DSC of 0.985 (IQR, 
0.966–0.989), compared with 0.974 (IQR, 0.968–0.979) for 
U-Net. Moreover, U-Net occasionally generated false disease 
detections in organs outside the lung, such as the stomach, 
which was not observed with AtlasNet. Two three-dimensional 
networks were used to evaluate whether the disease segmen-
tation could be improved with a three-dimensional approach 
(Appendix E1 [supplement]). The performance was not im-
proved (mean DSCs for the best model were 0.66 for the train-
ing dataset, 0.60 for the validation dataset, and 0.55 for the test 
dataset), which we explain by the fact that the proportion of 

diseased lung (1.29% of the whole CT volume) was too small 
for a three-dimensional approach.

By using AtlasNet architecture, the median normalized vol-
ume of diseased lung in the correlation-with-PFTs dataset was 
12.7% (IQR, 4.0%–24.7%). Among all PFT parameters, the 
highest correlation was obtained with diffusion lung capacity for 
carbon monoxide (r = −0.76; P , .001) (Fig 5). The computed 
disease extent also correlated well with total lung capacity (r = 
−0.70; P , .001), forced vital capacity (r = −0.62; P , .001), 
and the carbon monoxide transfer coefficient (r = −0.54; P , 
.001) (Table 3). Correlation with PFT results was in the same 
range when U-Net architecture was used (r = −0.75 for diffu-
sion lung capacity for carbon monoxide, r = −0.69 for total lung 
capacity, r = −0.61 for forced vital capacity, and r = −0.53 for the 
carbon monoxide transfer coefficient; P , .001 for all).

In the external validation dataset, we observed similar cor-
relation levels with total lung capacity and forced vital capacity 
(r = −0.70 to −0.72 and −0.57 to −0.60, respectively), whereas 
the correlation with diffusion lung capacity for carbon monox-
ide was weaker, especially for U-Net (r = −0.60) versus AtlasNet 
(r = −0.65; P , .001 for both).

Table 1: Characteristics of Patients with Systemic Sclerosis from Our Institution and External Validation Dataset

Parameter
Training Data-
set (n = 17) Test Dataset (n = 20)

Correlation-
with-PFTs 
Dataset
(n = 171) P Value*

External Valida-
tion Dataset (n 
= 31) P Value†

Age (y) 55 [50–64] 55 [46–64] 58 [48–67] .752 60.0 [46–71] .939
No. of women 14 (82) 17 (85) 137 (80) .942 24 (77) .808
Diffuse SSc 6 (35) 13 (65) 83 (49) .199 ND
Modified Rodnan skin score 9 [6–13] 13 [4–18] 8 [2–16] .520 ND
Detection of autoantibodies‡

 Anticentromere 0 1 (5) 26 (15) .318 ND
 Anti–Scl-70 12 (71) 11 (55) 92 (54) .432 ND
 Other 4 (23) 5 (25) 51 (30) .872 ND
 None 1 (6) 3 (15) 3 (2) .017 ND
PFTs
 Predicted TLC (%) 91 [83–105] 81 [76–88] 89 [74–103] .161 87.0 [74–91] .193
 Predicted FVC (%) 78 [64–96] 78 [57–88] 88 [72–104] .149 84.0 [76–93] .471
 Predicted DLCO (%) 47 [34–67] 45 [34–50] 51 [36–65] .364 53.0 [42–61] .121
 Predicted KCO (%) 66 [55–74] 70 [53–84] 74[59–82] .357 77.0 [66–81] .026

ILD extent§

 AtlasNet … 17.5 [12.7–30.8] 12.7 [4.0–
24.7]

.043 10.6 [6.4–
22.5]

.904

 U-Net … 19.0 [13.8–33.1] 13.1 [4.8–
27.2]

.049 10.8 [6.6–
22.4]

.552

Note.—For quantitative variables, data are medians, and numbers in brackets are the interquartile ranges. For qualitative variables, data 
are numbers of patients, and numbers in parentheses are percentages. DLCO = diffusion lung capacity for carbon monoxide, FVC = 
forced vital capacity, ILD = interstitial lung disease, KCO = carbon monoxide transfer coefficient, ND = not determined, PFT = pulmo-
nary function test, SSc = systemic sclerosis, TLC = total lung capacity.
* Comparison among training, test, and correlation-with-PFTs datasets.
† Comparison between correlation-with-PFTs and external validation datasets.
‡ One patient had both anticentromere and anti–Scl-70 antibodies in the correlation-with-PFTs dataset.
§ Percentage of lung volume on CT image.
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Discussion
We reported a deep learning–based method to evaluate the ex-
tent of ILD in patients with SSc with results similar to those 
of radiologists. The advantage is that our method allows quan-
titative analysis of all CT images, which is in contrast to visual 
scoring. The ILD extent provided by our model with AtlasNet 
architecture was well correlated with PFT results, especially 
diffusion lung capacity for carbon monoxide.

Similar to Humphries et al (20), who studied idiopathic 
pulmonary fibrosis, we chose to focus our method on the as-
sessment of the overall extent of ILD, rather than choosing a 
pattern-based approach. Indeed, the overall percentage of dis-
eased lung has been reported to be a strong predictor of mor-
tality in patients with SSc (6), without referring to the specific 
patterns. Moreover, individual signs of ILD such as reticulations 
and ground-glass opacities often overlap, and the interobserver 
agreement for the differentiation between bronchiectasis and 
honeycombing is only moderate (21).

To test the performance of our model, we first calculated the 
DSC variability among radiologists in the test dataset. Manual 
ILD contouring on chest CT scans can be time-consuming, and 
image segmentation is subject to interobserver variability (22). 
The DSC is the most common metric for validating medical vol-
ume segmentations (23). The median radiologists’ DSCs ranged 
from 0.68 to 0.71, which is similar to the results by O’Neil et al 
(22), who found DSCs of observers ranging from 0.41 to 0.77 

for overall ILD segmentation but 
found lower DSC values for indi-
vidual signs of ILD (22,23). It is 
noteworthy that there were fewer 
differences between the algorithm 
and each radiologist’s ILD contours 
than among radiologists’ contours 
in our study. AtlasNet performed 
better than U-Net, showing 3% 
absolute improvement on DSCs 
for the disease segmentation.

Other methods, such as patch-
based approaches, have been evaluated for computer-aided ILD 
segmentation, with diverse results (24–26). Patch-based ap-
proaches exploit only local information, without accounting for 
the information contained in the whole CT slice, which we did 
with our deep convolutional neural network approach. Spatial lo-
calization is a key element of ILD analysis at CT, especially for the 
diagnosis of idiopathic pulmonary fibrosis (27,28). In SSc, ILD 
distribution is also a key feature and usually predominates in the 
subpleural aspects of the lower lobes (29,30).

The results of our deep learning algorithm showed good corre-
lation with PFT parameters, higher than those previously reported 
for visual scores (r = −0.70 vs −0.38 to −0.39 for total lung capac-
ity, r = −0.62 vs −0.39 to −0.43 for forced vital capacity, and r = 
−0.76 vs −0.39 to −0.50 for diffusion lung capacity for carbon 
monoxide) (6,29,31,32) as well as those obtained by Kim et al 
(24) by using a texture-based classifier for SSc ILD segmentation 
in the Scleroderma Lung Study I cohort (r = −0.32 for forced vital 
capacity, r = −0.34 for total lung capacity, and r = −0.35 for diffu-
sion lung capacity for carbon monoxide). This group developed a 
texture-based classifier by using a local histogram analysis of small 
patches to classify each voxel into different lung patterns and a 
support-vector machine algorithm (33). By using this method, 
Tashkin et al (34) reported a weaker correlation between ILD ex-
tent at CT and diffusion lung capacity for carbon monoxide (r = 
−0.39) than that observed in our study. The same approach, based 
on textural analysis and the support-vector machine algorithm, 

Table 2: Median Dice Similarity Coefficients between Interstitial Lung Disease Con-
tours in Test Dataset

Reader Radiologist 2 Radiologist 3 AtlasNet U-Net

Radiologist 1 0.70 (0.63–0.77) 0.68 (0.60–0.74) 0.74 (0.65–0.79) 0.72 (0.68–0.77)
Radiologist 2 … 0.71 (0.65–0.77) 0.75 (0.63–0.79) 0.73 (0.64–0.78)
Radiologist 3 … … 0.74 (0.65–0.77) 0.71 (0.62–0.77)

Note.—Data are medians; data in parentheses are interquartile ranges. 

Figure 4: Comparison between automated and manual segmentations in, A, a 52-year-old woman with systemic sclerosis–related interstitial lung disease and, B, 
a 38-year-old man with systemic sclerosis–related interstitial lung disease. Contouring of these diseased areas was similar as performed by the algorithm and the three 
radiologists.
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has been used for the quantification of idiopathic pulmonary fi-
brosis (35). The correlations with forced vital capacity predicted 
percentage and with diffusion lung capacity for carbon monox-
ide predicted percentage ranged from −0.37 to −0.49 and from 
−0.57 to −0.68, respectively, which were weaker than the correla-
tions obtained by our method. We tested the developed algorithm 
on an external dataset of 31 patients with scleroderma and found 
the correlation with pulmonary indexes to be in the same range 
for total lung capacity and forced vital capacity, and although the 
correlation with diffusion lung capacity for carbon monoxide was 
weaker, the correlations remained superior to those reported for 
visual scores.

A histogram-based approach has been proposed by 
Salaffi et al (36). Unlike the texture-based classifier (24), 
this method uses the histogram characteristics of the entire 
lung. In this semiautomated method, SSc ILD is quanti-
fied by isolating lung attenuation values between −200 and 
−700 HU. The correlations with the forced vital capacity (r 
= −0.56) and the diffusion lung capacity for carbon mon-
oxide (r = −0.67) obtained in that study were close to those 
obtained in ours. However, because there is no anatomic 
characterization of the disease, any cause of increased lung 
attenuation, caused by infection, for example, may interfere 
with the quantification.

Table 3: Correlation between Disease Extent and PFT Parameters

Parameter

Test Dataset (n = 20)
Correlation-with-PFTs Dataset (n = 

171) External Validation Dataset (n = 31)

AtlasNet U-Net AtlasNet U-Net AtlasNet U-Net

r Value P Value r Value P Value r Value P Value r Value P Value r Value P Value r Value P Value

Predicted 
TLC (%)

−0.4 .09 −0.37 .106 −0.70 ,.001 −0.69 ,.001 −0.7 ,.001 −0.72 ,.001

Predicted 
FVC (%)

−0.49 .023 −0.44 .051 −0.62 ,.001 −0.61 ,.001 −0.57 ,.001 −0.6 ,.001

Predicted 
DLCO 
(%)

−0.57 .009 −0.63 .003 −0.76 ,.001 −0.75 ,.001 −0.65 ,.001 −0.6 ,.001

Predicted 
KCO (%)

−0.39 .09 −0.46 .04 −0.54 ,.001 −0.53 <.001 −0.35 .068 −0.34 .084

Note.—DLCO = diffusion lung capacity for carbon monoxide, FVC = forced vital capacity, KCO = carbon monoxide transfer coefficient, 
PFT = pulmonary function test, TLC = total lung capacity.

Figure 5: Relationship between systemic sclerosis–related interstitial lung disease extent measured by the algorithm and measure-
ments from pulmonary function tests. DLCO = diffusion lung capacity for carbon monoxide, FVC = forced vital capacity, KCO = carbon 
monoxide transfer coefficient, TLC = total lung capacity.
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The strength of our study was that the algorithm was vali-
dated in comparison with radiologists’ findings, and its clinical 
relevance was evaluated in a large patient group from a reference 
center and confirmed with an external dataset. In addition, the 
training and testing phases were based on heterogeneous CT im-
ages. Because technical parameters are known to substantially 
influence imaging features, it was essential to train the algorithm 
with various CT parameters so that it would be applicable in any 
CT protocol (37,38).

Our study had limitations. We could not assess the repeat-
ability of our deep learning algorithm when assessing disease 
extent on distinct but concomitant CT acquisitions. Indeed, 
patients from this retrospective dataset had no medical reason to 
undergo short-term repeated CT examinations. Another limi-
tation was the use of annotations from only one observer for 
the training dataset. However, the DSCs between computed and 
manual outlines by three observers were similar, confirming that 
this did not bias our results.

In conclusion, we have developed a fully automatic, deep 
learning–based method that performs as well as radiologists for 
outlining ILD extent at chest CT of patients with SSc and has 
the advantage of being applicable to all acquired images. Thus, 
the total disease extent, which is a recognized powerful predictor 
of mortality, can be automatically quantified. We believe that 
this method can thus contribute to improved efficiency of pa-
tient care for patients with SSc, and future refinements will allow 
its use in various additional pulmonary diseases.
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