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A B S T R A C T

Artificial intelligence is a hot topic in medical imaging. The development of deep learning methods and in
particular the use of convolutional neural networks (CNNs), have led to substantial performance gain over the
classic machine learning techniques. Multiple usages are currently being evaluated, especially for thoracic
imaging, such as such as lung nodule evaluation, tuberculosis or pneumonia detection or quantification of diffuse
lung diseases. Chest radiography is a near perfect domain for the development of deep learning algorithms for
automatic interpretation, requiring large annotated datasets, in view of the high number of procedures and
increasing data availability. Current algorithms are able to detect up to 14 common anomalies, when present as
isolated findings. Chest computed tomography is another major field of application for artificial intelligence,
especially in the perspective of large scale lung cancer screening. It is important for radiologists to apprehend,
contribute actively and lead this new era of radiology powered by artificial intelligence. Such a perspective
requires understanding new terms and concepts associated with machine learning. The objective of this paper is
to provide useful definitions for understanding the methods used and their possibilities, and report current and
future developments for thoracic imaging. Prospective validation of AI tools will be required before reaching
routine clinical implementation.

1. Introduction

Artificial intelligence has become a hot topic in radiology these last
years, with already 150 deep learning articles only focusing on medical
imaging in 2018 [1]. Machine learning gives computers the ability to
learn from data and reproduce human interpretations without being
explicitly programmed. Computer vision, a scientific field of particular
interest for radiologists, shares a number of objectives with machine
learning. The goal is to make it possible for machines to analyze, pro-
cess and understand digital to automate tasks that the human visual
system can do.

Traditional machine learning techniques have been used from the
80 s. The availability of large datasets and the increasing computing
capabilities driven from the development of graphic processing units
(GPU) have been the foundational elements for the development of
neural networks, and especially of convolutional neural networks
(CNNs) [2]. Neural networks are designed to mimic the way the human
brain processes information. They combine multiple formal neurons,
each of them processing part of the information, with their intelligent
combination leading to the final decision rule. Deep neural networks

are characterized by a specific configuration where neurons are orga-
nized in multiples layers. Deep learning currently represents the state-
of-the art in machine learning for a variety of applications. Classifica-
tion, disease detection and segmentation have been primarily the tasks
that benefited from the development of deep learning. Computational
imaging encompasses other objectives as well, such as radiomics.
Radiomics consist of extracting and analyzing imaging features (e.g.
characteristics which are invisible to the human eye) such as shape,
texture, or intensity of voxels [3]. The selected features can be used for
classification purposes, such as the benign or malignant nature of a lung
nodule but also for evaluating the prognosis or the probability of re-
sponse to treatment of lung malignancies. Radiomic analysis relies on
statistics, using various methods such as clustering or dimensionality
reduction, random forest, linear regression and others. Computer aided
diagnosis (CAD) refers to tools which have been developed to assist
image reading. The main difference between classical machine learning
and deep neural networks is that deep learning replaces the process of
feature extraction and disease classification of the traditional CAD
systems, but requires large datasets for training.

Thoracic imaging is an important domain for developing solutions
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based on artificial intelligence, for several reasons. If we consider chest
radiography (CXR), it is one of the most frequently performed proce-
dures in medicine. In all institutions, it represents a huge work load,
and in some countries there are not enough radiologists to interpret
CXR. Furthermore, detection errors are common due the low contrast
between lesions and the surrounding lung and the superposition of bone
structures and computed assisted tools can be helpful. CAD has been
reported to improve reader accuracy for the detection of lung cancers
previously missed on CXR [4]. Lung cancer screening with low dose CT
has been demonstrated to reduce lung cancer-related mortality [5] and
it is expected that after the United States, European countries could
start large scale screening [6] which will require a lot of resources in
view of the huge number of eligible patients. This is another reason why
AI-based algorithms could assist thoracic radiologists.

In this review, we will present the current state of AI in thoracic
imaging, an active field of research for the development of AI algo-
rithms, starting with the applications for chest radiography and then
discussing those for chest computed tomography.

2. Artificial intelligence applied to chest radiograph (CXR)
reading

The World Health Organization estimates that two thirds of the
global population lack access to imaging and radiology diagnostics [7].
Thoracic imaging techniques such as digital chest radiography have the
major advantage to be easy to use and affordable, even in developing or
underdeveloped areas. It consists of 2D images and several billions have
already been stored on picture archiving and communication systems
(PACS) and linked to radiological reports. However, there is a shortage
of experts who can interpret chest radiographies, even when imaging
equipment is available, which opens tremendous perspectives for the
impact of artificial intelligence applied to thoracic imaging.

The first application of artificial intelligence is workflow optimiza-
tion, by detecting CXR with possible abnormalities that should be read
first among all CXR of the work list. Using density and texture-based
features, Kao et al. developed a CAD system to automatically determine
abnormal chest examinations in the work list of radiologists inter-
preting chest examinations. The turnaround time for reporting ab-
normal CXR was reduced by 44 % [8]. CAD can be used for specific
detection tasks on chest radiograph, such as detection of tuberculosis,
pneumonia or lung nodule, and even more advances tasks such as
multiple disease detection are being developed as well [9].

2.1. Lung nodule diagnosis

Among specific tasks, a major application of CAD is the diagnosis of
lung nodules on chest radiography. This includes CAD for detection
(CADe), and CAD for characterization (CADx) used to evaluate the
nodule probability of malignancy or a combination of them. Whereas
radiomics is often used for CADx, either using deep learning or classic
machine learning techniques, the current tendency for developing
CADe tools is to use deep learning.

Traditional pulmonary nodule CAD systems include image pre-
processing, nodule detection using various algorithms, extraction of
features and classification of the candidate lesions as nodules and non-
nodules. The number of selected features (intensity, shape, texture,
size) and the machine learning algorithm used for classification (sup-
port vector machine, Fisher linear discriminant and others) depend on
the CAD system. The objective is to have adequate sensitivity with a
low number of false positives detections. The development of con-
volution neural networks has opened new perspectives, but require
large annotated chest radiograph datasets, in order to avoid under and
overfitting (defined in upcoming section). Transfer learning could
overcome this requirement. It consists on training algorithm non-
medical, everyday images on a large data set and initializing the net-
work with its parameters on the smaller medical image dataset. Bush

et al. pre trained a CNN model on a subset of the ImageNet dataset
which contains millions of labeled real-word images and retrained it to
classify chest radiographs as positive or negative for the presence of
lung nodules with a sensitivity of 92 % and a specificity of 86 % [10].

More recently Nam et al. developed a deep learning-based detection
algorithm for malignant pulmonary nodules on chest radiographs and
compared its performance with that of physicians, with half of them
being radiologists. They used a dataset of 43 292 chest radiographs with
a normal to diseased ratio of 3.67. Using an external validation dataset,
they found AUC of the developed algorithm was higher than that of 17
of the 18 physicians. All physicians showed improved nodule detection
when using the algorithm as second reader [11].

2.2. Tuberculosis diagnosis

Automated detection of tuberculosis on chest radiographs is another
important field of research. Tuberculosis is an important cause of death
worldwide, with a high prevalence in underdeveloped areas where
radiologists are lacking. Several approaches have been used to detect
tuberculosis manifestations in CXRs. Traditional machine learning ap-
proaches mainly used textural features, with or without applying bone
suppression as pre-treatment of CXR images. Rohmah et al. used sta-
tistical features in the image histogram to identify TB positive radio-
graphs and reached an accuracy of 95.7 % [12]. Others used a com-
bination of textural, focal, and shape abnormality analysis [13]. Hwang
et al. introduced a deep learning for automated detection of active
pulmonary tuberculosis on chest radiographs. Their solution out-
performed physicians including thoracic radiologists [14]. Lakhani
et al. retrained two CNNs (AlexNet and GoogLeNet) pre-trained on non-
medical images on a dataset of 1007 CXRs, with an equivalent number
of positive and negative tuberculosis cases. The AUC was 0.99 for the
best performing classifier combining the 2 pre-trained CNNs which
were activated on areas of the lung where the disease was present, in
the upper lobes [15]. However, as acknowledged by the authors, the
model was trained for a specific task, which was differentiating normal
versus abnormal CXR regarding tuberculosis suspicion. The model
might falsely consider as tuberculosis positive chest radiographs with
pathologic findings having a similar radiographic appearance, such as
lung cancers and bacterial pneumonia. This limits the use of the algo-
rithm to areas of high tuberculosis prevalence and few mimickers, such
as lung cancer also affecting the upper lung zones.

2.3. Detection of pneumonia

In addition to pulmonary nodules and tuberculosis there are acute
conditions that can be detected using such computer-aided solutions,
like pneumonia. Rajpurkar et al. trained Chexnet, a deep learning al-
gorithm for pneumonia detection of and compared its performance to
that of 4 radiologists, using F1 score metric. Their model performed
better than the averaged radiologists even though no better than the
best radiologist [16].

2.4. Detection of common chest radiograph anomalies

Beyond lung nodule detection or other specific detection tasks, de-
tection of multiple abnormalities is more challenging but in phase with
the clinical practice, since frequently there are multiple abnormalities
in the chest radiographs. Automated chest radiography reading based
on deep learning is currently an intense field of research. As previously
mentioned, deep learning-based algorithms need to be trained on large
datasets. The amount and the diversity of data are of major importance.
In a perfectly balanced scenario it could produce optimal results but
often two other phenomena are observed, namely overfitting and un-
derfitting. Underfitting occurs when the model fails to does not perform
well on both training and validation datasets. Overfitting refers to
model achieving excellent performance on the training data, but low
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performance on new, unseen images which is often called poor gen-
eralization. Generalization is a critical point for deep learning. If neural
networks are trained on standardized images, acquired with the same
protocol from only one vendor the risk is that the developed algorithm
will not perform well for new unseen cases acquired with different
parameters. This is also the reason why the data must be split into
training, validation and test datasets with performances ideally vali-
dated on an external independent cohort. Once the training and testing
datasets have been defined, the next required step towards leveraging
artificial intelligence - in particular for methods such as deep learning -
refers to the annotation of data. For image analysis there are several
ways to generate annotated datasets depending on the level of detail
that these annotations will provide and depending on the task that they
address.

For classification tasks, labeling is a way of annotation where
images are globally labeled with one or several classes (labels) that is
often called weak annotations. The exact localization of the anomaly is
not necessarily provided on the image. Several large databases of an-
notated chest radiographies are publicly available for developing re-
search projects. One of the largest databases is chestX -ray8, already
mentioned, built from the clinical PACS of the hospitals affiliated to the
National Institute of Health. This database includes 112,120 frontal
views of 30,805 patients and initially the image labels of 8 diseases,
then extended to 14 diseases (chestX –ray14), including atelectasis,
consolidation, infiltration, pneumothorax, edema, emphysema, fibrosis,
effusion, pneumonia, pleural thickening, cardiomegaly, nodule, mass,
and hernia.

Rajpurkar et al. compared the performance of Chexnet, trained on
chestx-ray14 dataset to that of 9 radiologists on a validation set of 420
images containing examples of the pathology labels. The radiologists
achieved statistically significantly higher AUC performance on cardio-
megaly, emphysema, and hiatal hernia, whereas for other pathologies,
AUCs reached with the algorithm were either significantly higher (at-
electasis) or with no statistically significant difference (other 10
pathologies) [17]. Hwang et al. developed a deep learning-based al-
gorithm able to distinguish normal and abnormal chest radiograph re-
sults, including malignant neoplasm, active tuberculosis, pneumonia,
and pneumothorax. The algorithm was trained on a dataset of 54 221
normal chest radiographs and 35 613 with abnormal findings. External
validation using486 normal and 529 abnormal chest radiographs was
performed. With a median 0.979 AUC, the algorithm demonstrated
significantly higher performance than non-radiology physicians, board-
certified radiologists, and thoracic radiologists. Human readers'

performance increased when assisted by AI algorithms[18].
These results open new perspectives, but it is noteworthy that the

algorithm was tested for anomalies present as isolated pathologic
findings. The performance was not evaluated for combined abnormal-
ities, which is critical for a successful implementation in clinical prac-
tice.

3. Artificial intelligence applied to chest computed tomography
(CT) reading

3.1. Lung nodule

3.1.1. Lung nodule detection
The application of medical image analysis to thoracic CT is not a

novel research area. CAD has been used for automated lung nodule
detection on CT. Early approaches at the beginning of the 2000’s were
based on traditional machine learning approaches, such as Support
Vector Machines (SVMs). Commercially available computer-aided de-
tection packages were proposed by companies like Siemens (Lung
Vcare) General electric (CT ALA for advanced lung analysis), R2
Technology (Image checker) and others.

Even though none of the two large randomized lung cancer
screening studies, NLST (National lung cancer screening trial) [19]and
NELSON [20] used CAD for lung nodule detection, an ancillary study
from the NELSON group, published in 2012 [21] compared CAD and
double reading by radiologists, in a cohort of 400 CT scans randomly
selected from the NELSON database. The lung CAD algorithm used in
this study was commercial software from Siemens, available since 2006
(LungCAD VB10A). Ground truth was established by a consensus
reading from expert chest radiologists. The sensitivity for lung nodule
detection was 78.1 % for double reading and 96.7 % for CAD, at an
average cost of 3.7 false positive detections per examination. However,
there were only 5 subsolid nodules (either non-solid or part-solid) in the
400 selected CT scans, and 2 of them were not detected by CAD. Using
another commercial CAD, only 50 % of subsolid nodules were detected
at best with the highest sensitivity setting, at the average cost of 17 CAD
marks per CT [22]. Visual confirmation remains necessary for reducing
false positives when using a CAD for the detection of subsolid nodules
[23].

For solid nodules, easier to detect, sensitivity should be adjusted to
only detect lung nodules of at least 6 mm, according to lung-RADS and
Fleischner guidelines [24]. This is a way to limit the false positive de-
tections, and the number of candidate lesions to evaluate (Fig. 1).

Fig. 1. CADe for lung nodule detection. Using commercially available software (Thoracic VCAR, GE healthcare, Buc, France), the number of candidate lesion is very
high (32 red spots) when the sensitivity is adjusted at its highest level, to detect lung nodules from 2mm (A). Using a different setting, to only detect nodules of at
least 4mm, the number of candidate lesions goes down to 5 (B). When adjusted to 6mm, no more candidate lesions are detected (not shown).
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Using CAD for the detection of lung nodules in patients with extra-
thoracic malignancies improved the detection of lung nodules, at the
cost of an 11 % increase of reading time [25].

3.1.2. Lung nodule volumetry
If not used for lung nodule detection, CAD has been used for cal-

culating the volume of screen-detected nodules in the NELSON study
and estimating the volumetry-based doubling time. This strategy was
the basis of lung nodule management in the NELSON study, nodules of
less than 50mm3 were considered as negative screen together with lung
nodules between 50 and 500mm3 for which the volumetry-based
doubling time, calculated at 3 months was more than 400 days [26].
This strategy was proven to notably reduce the false positive rate. The
ratio of positive screens (true and false positives) was 6.6 %, in the
NELSON study, compared to 24.1 % in NSLT, where nodule diameters
were manually measured and any nodule of at least 4 mm was con-
sidered as a positive screen. The limits of diameter manual measure-
ments are well known, the intra and inter reader repeatability are 1.4
and 1.7 mm respectively [27], which does not allow to reliably detect
malignant growth at 3 months for nodules of less than 10mm. Con-
versely, software-based volumetric measurements are highly repeatable
[28] and doubling times of more than 500 days for solid nodules have a
98 % negative predictive value for the diagnosis of malignancy [29].
This is the reason why the European position statement recommends
volume measurement and volume-doubling time estimation for the
management of detected solid nodules [6].

Volumetry software are less reliable for subsolid nodules, even
though doubling times of solid and nonsolid component of part-solid
nodules can be separately estimated (Fig. 2).

3.1.3. Approach by radiomics
Besides volumetry-based doubling time estimation, another ap-

proach for lung nodule characterization is to use radiomics to analyze
imaging features derived from medical images. Radiomics can be used
to characterize tumor aggressiveness, viability, response to che-
motherapy and/or radiation [30]. Therefore, a radiomic approach can
help to reveal unique information about tumor biological behavior. It
can be used for prognosis estimation in confirmed lung cancers [31] or
to estimate the risk of distant metastasis [32]. Radiomics has also been
used to predict histology and mutational profile of lung tumors [33].
Using principal component analysis (PCA) on stable, reproducible fea-
tures, the authors obtained a radiomic signature able to successfully
discriminate between EGFR+and EGFR- cases, with an AUC of 0.69.

The problem of radiomics is the robustness and generalizability of
the learned signatures. Indeed, radiomics analysis performed on images
acquired under specific, homogeneous imaging conditions, are not re-
presentative of clinical routine [34]. Another important condition in the
selection of features is their reproducibility.

3.1.4. Deep learning
The use of CNN for CT images is more complex than for 2D chest

radiograph images, due to the 3D nature of images, the high number of
slices and smaller size of datasets, requiring data augmentation tech-
niques. To overcome these problems, some studies use 2D CNNs applied
to each slice, whereas others choose to adopt a patch-based approach or
reduce the image size at the cost - for both cases - of a loss of in-
formation. Despite these technical difficulties, results are promising and
CNNs generally allow obtaining better results than traditional machine
learning methods. Using deep learning, Zhao et al. obtained an AUC
value of 0.758 for predicting EGFR mutation[35].

Fig. 2. Volumetry-based doubling time
measurement of a part-solid nodule.
Baseline CT demonstrates a part-solid
nodule of the right upper lobe (A), with
small solid component of 59mm3 (B).
Follow-up CT performed 13 months
later shows an increase of the solid
portion (C). The whole nodule doubling
time is 529 days (Thoracic VCAR soft-
ware), relatively indolent, but the solid
component doubling time is only 121
days, typically in the malignant range
and reflecting aggressiveness, whereas
the nonsolid component doubling time
is almost 3 years (D).
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For the 2017 Kaggle Data Science Bowl (KDSB17), whose objective
was to predict the cancer risk at 1 year, based on lung cancer screening
CT examinations, all frontrunner teams used deep learning.

Ardila et al. trained a deep learning algorithm on a NLST dataset
from 14,851 patients, 578 of whom having developed lung cancer
within the next year [36]. They then tested the model on a first test
dataset of 6716 cases, achieving an AUC of 94,4 %. Comparison to 6
radiologists was performed for a subset of 507 patients, and the model’
performance was equivalent or higher to all of them when a single CT
was analyzed, whereas performances were equivalent when the model
and the radiologists made a decision including patients’ previous CT
scans.

3.2. Diffuse lung diseases

The use of CNN for thoracic CT is not restricted to nodule evaluation
but can also be applied to diagnose and stage COPD and predict acute
respiratory distress (ARD) and mortality in smokers [37]. Training a
CNN on the CT scans of 7,983 COPDGene participants, AUC for the
detection of COPD was 0.856 in a non overlapping cohort of 1000
another COPDGene participants. AUCs for ARD events were 0.64 and
0.55 in COPDGene and ECLIPSE participants, respectively.

CNNs can also be used for the detection and quantification of in-
filtrative lung diseases (ILD) or for automated classification of fibrotic
lung diseases. Indeed, even though classification criteria have been
established by consensus of 4 expert societies, inter radiologist agree-
ment is only moderate at best, even among experts, and there is a
shortage of experts [38].

Walsh et al. trained a CNN algorithm for automated classification of
fibrotic lung disease on a database of 1157 high-resolution CT scans
from two institutions showing evidence of diffuse fibrotic lung disease.
When comparing the model performance with that of 91 radiologists,
the model accuracy was 73·3 % compared to a median radiologist ac-
curacy of 70·7 % [39].

The majority of previous work on ILD pattern detection was based
on 2D image classification using a patch-based approach. This approach
consists in dividing the lung into numerous small patches of the same
size (e.g., 32× 32 pixels) and to classify them into one of the ILD
pattern classes. Different classifiers can be used, such as SVM,
Boltzmann machines, convolutional neural networks (CNNs) local
binary patterns and multiple instance learning [40]. These classifiers
are trained on datasets including thousands of annotated patches, re-
presentatives of each class to identify, normal ground glass, honey-
combing, emphysema. Caliper software was developed using the patch-
based approach, for the quantification of disease extent and change in
idiopathic pulmonary fibrosis [41,42]. The main advantages of this
approach are the possibility to separately quantify each anomaly, and
the need for only week annotation (e.g. categorization), which is less
time consuming than semantic segmentation which requires precisely
contouring disease extent on CT images.

However patch-based methods do not integrate spatial information

such as the subpleural location and basal predominance. In the central
lung portion, some bronchi may be misclassified as honeycombing.
Furthermore, the results might be disappointing when the model is
applied to the whole CT image, as problematic patches including more
than one pattern might have been excluded from the training datasets,
similarly to frontier patches at the very lung periphery, close to the
chest wall. Another approach is the segmentation of the whole fibrotic
extent without quantifying each component [43]. This requires con-
touring the abnormal fibrotic areas on every abnormal slices, which is
time consuming but allow then applying the model to the whole lung
volume (Fig. 3).

4. Conclusion

Machine learning has already been part of the radiologists’ daily life
for several years. Multiple applications are currently being developed
with deep learning-based approaches and will require prospective
clinical evaluation. These developments shouldn’t be considered as a
threat but more as an opportunity. Radiologists can benefit from
workflow optimization, and gain performance for detection, char-
acterization and quantification tasks, especially in the field of thoracic
imaging. Human validation remains necessary as full automation of
imaging tasks cannot be considered at this time.
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