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Abstract
Relevance and penetration of machine learning in clinical practice is a recent phenomenon with multiple applications being
currently under development. Deep learning—and especially convolutional neural networks (CNNs)—is a subset of machine
learning, which has recently entered the field of thoracic imaging. The structure of neural networks, organized in multiple layers,
allows them to address complex tasks. For several clinical situations, CNNs have demonstrated superior performance as com-
pared with classical machine learning algorithms and in some cases achieved comparable or better performance than clinical
experts. Chest radiography, a high-volume procedure, is a natural application domain because of the large amount of stored
images and reports facilitating the training of deep learning algorithms. Several algorithms for automated reporting have been
developed. The training of deep learning algorithm CT images is more complex due to the dimension, variability, and complexity
of the 3D signal. The role of these methods is likely to increase in clinical practice as a complement of the radiologist’s expertise.
The objective of this review is to provide definitions for understanding the methods and their potential applications for thoracic
imaging.
Key Points
• Deep learning outperforms other machine learning techniques for number of tasks in radiology.
• Convolutional neural network is the most popular deep learning architecture in medical imaging.
• Numerous deep learning algorithms are being currently developed; some of them may become part of clinical routine in the
near future.
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Abbreviations
AI Artificial intelligence
CAD Computer-aided diagnosis
CNNs Convolutional neural networks
COPD Chronic obstructive pulmonary disease
CT Computed tomography
EGFR Epithelial growth factor receptor

GAN Generative adversarial neural networks
GPU Graphic processing unit
NIH National Institute of Health
PACS Picture archiving and communication systems
RNN Recurrent neural networks
SVM Support vector machine

Introduction

The term “machine learning” was introduced in 1959 by
Arthur L. Samuel, who designed the first program for the
game of checkers [1]. Machine learning is a subset of methods
of artificial intelligence (AI). Its aim is to develop algorithms
that learn interpretation principles from training samples, and
apply them to new data from the same domain to make in-
formed decisions. Deep learning—a subset of machine
learning—has recently become a hot topic in radiology.
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Indeed, deep learning for a specific class of problems has been
shown to outperform other machine learning methods,
allowing the creation of models that perform as well or even
better than humans [2, 3]. Such a revolution was driven from
the increasing availability of large datasets, and high comput-
ing capacity of graphic processing units (GPU), even though
there were also algorithmic and mathematical progresses in
neural network learning.

Machine learning is especially relevant for image interpre-
tation. It adopts an evidence-driven concept where the under-
lying decision process is very different from one traditionally
adopted by radiologists. The objective of this review is to help
readers to become familiar with the methods and their poten-
tials, and to report current and future developments applied to
thoracic imaging. This article will mainly focus on models
commonly used in radiology and especially on a specific type
of deep learning networks, the convolutional neural network
(CNN).

Terminology

In order to understand machine learning, the first important
step is to understand the different terms being used.

In 1959, Arthur Samuel defined machine learning as a
“Field of study that gives computers the ability to learn with-
out being explicitly programmed” [1].

Conventional programing relies on a logic that is intro-
duced during its conception and does not change. Machine
learning applies a different principle where the behavior of
the program changes according to the training data. It can
generate systems that are able to automatically learn from
the available data, without “being explicitly programmed.”
Both classical machine learning methods and deep learning
methods use optimization algorithms during training. The
main difference is that classical machine learning methods
require the selection of image features beforehand, while the
deep learning ones generate these features during training.

Among various algorithms usually used in machine learn-
ing, neural networks are designed tomimic the way the human
brain processes information. In brief, successions of simple
operations—mimicking the way neurons behave—are used
to treat the information. Each neuron (formal neuron) process-
es part of the signal. The composition of these processes is
used to build the decision algorithm, also called the model.

Deep learning refers to deep neural network, which is a
specific configuration where neurons are organized in multi-
ple successive layers [4]. The increase of layers improves the
expression power and performance of these methods and
could produce higher level of abstraction [3]. Deep learning
currently represents the most advancedmachine learning tech-
nique for a variety of high-level tasks and applications, espe-
cially for problems involving large structured training

datasets, which is the case for chest radiograph interpretation.
In the context of radiology, its goal is to develop algorithms
and tools for the automated processing, analysis, and under-
standing of digital images towards reproducing the human
visual perception system.

The term CAD (computer-aided diagnosis) is a generic
term encompassing various mathematical methods not limited
to deep learning [5]. For thoracic imaging, the most prominent
application refers to lung nodule diagnosis. This includes
CAD for detection, named CADe, and CAD for characteriza-
tion, named CADx, used to evaluate the probability of malig-
nancy. Some CADs combine both tasks [6].

Radiomics is another popular research direction, relying on
more traditional machine learning tools, with some recent de-
velopment exploiting deep learning methods. The objective is
to determine imaging features of various complexities, which
are invisible to the human eye, in order to establish correla-
tions with clinical outcomes. Classical machine learning algo-
rithms are usually using three different categories of features:
morphological features such as shape, volume, and diameter;
image features or first-order features such as histogram, kur-
tosis, and mean values; and textural features (higher order
features) including co-occurrence of patterns and filter re-
sponses. These features are extracted and analyzed to be used
for classification purposes (is the nodule benign or malig-
nant?), for quantification (what is the degree of severity of this
bronchial disease?) [7], or for prognosis, response to treat-
ment, or correlation with other clinical or biological bio-
markers. There are many applications of radiomics in thoracic
oncology, such as discriminating adenocarcinoma from squa-
mous cell carcinoma [8], predicting lung adenocarcinoma in-
vasiveness [9] or epithelial growth factor receptor (EGFR)
mutation [10], linking the tumor “radiomics phenotype” and
the tumor genotype [11], or predicting response to treatment
[12]. However, a recent study evaluating 77 articles reported a
mean radiomics quality score, a metric evaluating the validity
and completeness of radiomics studies, of only 26.1% and
concluded that the overall scientific quality of radiomics stud-
ies was insufficient [13].

Main concepts regarding machine learning
algorithms

Types of algorithms

Machine learning algorithms can be categorized into three
main groups: supervised, semi-supervised, or unsupervised
algorithms. Algorithms based on supervision rely on samples
with annotations provided by clinical experts, which will be
used for training. Supervised learning algorithms can be
trained for classification tasks, such as to the presence or
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absence of disease or anomaly, or for regression tasks, for
instance to provide a severity score or a prognosis.

Recently, semi-supervised methods have emerged which
combine annotated and non-annotated data. In this setting,
algorithms learn progressively through a better exploitation
of the non-annotated data. Reinforcement learning is a typical
example of semi-supervised learning [14].

Conversely, algorithms based on unsupervised learning do
not involve human intervention. Clustering is the most repre-
sentative example, where the objective is to group samples
into homogeneous subpopulations, like, for example, to iden-
tify different chronic obstructive pulmonary disease (COPD)
phenotypes. The performance of unsupervised algorithms is
often lower than the one achieved with supervised techniques.

Data annotation

Supervised and semi-supervised algorithms rely on annotated
data. There are different types of annotations depending on the
task that the algorithm seeks to address (Fig. 1). For classifi-
cation tasks (presence or absence of anomaly or disease), im-
ages are simply labeled with two (disease positive or negative)
or more labels. For instance, chest X-ray 14 database [15]
contains around 112,000 chest radiographies labeled as con-
taining one or more of 14 common anomalies such as atelec-
tasis, cardiomegaly, effusion, infiltrates, mass, nodule, pneu-
monia, and pneumothorax.

Since annotations of large datasets are generated by auto-
mated extractions from the reports, it is important to test the
accuracy of the automated labeling, which is usually done by
comparison with radiologists’ annotation on a subset of radio-
graphs [16].

The exact localization of the anomaly is not provided with-
in the image. This is also referred as a weakly annotated da-
tabase. Even though the annotation does not include exact
localization, some algorithm might automatically learn to pre-
dict the anatomical position of the anomaly.

The next level of annotation usually refers to a sparse way
of providing information [17] or with boundary boxes indicat-
ing the regions of interest [18]. Segmentation tasks require the
highest level of annotation which consists in contouring/
delineating the anomalies on each image. This type of anno-
tation allows building more precise algorithms but is tedious
and time-consuming. Such datasets are generally smaller and
more difficult to generate.

Database/dataset

For machine learning methods including deep learning, the
quality of data is essential and could be even more important
than the learning algorithm itself. It guarantees the capacity for
the model to perform equally well on cases not seen during
training. For obtaining a generalizablemodel, it is important to
have a dataset that is representative of the disease and also
representative of the different acquisition techniques. In radi-
ology, datasets must include the different acquisition protocols
and the various forms of the evaluated disease and also in-
clude examinations from disease-free subjects. A model for
lung fibrosis detection should be trained using a dataset
reflecting the heterogeneity of lung fibrosis patterns but also
including normal CT scans, and CT images acquired on vari-
ous CT equipment. If the training dataset only contains a
unique fibrosis pattern or acquisitions all performed on the
same CT unit with the same reconstruction protocol, the risk
for the model to be poorly generalizable is high.

The dataset is usually split in three subcategories: training,
validation, and testing. The training set—usually correspond-
ing to 60% of the database—is used to train variant versions of
the model with different initialization conditions and
hyperparameters (these will be defined in upcoming section).
Once the models have been trained, their performance is eval-
uated using 20% of the remaining data, composing what is
called the validation dataset. The model with the best perfor-
mance on the validation dataset is selected. This model is

Fig. 1 Different types of annotations. In weak annotation, images are simply labeled (nodule = yes or no) and exact localization of the anomaly is not
provided. In sparse annotation, a bounding box is drawn around the nodule, whereas in segmentation, the nodule contour is delineated (white area)
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finally evaluated using the last 20% of samples, which were
never previously used and compose the test dataset.

An alternative to the dataset splitting between training and
validation is the method of k-fold cross-validation which al-
lows training and validating using the entire dataset. This ap-
proach is especially useful when the number of cases is limit-
ed. It consists of splitting the training and validation sets to
several random splits and then using different combinations
for training and validation. The average performance of the
model on these splits is taken into account to judge the model
performance and acceptability.

Data preprocessing

Data preprocessing is not limited to the decomposition of the
dataset into training, validation, and test. Although in real life
the radiologists need to analyze images acquired with different
techniques (machines, dose, slice thickness, pixel size, recon-
struction algorithms) and nevertheless make useful compari-
sons, it is desirable to “normalize” images before feeding them
into the deep learning algorithm. Various degrees of prepro-
cessing can be applied, such as normalization of the physical
resolution involving slice thickness and voxel size and/or nor-
malization of the gray-level distributions to follow predefined
distribution and/or image denoising [19]. Preprocessing is ab-
solutely essential for radiomics studies involving feature se-
lection, which is either selected by humans with traditional
machine learning techniques or automatically identified when
using deep learning. On the former case, the preprocessing
step also involves the choice of image features, among all 3
categories previously described, to feed the algorithm Among
these features, the algorithm will select the most prominent
ones with respect to the task, using different possible tech-
niques such as random forest, Lasso, SVM, and logistic
regression.

Deep learning architectures

In radiology, three architectures are predominantly used.

1. Convolutional neural networks (CNNs) are the most pop-
ular ones because they are robust and easy to train
[20–22]. They rely on the succession of simple
convolution/deconvolution operators at different scales
(Fig. 2). Convolution consists in aggregating information
from voxels grouped together, through the application of
different filters (Fig. 3). The filters differ from one layer to
the next and their application generates the input to the
subsequent layer. Two main types of convolutional neural
networks are very popular for thoracic applications: (i) the
fully connected CNNs which are a mixture of
convolutional and fully connected layers mainly used
for classification purposes and (ii) the fully convolutional

CNNs which are composed from only convolutional
layers. These architectures are mainly used for segmenta-
tion purposes.

2. Recurrent neural networks (RNNs) are used to jointly
solve different, interdependent problems, such as detec-
tion and characterization of nodules. The network is or-
ganized in closed loops rather than in a sequence of oper-
ations like CNNs [23]. These loops allow solving the
interdependency of tasks. Another application of this ar-
chitecture is the ability to encode temporal information
and deal with dynamic data, for instance enhancement
after contrast administration [24].

3. The last class refers to generative adversarial networks
(GANs) [25], where during training of the algorithm, in-
formation coming from images is combined with a statis-
tical predictor, jointly determining the outcomes. For in-
stance, lung nodules are generally spheroid in shape, and
the statistical component of the GAN for a lung nodule
detection algorithm will reinforce this condition for the
final prediction. Such methods are used when plausibility
of the deep learning result is important to consider. Other
architectures do not explicitly provide a statistical inter-
pretation of the results. Compared with CNNs and RNNs,
GAN architectures are the hardest to train.

Hyperparameters, loss function, and optimization
strategy

The term hyperparameter refers to all parameters which are
defined before training the algorithm, by opposition to those
which will derive from learning. Number and type vary ac-
cording to the deep learning architecture. Hyperparameters
include the number of layers, the learning rate which depends
on the loss function and optimization strategy.

The loss function is an important concept to understand. It
corresponds to the metrics used by the algorithm during train-
ing to test its performance. It quantifies the gap between the
prediction by the algorithm and the ground truth given by the
expert annotation/label. The objective of any deep learning
algorithm is always to minimize its loss function, until the
discrepancy between the prediction by the network and the
ground truth vanishes. The loss function varies according to
the task which is addressed, such as the Dice similarity index
loss [26] for segmentation tasks or the log loss for detection
and classification tasks.

Several strategies can be used to optimize the loss function
during training. The most commonly used is the stochastic
gradient descent [27]. Gradient descent methods rely on an
iterative process where every iteration allows moving closer
to the optimal model. Stochastic gradient descent allows
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random perturbation of the model that instantly could degrade
its performance but finally converge to a better solution.

The learning rate and the number of epochs are also impor-
tant optimization parameters. The learning rate controls the
amount of improvement of the network between two itera-
tions. Low learning rates guaranty improvements, but of mar-
ginal importance. High learning rates refer to more unstable
models where improvement from one iteration to the next
could be more significant, associated with the risk of
degrading the overall performance. Epoch is a different con-
cept, which refers to the number of times where the entire
training set has been revisited to update the model parameters.
A highest number of epochs guaranties better performance on
the training set, at the cost of increasing computation com-
plexity as well as the risk of overfitting, by selecting features
which are only specific to the training dataset and are poorly
generalizable.

Overfitting and underfitting

Overfitting is the situation where the trained model performs
very well on the training dataset but fails on the testing set.
Overfitting occurs when the model performance keeps im-
proving in the training cohort but decreases in the validation
cohort. In other words, the model generates accurate

predictions on the training set, but fails to reproduce them
on new unseen cases. This can be observed when the training
set is not well balanced or when the number of samples is not
sufficient. In this situation, it may happen that the algorithm
finds an association of features and considers it as relevant for
the outcome, while it is only the result of fortuitous feature
combinations learned from a non-representative dataset. This
association would disappear when using a larger or different
sample. Overfitting problems are common with deep learning
algorithms containingmany layers generating lots of variables
to learn (from several hundred to several millions) from small
training sets.

Another problem that can be seen during training is
underfitting. It occurs when the model fails its adaptation to
both training and validation sets. The reasons of underfitting
can bemultiple. In presence of multiple subpopulations within
the training set, models with an insufficient number of param-
eters will fail to encompass the entire population. Another
possible explanation for underfitting relates to the nature of
the model that has been chosen for the prediction. For exam-
ple, when the notion of time is critical for diagnosis (delayed
enhancement), a model that ignores this information will most
inevitably fail even if the number of parameters is sufficient.

In summary, overfitting is characterized by a high perfor-
mance on the training dataset contrasting with a poor

Fig. 2 Illustration of a
convolution/deconvolution neural
network. The convolution part of
the network applies convolution
operators at different scales. Scale
reduction (downsampling) be-
tween each layer is usually ob-
tained by using max-pooling
function. Then, the deconvolution
part applies deconvolution opera-
tors and progressively restores the
initial scale of the image
(upsampling)

Fig. 3 Example of convolution
with Sobel filter to highlight
edges on the horizontal direction
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performance on the validation dataset, whereas underfitting is
characterized by poor performance in both training and vali-
dation datasets (Fig. 4).

Perspectives for thoracic imaging

TheWorld Health Organization suggests that two-thirds of the
global population lack access to radiology diagnostics [28].
There is a shortage of experts who can interpret X-rays, even
when imaging equipment is available, which opens avenues
for machine learning applied to thoracic imaging [29].

Chest radiography is an excellent candidate for developing
computer-aided automatic interpretation solutions. It consists
of 2D images and several billions have already been stored on
hospital’s picture archiving and communication systems
(PACS) and linked to radiological reports. As previously
underlined, a large amount of data is essential for supervised
learning but images have to be extracted and annotated.
Several large databases of annotated chest radiographies are
already publicly available for developing research projects.
Among them, we already mentioned chest X-ray 8 [15] from
NIH with 8 possible labels, secondarily extended to 14 differ-
ent labels. CheXpert is another large dataset containing
224,316 chest radiographs used for competition for chest X-
ray interpretation [16, 30]

Among the numerous studies performed on automated
chest X-ray reading, some studies on dedicated tasks have
demonstrated the superiority of CNNs over classical ma-
chine learning techniques. For the detection of tuberculo-
sis, the deep learning–based algorithm developed by
Lakhani et al [31] reached an AUC of 0.99 compared with
0.90 at best for prior studies using classic machine learn-
ing methods [32, 33]. Hwang et al developed a deep
learning–based algorithm able to distinguish normal and
abnormal chest radiograph results, including malignant
neoplasm, active tuberculosis, pneumonia, and pneumo-
thorax. The algorithm was trained on a dataset of 54,221

normal chest radiographs and 35,613 with abnormal find-
ings. The algorithm demonstrated significantly higher per-
formance than non-radiology physicians, board-certified
radiologists, and thoracic radiologists. These three categories
of human readers improved when using the algorithm as
second reader [2]. These impressive results at first glance
should be tempered by the fact that the X-rays used to
compare the model and human performance contained
only 1 of the 4 target diseases, which corresponds to the
concept of “narrow AI.” The performance of the algo-
rithm for detecting the same anomalies when associated
with others was not evaluated and might be lower than
that of human readers.

The use of CNNs for CT images is more complex due to
the 3D nature and high number of images, and the smaller
size of annotated datasets. Despite these difficulties, results
are promising and here again CNNs prove superior to clas-
sical machine learning methods. For the 2017 Kaggle Data
Science Bowl, whose objective was to predict the cancer
risk at 1 year, based on lung cancer screening CT exami-
nations, frontrunner teams all used deep learning. The use
of deep learning is not restricted to nodule evaluation but
can also apply to the detection of emphysema [34] or the
detection and quantification of infiltrative lung diseases on
CT (Fig. 5) [35].

Deep learning can also be used to predict non-small cell
lung cancer genotype from CT images, especially EGFR mu-
tation. Wang et al [36] trained a deep learning algorithm for
predicting EGFR mutation on a cohort of 603 patients. They
used a 24-layer CNN and pre-trained the first 20 layers on
natural images from the ImageNet dataset, before training
the 4 remaining layers using 14,926 CT images from wild-
type and EGFR-mutated lung adenocarcinomas of the training
cohort. The developed algorithm was validated on an external
cohort of 241 patients and reached and AUC of 0.81. Deep
learning using RNN can also be used to predict lung cancer
response to treatment from serial medical imaging [37]. The
model was predictive of survival and cancer-specific out-
comes, with an AUC of 0.74 for 2-year overall survival.

Conclusion

The major advances of machine learning and in particular
deep learning might change the landscape of radiology.
Numerous algorithms are being currently developed; part of
them might be used for the clinical routine in the coming
years. They may assist radiologists for a number of tasks such
as detection or characterization of radiological abnormalities,
or for prognostic purposes. For detection tasks, human valida-
tion by visual confirmation is possible, which is not the case
for characterization tasks or prognostic prediction. Who will

Fig. 4 Underfitting and overfitting. Underfitting is characterized by a
high loss in both training and validation datasets, whereas overfitting is
characterized by a low loss in the training dataset contrasting with a high
loss on the validation dataset
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take the responsibility for the wrong predictions remains an
open question.

Before the introduction of such tools in clinical practice, it
is important to understand the associated terms and concepts,
the strengths, and the limitations in order to all together be-
come “augmented” radiologists, not overwhelmed
radiologists.
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Methodology
• Review

Glossary

Algorithm a mathematical model that is
applied to data (input) and provide
an output in order to solve a spe-
cific problem.

Artificial intelligence a scientific domain that creates
algorithms allowing machines to
mimic human cognition or human
performance on a dataset.
Currently, AI algorithms address

specific tasks such as tuberculosis
diagnosis or pneumonia detection,
which is defined as narrow or
weak AI. They do not allow the
detection of all potential
abnormalities (e.g., general AI) as
a human reader would do.

CAD (computer-aided
diagnosis)

a domain that exploits algorithms
derived from artificial intelligence
to provide indicators and assist
clinical experts in diagnosis.

CADe CAD developed for a detection
task.

CADx CAD developed for a
characterization task.

Classification task assignment to an input signal (an
image) a label from a predefined
set of categories (disease or no
disease), by mean of a machine
learning algorithm.

Cross validation a statistical method used to
estimate the performance of the
machine learning algorithm by
exploiting various partitions of the
data between training and testing.

Convolution mathematical operator that creates
a new value from an input signal
(for instance a group of voxels)
after modification by another
value which acts as a filter. For
example, averaging mean density
values within a patch of voxels.

Convolutional neural
network (CNN)

deep neural network which is
based on a sequence of
convolutional operations.

Deep learning (= deep
neural network)

part of the broader family of
machine learning, individualized
by specific configuration of neural
network organized in multiples

Fig. 5 Interstitial lung disease segmentation in a patient with idiopathic
pulmonary fibrosis using a deep learning–based tool developed at our
research laboratory. a Unenhanced CT scan axial transverse image
through the lung bases demonstrates ground glass, reticulations, and

bronchiolectasis with subpleural predominance. b ILD segmentation
(red). cCombination of ILD (red) and lung (blue) segmentations allowing
calculating the volume of diseased lung on CT

Eur Radiol



layers, emulating the human
learning approach and increasing
the ability to address complex
problems. Deep learning networks
are iterative methods that
propagate information, training
their features automatically
through gradient-based optimiza-
tion methods and
backpropagation.

Epoch indicates the number of times the
entire dataset has been used during
the iterative optimization of the
network.

Features image characteristics which are
invisible to the human eye. Three
categories of features are used by
classical machine learning
algorithms: morphological
features such as shape, volume,
and diameter; first-order features
such as histogram, kurtosis, and
mean values; and textural features
including co-occurrence of pat-
terns and filter responses.

Formal neuron (= artificial
neuron)

mathematical function mimicking
the architecture of biological
neurons.

Fully connected CNNs variation of CNNs which consists
of connecting all the elements of
one layer with all the elements of
the next one. Fully connected
CNNs are used for classification
problems (does this chest
radiograph contain signs of
tuberculosis?).

Fully convolutional
CNNs

variation of CNNs which are
composed from only
convolutional layers. Fully
convolutional CCNs are used for
segmentation tasks (is this pixel
located in a fibrotic area?).

Generalization
capability

capacity for a model to maintain
its performance when applied to
new cases, unseen during training.

Generative adversarial
neural network (GAN)

a neural network that combines
two subnetworks, one generating
hypotheses and another evaluating
their likelihood.

Ground truth refers to the label assigned by the
expert or another reference
method such as pathology.

Hyperparameters parameters which control the
training process of the algorithm
and are defined before training,
such as the number of layers and
learning rate, among others.

Labeling/annotation process of allocating ground truth
by associating a label to an image.

Loss function when training and optimizing the
algorithm, it quantifies the gap
between predictions and ground
truth.

Machine learning a scientific field that gives
computers the ability to
automatically learn without being
explicitly programmed, by relying
on sample data, known as
“training data,” used to make
predictions.

Neural network machine learning algorithm made
of a succession of formal neurons.

Overfitting characterizes algorithms that
perform well on the data on which
they have been trained but fail to
perform equally well on unseen
data.

Radiomics a field of medical imaging that
aims to extract features from
medical images, for tasks such as
characterization or prediction
(prognosis, response to treatment,
genotype).

Recurrent neural networks
(RNN)

a class of neural networks that
integrate interdependencies
between different tasks using the
same data (detection and
characterization) or between
different data (temporal post-
contrast enhancement).

Regression task process of associating input data
with a continuous outcome (for
instance survival).

Semi-supervised
learning

class of machine learning
techniques that learns from
annotated data in order to generate
their model and improves its
performance using the non-
annotated ones

Supervised learning class of machine learning
techniques requiring labeled
training data in order to generate
their model.

Semantic segmentation process of associating every voxel
with a specific label/class, for

Eur Radiol



instance diseased or healthy area,
which usually requires manual
contouring.

Stochastic gradient
descent

an iterative method to optimize
machine learning methods, very
commonly used for deep learning
networks.

Test dataset dataset which is used to evaluate
the performance of the final
model.

Training dataset dataset which is used to train the
model.

Transfer learning concept of exporting parameters,
principles, and strategies learned
from a dataset to another
algorithm, which will be trained
on another dataset (for example,
learning on nonmedical images
before applying to chest imaging).

Unsupervised learning the class of machine learning
techniques that seeks to determine
patterns or clusters with similar
properties (= phenotypes for
instance) from unlabeled data. It
usually uses techniques different
from deep learning.

Underfitting inability of an algorithm to
perform well on both training and
test datasets.

Validation dataset dataset which is used to determine
among different variants of the
trained model, the optimal model
that should be selected for testing
on the remaining unseen cases
(test dataset).
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