
NeuroImage 265 (2023) 119787 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Single-timepoint low-dimensional characterization and classification of 
acute versus chronic multiple sclerosis lesions using machine learning 

Bastien Caba 

a , ∗ , Alexandre Cafaro 

e , Aurélien Lombard 

e , Douglas L. Arnold 

b , c , Colm Elliott c , 
Dawei Liu 

a , Xiaotong Jiang 

a , Arie Gafson 

a , Elizabeth Fisher a , Shibeshih Mitiku Belachew 

a , 
Nikos Paragios d , e 

a Biogen Digital Health, Biogen, Cambridge, MA, USA 
b Montreal Neurological Institute, McGill University, Montreal, QC, Canada 
c NeuroRx Research, Montreal, QC, Canada 
d CentraleSupélec, University of Paris-Saclay, Gif-sur-Yvette, France 
e TheraPanacea, Paris, France 

a r t i c l e i n f o 

Keywords: 

Multiple sclerosis 
Acute lesions 
Radiomics 
Image inpainting 
Feature selection 
Machine learning 

a b s t r a c t 

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease characterized by the appear- 
ance of focal lesions across the central nervous system. The discrimination of acute from chronic MS lesions may 
yield novel biomarkers of inflammatory disease activity which may support patient management in the clinical 
setting and provide endpoints in clinical trials. On a single timepoint and in the absence of a prior reference scan, 
existing methods for acute lesion detection rely on the segmentation of hyperintense foci on post-gadolinium 

T1-weighted magnetic resonance imaging (MRI), which may underestimate recent acute lesion activity. In this 
paper, we aim to improve the sensitivity of acute MS lesion detection in the single-timepoint setting, by devel- 
oping a novel machine learning approach for the automatic detection of acute MS lesions, using single-timepoint 
conventional non-contrast T1- and T2-weighted brain MRI. The MRI input data are supplemented via the use 
of a convolutional neural network generating “lesion-free ” reconstructions from original “lesion-present ” scans 
using image inpainting. A multi-objective statistical ranking module evaluates the relevance of textural radiomic 
features from the core and periphery of lesion sites, compared within “lesion-free ” versus “lesion-present ” image 
pairs. Then, an ensemble classifier is optimized through a recursive loop seeking consensus both in the feature 
space (via a greedy feature-pruning approach) and in the classifier space (via model selection repeated after each 
pruning operation). This leads to the identification of a compact textural signature characterizing lesion pheno- 
type. On the patch-level task of acute versus chronic MS lesion classification, our method achieves a balanced 
accuracy in the range of 74.3–74.6% on fully external validation cohorts. 
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1 In this context, chronic lesions may or may not harbor chronic active de- 
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. Introduction 

Multiple sclerosis (MS) is a chronic immune-mediated neuro-
egenerative disease affecting the central nervous system. Its patholog-
cal hallmark is the accumulation of demyelinated lesions or plaques ,
etectable on conventional T2-weighted magnetic resonance imaging
MRI) as areas of white matter hyperintensity (WMH) relative to the
ormal-appearing white matter (NAWM) ( Traboulsee and Li, 2006 ). The
elineation of WMHs therefore reveals the spatial distribution of MS
Abbreviations: BBB, blood brain barrier; CNN, convolutional neural network; CSF, c
tatus scale; GAN, generative adversarial network; Gd + , gadolinium enhancement; M
AWM, normal-appearing white matter; NET2, new or enlarging T2 MS lesion; RFE, re
hite matter hyperintensity. 
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amage but does not discriminate lesions that have recently formed and
ay be undergoing active demyelination (known as acute ) from lesions

hat have been present for some time (known as chronic 1 ). The detec-
ion and quantification of acute lesions is relevant to the clinical man-
gement of patients with MS, in whom evidence of recent disease activ-
ty may guide treatment decisions such as switching anti-inflammatory
erebro-spinal fluid; DMT, disease-modifying therapy; EDSS, expanded disability 
L, machine learning; MRI, magnetic resonance imaging; MS, multiple sclerosis; 
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isease-modifying therapies (DMTs) and may support short- and long-
erm disease prognostication ( Wattjes et al., 2021 ). In clinical trials eval-
ating MS DMTs, evidence of recent acute lesion activity is also used
o define inclusion criteria and enrichment strategies, while measure-
ents of ongoing acute lesion activity are commonly used as endpoints

 Calabresi et al., 2014 ; Kapoor et al., 2018 ; Wattjes et al., 2021 ). 
The formation of new lesions is generally accompanied by a tran-

ient period of blood brain barrier (BBB) breakdown and acute inflam-
atory activity ( Kappos et al., 1999 ). Following the intravenous admin-

stration of a gadolinium chelate contrast agent, areas of BBB break-
own can be detected as hyperintensities on post-contrast T1-weighted
RI. The delineation of areas of gadolinium enhancement (Gd + ) thus

llows for the detection of acute lesions at a single timepoint; however,
ue to the relatively short half-life of BBB disruption and Gd + persis-
ence ( Cotton et al., 2003 ; Guttmann et al., 2016 ), acute lesion detec-
ion based on this method severely underestimates acute pathology. This
ethod is also invasive and potentially nephrotoxic ( Perazella, 2008 ).
epeated gadolinium-based contrast agent administrations may also re-
ult in gadolinium accumulation in the human brain, the clinical impli-
ations of which are currently poorly understood ( Guo et al., 2018 ). 

Beyond Gd + status, acute lesions can also be detected as focal ar-
as of new or substantially enlarging T2-weighted (NET2) lesions via
he comparison of a present T2-weighted MRI scan with a previously
cquired reference scan ( Altay et al., 2013 ). Notably, when a previous
RI scan is available from up to 24 weeks prior, NET2 counts are gen-

rally 3-fold to 5-fold higher than the single-timepoint detection of Gd +
esion counts ( Hauser et al., 2017 ; Moraal et al., 2010 ). The requirement
f a reference scan to identify NET2 can, however, delay diagnosis or
reatment decisions and incurs an economic burden ( Kobelt et al., 2017 ).
urthermore, by construction, the identification of NET2 only allows de-
ection of the subset of acute lesions that emerge from the NAWM and
ails to detect acute activity within existing WMHs. Since acute lesions
ay also form in pre-existing lesion locations (as demonstrated by the
etection of Gd + foci within prior WMHs), some degree of acute lesion
ctivity may be missed using NET2 detection techniques. In particular,
cute lesions occurring in areas of pre-existing WMH which are captured
utside of their Gd + phase will thus be missed under the conventional
efinition of “MRI-acute ” lesions. 

The hypothesis that “MRI-acute ” lesions may underestimate the ex-
ent of pathologically “active ” demyelination is further supported by
he high prevalence of “active ” plaques observed in pathology studies
eporting 70–80% of patients with at least one “active ” plaque between
ge 35–50 years-old ( Frischer et al., 2015 ), which exceeds the preva-
ence of “MRI-acute ” lesions generally reported in age-matched clinical
rial populations – albeit MS trials typically involve an acute lesion en-
ichment selection bias inherent to disease activity eligibility criteria. 

. Objectives 

These limitations highlight the need for a single-timepoint acute le-
ion detection method that could identify the totality of recent acute MS
esion activity (including gadolinium-negative lesions in areas of pre-
xisting lesions). This work seeks to augment the sensitivity of cross-
ectional methods of acute lesion detection in MS by capturing MRI
iomarker signatures identified within ground truth examples of both
d + and NET2 lesions, from non-contrast conventional T1- and T2-
eighted MRI only. In this work, ground truth NET2 lesions were de-
ned based on the comparison of two T2-weighted MRI scans acquired
t most 24 weeks apart. 

Using intensity-based radiomic features from the core and periphery
f lesion sites, compared with their counterparts on a “lesion-free ” syn-
hetic image, we identify patterns of MRI signals that are discriminative
f recent acute MS lesion activity and reflective of ongoing demyelina-
ion. For notational compactness, we will denote this set of radiomic
eatures enriched with lesion-free information as “𝛼-radiomics ”. The rel-
vant patterns of 𝛼-radiomics are interpreted by an ensemble of machine
2 
earning (ML) algorithms trained to discriminate acute from chronic MS
esions. The resulting ensemble predicts the label (i.e., acute/chronic)
f an individual MRI voxel using MRI signals aggregated across a cubic
atch centered on that voxel. 

The methodological contributions of this work are as follows: 

• Using a convolutional neural network (CNN) for image inpainting,
we generate synthetic “lesion-free ” T1- and T2-weighted brain MRI
scans from original “lesion-present" scans, and compare textural in-
formation contained in “lesion-present ” versus “lesion-free ” scans. 

• We design a patch sampling strategy combined with a simple adap-
tive region of interest (ROI) definition rule, which allows us to seg-
ment a “core ” and “periphery ” regions from lesion sites that may
correspond to either focal or confluent MS lesions. 

• We present an end-to-end greedy iterative feature-pruning algorithm
for feature selection (i.e., imaging biomarker discovery) exploiting
textural characteristics within lesions and their periphery, coupled
with an ensemble classifier optimization module applied at each fea-
ture pruning step. 

. Backgrounds 

.1. Texture analysis in MS 

Several studies have investigated the utility of texture analysis (TA)
n MRI in MS. It is hypothesized that pathological processes in MS
nduce structural changes expressed on the nanometer to micrometer
cale, which manifest as voxel pattern changes on conventional MRI
mages ( Zhang et al., 2011 ). It follows that the detection of textural
iomarkers associated with specific types of biological activity may sup-
ort the identification of MS lesions from single-timepoint conventional
RI. The feasibility of this approach is further strengthened by previ-

us work showing that TA on MRI is relatively unaffected by the image
cquisition variables ( Mayerhoefer et al., 2009 ; Savio et al., 2010 ) and
s such offers robust biomarkers suitable for use in routine clinical care
f patients with MS, where image acquisition parameters may vary. 

Specifically, TA has been investigated for its ability to discriminate
S plaques from the NAWM using conventional cross-sectional T1-

nd T2-weighted MRI ( Harrison et al., 2010 ; Zhang et al., 2008 ), to
iscriminate Gd + lesions from chronic lesions using T2-weighted MRI
 Michoux et al., 2015 ; Yu et al., 1999 ), and for the precise delineation of
d + lesions using post-contrast T1-weighted MRI ( Karimaghaloo et al.,
013 ). Furthermore, TA has been leveraged to characterize acute le-
ions, by spatially distinguishing a demyelinating core from a border
f inflammation ( Drabycz and Mitchell, 2008 ), measuring tissue injury
n acute foci ( Zhang et al., 2009 ) and by predicting the persistence
f T1 black holes beyond acute onset ( Zhang et al., 2011 ). Building
pon these prior studies, our work leverages radiomics analysis, which
onsists of mining a large number of quantitative imaging variables
 Zwanenburg et al., 2020 ). Radiomics analysis has been suggested to
old great promise in the transition towards large-scale medical imag-
ng studies, whereby the abundance of visual evidence can be leveraged
y ML techniques to address clinical challenges ( Gillies et al., 2016 ;
ambin et al., 2012 ) – in this context, our work also builds upon prior
pplications of ML to augment lesion segmentation in MS including for
MHs ( Fartaria et al., 2016 ; Zeng et al., 2020 ; Zhong et al., 2014 ), Gd +

 Coronado et al., 2021 ; Gaj et al., 2021 ; Narayana et al., 2020 ), and
ET2 lesions ( Elliott et al., 2013 ; Salem et al., 2018 ). 

.2. Prior work 

In this study, NET2 lesions are defined as those WMHs that are less
han 24 weeks old. As such, the task of acute versus chronic MS lesion
lassification can be seen as a binarized version of the task of MS lesion
ge estimation. In this context, Sweeney et al. ( Sweeney et al., 2021 )
ecently developed a ML-based algorithm for MS lesion age prediction
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Table 1 

Key population, lesion, and imaging statistics of the participants pooled across the ADVANCE, ASCEND, and DECIDE trials. ( ∗ ) Exceptionally, 
for 2 ADVANCE subjects and 13 DECIDE subjects, 1.0T MRI scans were acquired. 

Cohort ADVANCE ASCEND DECIDE 

MS Stage RRMS SPMS RRMS 
EDSS Range [ {0:5} ] [ {3:6.5} ] [ {0:5} ] 
Subjects 1397 814 1713 

Studies (with acute lesion activity) 3971 (1612) 3695 (769) 3601 (958) 
Lesion volume per 
study (c{mˆ3}) 

Acute 0.34 ± 1.3 0.10 ± 0.50 0.14 ± 0.73 
Chronic 10 ± 12 17 ± 17 11 ± 9 

Lesion count per 
study 

Acute 3 ± 7 1 ± 3 1 ± 5 
Chronic 68 ± 48 69 ± 38 63 ± 44 

MRI Protocol T1-w MRI 3D Spoiled Gradient Echo 
TR = 28 - 35ms 
TE = 4 - 11ms 
Flip angle = 27 - 30°
Resolution = 1 × 1 × 3 mm 

Field Strength = 1.5 T/3.0 T ∗ 

3D Spoiled Gradient Echo 
TR = 28 - 35ms 
TE = 4 - 11ms 
Flip angle = 27 - 30°
Resolution = 0.98 × 0.98 × 3 mm 

Field Strength = 1.5 T/3.0 T 

3D Spoiled Gradient Echo 
TR = 28 - 35ms 
TE = 4 - 11ms 
Flip angle = 27 - 30°
Resolution = 0.98 × 0.98 × 3 mm 

Field Strength = 1.5 T/3.0 T ∗ 

T2-w MRI 2D Fast Spin Echo 
TR = 4000 - 7720 ms 
TE = 56 - 93 ms 
Resolution = 1 × 1 × 3 mm 

Field Strength = 1.5 T/3.0 T ∗ 

2D Fast Spin Echo 
TR = 4000 - 7400 ms 
TE = 58 - 95 ms 
Resolution = 0.98 × 0.98 × 3 mm 

Field Strength = 1.5 T/3.0 T 

2D Fast Spin Echo 
TR = 4000 - 7400 ms 
TE = 60 - 96 ms 
Resolution = 0.98 × 0.98 × 3 mm 

Field Strength = 1.5 T/3.0 T ∗ 

Note: In the rows related to lesion volume and count, we are reporting the mean ± standard deviation of lesion statistics across studies. 
Abbreviations: EDSS, Expanded Disability Status Scale; MRI, magnetic resonance imaging; MS, multiple sclerosis; RR, relapsing-remitting; 
SP, secondary progressive; TR, repetition time; TE, echo time. 
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rom a single MRI study, using radiomic features from T1-weighted
pre- and post-contrast), T2-weighted, FLAIR and quantitative suscep-
ibility mapping (QSM) MRI. They analyzed 53 discrete MS lesion sam-
les and reported mean and median absolute errors of 7 . 23 months (95%
I: [ 6 . 98 , 13 . 43 ] ) and 5 . 98 months (95% CI: [ 5 . 26 , 13 . 25 ] ), respectively.
lthough this prior work is relevant to our objectives, our approach
iffers in that we leverage examples of both discrete and confluent MS
esions on a larger scale ( ∼ 10 4 samples), while restricting data input
o MRI sequences readily available in the clinic (non-contrast T1- and
2-weighted MRI). 

. Materials 

.1. MRI data 

Brain MRI scans from three large-scale double-blind phase 3 piv-
tal trials were retrospectively analyzed, including T1- and T2-weighted
rain MRI scans from ADVANCE (1512 subjects with relapsing-remitting
S; NCT00906399), ASCEND (886 subjects with secondary progres-

ive MS; NCT01416181), and DECIDE (1841 subjects with relapsing-
emitting MS; NCT01064401). Study details and MRI acquisition pa-
ameters for these trials have been reported previously ( Calabresi et al.,
014 ; Kapoor et al., 2018 ; Kappos et al., 2015 ) and are summarized in
able 1 . For each participant, one baseline study and a series of follow-
p studies were conducted; each subject could thus contribute multiple
bservations to our analysis. Each study was associated with at least
ne T2-weighted MRI scan as well as T1-weighted MRI scans pre- and
ost-gadolinium injection. For ADVANCE, the follow-up MRI scans were
cquired at 24-, 48-, and 96-weeks post-baseline; for ASCEND at 24, 48,
2, 96, 108, and 156 weeks, and for DECIDE at 24 and 96 weeks. A sub-
et ( n = 142) of participants from ADVANCE had follow-up scans every
 weeks up to 24 weeks post-baseline. In total, 11,267 pairs of T1- and
2-weighted brain MRI scans were analyzed in this study. 

.2. Ground truth 

In the context of the original clinical trial, MRI scans were analyzed
y a central reading center (NeuroRx Research, Montreal, QC, Canada),
s follows: Gd + lesions were manually segmented at each timepoint of
RI acquisition by consensus of two trained experts while WMHs were
3 
egmented using a semi-automated method including a manual veri-
cation and correction step ( Francis, 2010 ). This process yielded two
inary maps per study, denoting WMHs and Gd + lesions respectively
see Fig. 1 ). 

From the WMH masks, the NET2 lesion mask detected in a present
can relative to a prior reference scan was determined automatically
y considering the difference between the sets of WMH voxels detected
cross these time-points, where artifactual differences due to segmenta-
ion variability or imperfect registration were automatically excluded.
hese NET2 lesion masks were manually reviewed and corrected where
ecessary (see Fig. 2 ). Importantly, a new WMH was labeled as NET2 if
t was detected via the comparison of scans acquired at most 24 weeks
part. Ultimately, acute lesions were defined as the union between the
d + and NET2 masks, within the bounds of the WMH mask. Conversely,
hronic lesions were defined as the non-acute section of the WMH mask
see Fig. 3 ). 

. Methods 

.1. MRI pre-processing 

Across all scans, spatial coherence was enforced via 6-parameter
igid registration (translation and rotation in 3D space) to the 2009a
on-linear Symmetric atlas ( Fonov et al., 2009 ) in the ICBM-152 refer-
nce space, followed by a resampling operation to isotropic voxel spac-
ng (1 × 1 × 1 mm) via trilinear interpolation, yielding final scan dimen-
ions of 256 × 256 × 180 voxels. Additionally, each scan underwent N3
ias-field correction ( Sled et al., 1998 ), followed by an intensity stan-
ardization procedure enforcing that NAWM voxels should have zero
ean and unit-variance. The NAWM was defined as the set of white
atter voxels without WMH; to mitigate the risk of contamination of

he normalization parameters by peri ‑lesion abnormalities, NAWM vox-
ls located within 2 mm of a WMH were excluded from the computation
f the normalization parameters. 

.2. Data supplement via MS lesion inpainting 

Our dataset of T1- and T2-weighted brain MRI scans was supple-
ented with synthetic lesion-free equivalents of each scan, generated

ia a CNN-based inpainting model. This model performs an image-to-
mage translation task whereby the MRI intensity profile within the
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Fig. 1. Example of MRI scans and MS lesion masks available for an arbitrarily selected subject from the ADVANCE cohort. (a) T2-weighted MRI at baseline; (b) 
Contrast-enhanced T1-weighted MRI at baseline; (c) Non-contrast T1-weighted MRI at baseline; (d) Gd + lesion masks at baseline; (e) WMH mask at baseline; (f) 
T2-weighted MRI at week 24 post-baseline; (g) Contrast-enhanced T1-weighted MRI at week 24 post-baseline; (h) Non-contrast T1-weighted MRI at week 24 post- 
baseline; (i) Gd + lesion masks at week 24 post-baseline; (j) WMH mask at week 24 post-baseline; (k) NET2 lesion masks at week 24 post-baseline, relative to 
baseline. 
Abbreviations: Gd + , gadolinium enhancement; MRI, magnetic resonance imaging; MS, multiple sclerosis; NET2, new or substantially enlarging T2-weighted; WMH, 
white matter hyperintensity. 

Fig. 2. Definition of ground truth NET2 lesion mask. A new WMH was labeled as acute if it arose within the previous 24weeks. The WMH region is first segmented 
in each timepoint of T2-weighted MRI scan acquisition. For each post-baseline timepoint 𝑡 (e.g., 24 weeks post-baseline), the NET2 mask is the set of voxels that are 
labeled as WMH at that timepoint 𝑡 and were not labeled as WMH in a previous timepoint 𝑡 − 1 acquired at most 24 weeks prior to 𝑡 . After their automatic detection, 
NET2 masks were manually corrected by trained MRI readers. 
Abbreviations: Gd + , gadolinium enhancement; MRI, magnetic resonance imaging; NET2, new or substantially enlarging T2-weighted; w, week; WMH, white matter 
hyperintensity. 
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MH region of an input MRI scan is replaced with a synthetic inpaint-
ng mimicking normal-appearing tissue. During both training and infer-
nce, WMH masks were isotropically dilated by 1 mm, which ensures
hat both the lesion foci and any immediate peri ‑plaque abnormality are
npainted. 

.2.1. Architecture 

The 2D inpainting method proposed by Yu et al. ( Yu et al., 2019 )
as adapted to the 3D setting via multi-view ensembling. Specifically,
e trained one model per anatomical view (axial, coronal, sagittal) and
ggregated predictions across views via voxel-wise averaging at test
ime. Each 2D inpainting model was based on a generative adversar-
al network (GAN) ( Goodfellow et al., 2020 ) composed of two encoder-
4 
ecoder generator blocks referred to as the coarse and refinement blocks
see Fig. 4 ), followed by a discriminator block. Each generator block im-
lemented gated convolutions ( Liu et al., 2018 ) to restrict the encoding-
ecoding process to information contained outside of the region to be
npainted; thus, each generator block produces a synthetic full-brain
RI image, whereby the intensity profile in the inpainted region is pre-

icted using information outside of that region. Specifically, the refine-
ent generator block included an attention module guiding the encod-

ng process. The contextual attention module originally used by Yu et al.
 Yu et al., 2018 ) was replaced with a recursive self-attention module.
his module allows for MRI signals distant from the lesion site to be

ntegrated into the prediction of a hypothetical normal-appearing tissue
rofile replacing lesion tissue ( Zhang et al., 2019 ). The combined use
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Fig. 3. Axial (A), coronal (B), and sagittal 
(C) views of a T2-weighted brain MRI scan 
randomly selected from the ADVANCE co- 
hort, showing the acute (red) and chronic 
(blue) ground truth segmentation maps. We 
observe isolated chronic and acute foci, as 
well as contiguous acute and chronic le- 
sions. 
Abbreviations: Gd + , gadolinium enhance- 
ment; MRI, magnetic resonance imaging; 
NET2, new or substantially enlarging T2- 
weighted; WMH, white matter hyperinten- 
sity. 

Fig. 4. Architecture of our CNN model for MS lesion inpainting, adapted from ( Yu et al., 2019 ). During training, free-form synthetic lesion masks are created outside 
of the WMH masks while during inference, WMH masks are fed into the model. The generator block consists of a sequence of coarse and refinement autoencoders. 
The output of the generator block ( “Refined result ”) is the inpainted “lesion-free ” image extracted during inference. During training, the output of the generator block 
is subsequently fed into a discriminator model, which encodes it into a set of latent features. In parallel, the discriminator model also encodes a randomly selected, 
non-inpainted MRI image containing healthy tissue within the white matter region delimited by the free-form synthetic lesion mask. For each latent feature (i.e., 
neuron of the last feature map), the probability for that feature to be derived from a real (non-inpainted) image is estimated. This estimated probability is leveraged 
to train the model, via the discriminator loss term 𝐿 𝐺 . Overall, a high-performing generator can “fool ” the discriminator into believing it is creating real images. 
Abbreviations: GAN, generative adversarial network; MRI, magnetic resonance imaging; MS, multiple sclerosis; WMH, white matter hyperintensity. 
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f a discriminator loss (which encourages realistic inpainting profiles)
nd recursive attention mechanism (which facilitates the integration of
RI signals collected across brain locations) differentiates our approach

rom other state-of-the-art methods for MS lesion inpainting from brain
RI ( Manjón et al., 2020 ). 

Furthermore, anatomical consistency was imposed by ensembling
odels built on four reference anatomical spaces. These spaces were
efined by randomly selecting four T1-weighted MRI scans from the
aseline studies of the subset of ADVANCE participants exhibiting a low
5 
S lesion volume ( ≤ 100 m{m 

3 ). Each scan thus selected defines one
eference anatomical space, and the process of affine registration to each
eference space is illustrated in the appendix in Fig. 16 . In total, 12 mod-
ls were trained, corresponding to one model per anatomical view (axial,
oronal, and sagittal) for each anatomical template. During inference,
ach input MRI scan was first projected to each one of the four reference
paces (see Fig. 16 ), which was achieved using a linear registration algo-
ithm implemented within the CE-marked and FDA-approved ART-Plan
oftware (TheraPanacea, Paris, France) ( Ferrante et al., 2019 ). The syn-
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2 To the best of our knowledge, there currently exists no objective criteria for 
defining the spatial extent of the core of a MS lesion. The 4 mm criterion used 
in our work was selected empirically in the context of maximizing the accuracy 
of our overall framework. 
hetic full-brain MRI images produced in each one of the four reference
paces were subsequently projected back to the source space and predic-
ions were aggregated via voxel-wise averaging in the native space. A
ample inpainting result is shown in Fig. 9 as part of the Results section.

.2.2. Optimization 

A subset of the participants, 80%, pooled from the ADVANCE and AS-
END trials, were randomly selected for training the inpainting model;
he remaining 20% were used for validation. A set of 80,000 2D slices
ere extracted from the white matter of all training scans across the ax-

al, sagittal, and coronal planes. Prior to slice extraction, each MRI scan
nderwent intensity normalization based on histogram matching ( Nyú
nd Udupa, 1999 ) performed separately on T1- and T2-weighted scans,
sing intensity statistics from the brain region and excluding lesion ar-
as (and their associated 2 mm peri ‑plaque margin). Histogram-matched
ntensities were then mapped linearly to the range (–1 to 1) via min-max
ormalization. 

Let 𝑥 𝑖 denote a sample in a set of 𝑛 2D images extracted from a
ollection of 3D T1- or T2-weighted brain MRI scans and let 𝐦 𝑖 denote
 binary mask defining the region to be inpainted in sample 𝑥 𝑖 . The
ask 𝐦 𝑖 was randomly generated via the procedure originally proposed

n ( Yu et al., 2019 ) and designed to simulate brush strokes, whereby
troke length and brush width parameters were optimized to produce
ree-form shapes reproducing the visual aspect of MS lesions geometry.
ince the task of the inpainting model is to produce a lesion-free tissue
rofile replacing an MS lesion, the mask 𝐦 𝑖 was constrained to white
atter regions located at least 5 mm away from any WMH. Then, 𝑥 𝑖 
as preprocessed such that voxels from 𝑥 𝑖 contained within 𝐦 𝑖 were set

o a constant value of 0 to avoid contributing to the feedforward pass. 
We seek to produce a predicted inpainting 𝑥 𝑖 that minimizes the L1

istance between 𝑥 𝑖 and 𝑥 𝑖 in both the inpainted region 𝐦 𝑖 as well as
trivially) in the non-inpainted region. As 𝑥 𝑖 is fed into our network, we
enote the output of the coarse generator block as �̂� 𝑐 

𝑖 
and the output

f the refinement generator block as �̂� 𝑟 
𝑖 
. The reconstruction loss 𝐿 𝑀 

in
he masked inpainting region 𝐦 𝑖 and the loss 𝐿 𝑈 in the unmasked re-
ion are expressed below, where ⊙ denotes voxel-wise multiplication.
he network was further supervised by minimizing the GAN loss 𝐿 𝐺 de-
ned below, where 𝐷 denotes the discriminator loss function. The total
odel loss is defined as 𝐿 total ∶= 𝛼𝐿 𝑀 

+ 𝛽𝐿 𝑈 + 𝛾𝐿 𝐺 ; empirical results
otivated the choice of 𝛼 = 𝛽 = 𝛾 = 1 , as proposed in ( Yu et al., 2019 ).
odel parameters were trained via the Adam optimizer with a learn-

ng rate of 1 × 10 -4 , using a batch size of eight. Training was stopped
arly if the global L1 loss on the validation set did not decrease for two
onsecutive epochs. The model was implemented in PyTorch and took
4 h to train on a GTX-1080 GPU. 

 𝑀 

∶= 

∑
�̂� 𝑖 ∈

{
�̂� 𝑐 
𝑖 
, ̂𝑥 𝑟 
𝑖 

}𝔼 
[‖(𝑥 𝑖 − �̂� 𝑖 

)
⊙𝐦 𝐢 ‖1 

]

 𝑈 ∶= 

∑
�̂� 𝑖 ∈

{
�̂� 𝑐 
𝑖 
, �̂� 𝑟 

𝑖 

}𝔼 
[‖(𝑥 𝑖 − �̂� 𝑖 

)
⊙
(
1 − 𝐦 𝐢 

)‖1 
]

 𝐺 ∶= − 𝔼 
{
𝐷 

(
�̂� 𝑟 𝑖 , 𝐦 𝐢 

)}

.3. Patch extraction 

.3.1. Motivation for a patch-based approach 

In early stages of MS, brain WMH regions can generally be sepa-
ated into foci via connected-component analysis, whereby one pre-
iction (acute or chronic) can be produced for each discrete lesion.
n contrast, in later stages of MS, the confluence of multiple lesions
ccumulated over time makes it difficult to isolate individual lesions
 Dworkin et al., 2018 ). This problem precludes a lesion-level approach
nd instead prompts a voxel-level analysis. Thus, in this work, the class
f each WMH voxel is predicted using information contained within a
ubic patch of dimensions 15 × 15 × 15 mm centered on that voxel,
6 
hereby patch dimensions were selected by computing the smallest pos-
ible patch size satisfying the condition that at least 90% of all acute
esions in our dataset could be fully contained within the patch. Patch-
evel information is extracted across the original and inpainted T1- and
2- weighted MRIs; each patch is associated with the WMH mask de-
ected in that patch (see Fig. 6 ). 

.3.2. Patch sampling strategy 

Patches were extracted from randomly sampled voxel locations
cross the WMH regions of all available brain scans, following a spa-
ially uniform distribution (see Fig. 5 ). This was constrained by a set of
atch exclusion criteria eliminating small ( < 9 m m 

3 ) lesion foci as well
s patches on the boundary between acute and chronic MS lesions. In the
pecific case of patches extracted from discrete lesion foci that could be
ully contained within the patch, the center of the patch was corrected
o co-localize with the center of mass of those foci. These exclusion and
orrection rules are further detailed in the appendix and favor patches
hat are non-equivocal examples of either acute or chronic MS activ-
ty, which reduces label noise and as such facilitates learning. During
odel validation and testing, these exclusion criteria were maintained.

or patches satisfying these criteria, the label of the patch was that of
ts central voxel. 

.3.3. Class balancing across patches 

The resulting dataset of patches was class-balanced by under-
ampling the majority chronic class. Specifically, the set of chronic
atches extracted across the pooled population of participants was such
hat the count of patches across participants would reflect the extent
f chronic lesion burden across those participants. As an example, if
he chronic lesion volume detected in participant 𝐴 is equal to twice
he volume of chronic lesion detected in participant 𝐵, then the final
et of chronic patches will contain twice as many chronic patches from
articipant 𝐴 than patches from participant 𝐵. In addition, the distribu-
ion of lesion volumes contained within chronic patches was matched
o the distribution of lesion volumes in acute patches. This ensures that
he acute versus chronic discrimination process is driven by differences
n textural patterns of MRI intensity, as opposed to variations in lesion
olume that may otherwise be captured through texture features via
olume-confounding effects ( Jensen et al., 2021 ). Key statistics of the
esulting class-balanced datasets of patches are presented in Table 2 as
art of the Results section. 

.3.4. Regions of interest: core and periphery 

In each patch, two regions of interest (ROIs) were segmented: the
ore and periphery . Specifically, we define the core of the patch as the
ection of the WMH contained within the focus region, as illustrated in
ig. 6 , whereby the focus region is defined as a binary ball of radius
 mm centered on the patch. 2 Consequently, the core ROI is equivalent
o the lesion mask for patches centered on focal WMH components of
aximum 3D diameter ≤ 8 mm (in the ADVANCE cohort, approximately
0% of acute MS lesions satisfy this criterion). For larger WMH compo-
ents, the focus region can be used to focus on the relevant subsection of
he larger lesion component. Thus, the core ROI can be used to dynam-
cally adapt to different spatial extents of WMH and supports the use of
ur method on both discrete and confluent MS lesions. 

In addition to the core ROI, we defined the periphery ROI of the patch
s the set of voxels around the core that are at a distance ≤ 3 mm away
rom the edge of the core . Importantly, the periphery ROI does not sys-
ematically co-localize with the peri ‑plaque region. Indeed, the nature
f the tissue contained within the periphery ROI may vary depending on
he location of the patch within the brain, relative to other MS lesions.
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Fig. 5. Overview of the patch sampling and extraction procedure. (A) Axial view of T2-weighted brain MRI showing the acute (red) and chronic (blue) ground truth 
segmentation maps, along with a selection of patches extracted from the scan. (B, C) Close-up view of one T2-weighted MRI patch. Since the central voxel of this 
patch is labeled as acute, the patch will be labeled as acute. Note in (A) that a few chronic voxels were also captured within the bounds of the acute patch. (D) 
T1-weighted MRI patch. (E) Inpainted T2-weighted MRI patch associated with C. (F) Inpainted T1-weighted MRI patch associated with D. 
Abbreviation: MRI, magnetic resonance imaging. 

Table 2 

Number of patches extracted from the ADVANCE, ASCEND, and DECIDE trials, stratified by lesion label. Acute patches are further stratified by lesion age and 
whether the lesion co-localized with Gd + . The acute and chronic datasets of patches were class-balanced. 

Cohort Acute Chronic 

NET2 < 48 weeks NET2 < 24 weeks NET2 < 12 weeks NET2 < 4 weeks 

Total NET2 Gd + 
Gd + Gd + Gd- Gd + Gd- Gd + Gd- 

ADVANCE 20,080 20,080 1795 7167 10,987 NA NA 95 36 9057 
ASCEND 5159 5159 157 2246 2073 489 194 NA NA 2892 
DECIDE 10,888 10,888 2936 2785 5167 NA NA NA NA 5721 

Notes: An interstudy period of 12 weeks occurred only in the ASCEND trial between 96- and 108-weeks post-baseline, while an interstudy period of 4 weeks 
occurred only among a subset of participants in the ADVANCE trial, from baseline to 24 weeks post-baseline. It is thus not possible to identify which NET2 
lesions from ASCEND and DECIDE emerged within 4 weeks prior to scan acquisition, which is indicated as “NA ”. A lesion detected as new via the comparison 
of scans taken more than 24 weeks apart, but showing gadolinium enhancement at the latest timepoint, was considered acute. 
Abbreviations: NA, not applicable; NET2, new or substantially enlarging T2-weighted. 

Fig. 6. Definition of the core and periphery 
of patches. (A) T2-weighted MRI patch. (B) 
WMH mask (shown in yellow). (C) Focus 
region (shown in white) superimposed on 
the WMH mask. The focus region is a binary 
ball containing the set of voxels located ≤ 
4 mm away from the central voxel of the 
patch. (D) Core region (shown in red) de- 
fined as the intersection of the WMH mask 
and the focus region. (E) Periphery region 
(shown in blue) defined as the set of vox- 
els located within 3 mm from the edge of 
the core region, outside of the core region. 
(F) Core (red) and periphery (blue) regions, 
within which radiomic features are com- 
puted. 
Abbreviations: MRI, magnetic resonance 
imaging; WMH, white matter hyperinten- 
sity. 

7 



B. Caba, A. Cafaro, A. Lombard et al. NeuroImage 265 (2023) 119787 

T  

i  

a  

s  

i  

l  

e  

c  

R  

c

5

 

s  

e  

t  

p  

p  

h  

2  

s  

g  

p  

s  

P

5

 

8  

b  

p  

p  

w  

a  

T  

f  

m  

T  

a  

u  

m  

c  

a

5

 

e  

t  

d  

i  

t  

(  

f  

u  

s  

f  

c  

m
 

r
[  

b  

s  

c  

t  

p  

K  

t  

a  

(  

i  

p  

t  

v  

a  

b  

m  

t  

t  

f  

s  

i  

s  

f  

t  

B  

t  

c
 

1  

s  

T  

t  

d  

l  

v  

b  

s  

e  

a  

b  

i  

m  

f  

(  

w  

t  

s  

i  

s  

f  

l  

e  

𝑥  

c
 

r  

b  

P  

i  

t  

t  

A  

(  

fi  

s  

m  

t  

[  

t  
he periphery ROI may thus contain both peri ‑plaque tissue (which may
nclude white matter tissue and/or CSF from CSF-rich locations such
s the ventricles) as well as lesion tissue from neighboring (and pos-
ibly confluent) lesions (see Fig. 6 ). By allowing the periphery ROI to
nclude neighboring lesion tissue (as opposed to restricting it to the non-
esion peri ‑plaque tissue), we circumvent the issue of an empty periph-
ry, which would otherwise occur when a patch is sampled within the
ore of a large confluent lesion mass. Overall, the core and periphery
OIs represent two non-overlapping binary masks adapted to the WMH
ontained in each patch (see Fig. 6 ). 

.4. Radiomics computation 

A set of 88 textural and first order radiomic features ( Van Griethuy-
en et al., 2017 ) were extracted separately from the core and periph-

ry ROIs for each MRI sequence (T1- and T2-weighted) as well as for
heir inpainted counterparts, yielding a set of 704 radiomic features per
atch. The intensity discretization for computing texture features was
erformed using a fixed bin size (as opposed to a fixed bin count), which
as been shown to improve reproducibility in TA from MRI ( Duron et al.,
019 ). Bin width was set to 0.4, which yielded approximately 30 inten-
ity bins per ROI and was motivated by prior studies that have shown
ood reproducibility for a bin count of 32 on MRI ( Carré et al., 2020 ). No
atch-level intensity normalization was applied; we instead relied on the
can-level intensity normalization scheme described in Section 5.1 “MRI
re-Processing ”. 

.5. Biomarker identification and classification pipeline 

The dataset of pooled participants from the ADVANCE trial was split
0:20 into training and validation sets, while ensuring that the distri-
ution of classes in each subset was balanced. Patches extracted from
articipants from the ASCEND and DECIDE trials constituted two inde-
endent testing sets. Radiomic features were normalized via z-scoring,
hereby normalization parameters were computed from the training set
nd subsequently applied to the training, validation, and testing sets.
he training set was used as input to a classification pipeline identi-
ying the optimal combination of a feature space and a classification
odel for the successful discrimination of acute versus chronic patches.
his classification pipeline was inspired by ( Chassagnon et al., 2020 )
nd consists of an initial feature ranking pipeline, followed by a contin-
ous loop of recursive feature elimination and ensemble classification
odel optimization (see Fig. 7 ). The feature ranking, ensemble classifi-

ation, and modified recursive feature elimination (mod-RFE) modules
re defined in the following sections. 

.5.1. Feature ranking 

Let  𝑁 

denote the set of 𝑁 = 704 radiomic features extracted from
ach patch sample. A feature selection algorithm was designed to reduce
he dimensionality of this input space by removing irrelevant and/or re-
undant variables. This has the potential to reduce computation time,
mprove classification performance and generalizability via the elimina-
ion of noisy features, and facilitate the interpretation of the final model
 Cai et al., 2018 ; Kuhn and Johnson, 2013 ). Specifically, we perform
eature selection via two distinct steps. First, a feature ranking mod-
le orders the radiomic features from most to least predictive. Then,
tarting from a feature subspace  𝐾 comprising the top-K most-relevant
eatures, a modified recursive feature elimination (mod-RFE) process is
onducted, whereby the size of the feature subspace is iteratively decre-
ented by eliminating the least useful features at each step. 

The feature ranking step is supported by a supervised scoring met-
ic 𝑝 ( 𝑥 𝑖 ) denoting the prevalence of a feature 𝑥 𝑖 (indexed by 𝑖 ∈
 1 , 2 , … , 𝑁 ] ) from  𝑁 

and defined as the sum of two metrics inspired
y the filter and embedded methods of feature selection. The filter method
elects features based on their score in univariate statistical tests for their
orrelation with the prediction target. In this context, we may measure
8 
he linear dependence between a feature and the patch label (e.g., using
oint biserial correlation) or their monotonic relationship (e.g., using
endall’s Tau) as well as more complex relationships (via information-

heoretic measures such as mutual information). However, this univari-

te filter method is limited in that it may select important but correlated
and therefore redundant) predictors. In contrast, the embedded method
s a multivariate approach traditionally implemented through the ap-
lication of classification models endowed with built-in feature selec-
ion properties, such as 𝐿 1 -regularized linear models. Whilst the multi-

ariate embedded method is more robust to the presence of correlation
cross features, it is also limited to the detection of linear relationships
etween features and the patch label. It may also select features in a
odel-dependent fashion and yield feature scores (i.e., model weights)

hat are dependent on the choice of regularization strategy and magni-
ude. Importantly, to tackle the task of feature ranking , as opposed to
eature selection , we adapt the traditional embedded paradigm by con-
idering the coefficients learned by 𝐿 2 -regularized linear models and
nspect the relative weight given to each feature, rather than select the
ubset of features with non-zero weights. Similarly, for the filter metric,
eatures were ranked based on their absolute correlation score with the
arget, rather than selected based on a p-value significance threshold.
y combining both a filter and an embedded method to feature selec-
ion, we aim to mitigate the respective limitations of each approach and
ombine their strengths. 

To evaluate the filter and embedded metrics, we randomly generated
00 subsets from the training dataset of patches, whereby each sub-
et contained 80% of all training patches, without repeating elements.
o compute the embedded metric, we trained a variety of linear and
ree-based ML classifiers on each one of the 100 generated subsets to
iscriminate acute from chronic patches. These classifiers included a
inear Support Vector Machine with L2 regularization 𝐶 = 0 . 25 (chosen
ia cross-validation over the training set using subject-level splits, using
alanced classification accuracy as objective measure), Logistic Regres-
ion with L2 regularization 𝐶 = 1 . 0 ( idem ), as well as tree-based mod-
ls, including a Decision Tree of depth 3 optimizing the Gini impurity,
nd boosted ensembles of decision trees, including AdaBoost with 30
oosting rounds and a learning rate of 1.0, and XGBoost with 30 boost-
ng rounds and a learning rate 𝜂 = 1 . 0 . For each one of the 100 subsets,
odel coefficients were extracted from each trained linear classifier and

eature importance values were extracted from each tree-based classifier
e.g., Gini impurity for the Decision Tree, or gain for XGBoost). These
ere used to rank all features from highest to lowest relative impor-

ance. From this ranking, the 5% features with the highest score were
elected. The embedded metric score of each selected feature was then
ncremented by 1. This procedure was repeated for each one of the 100
ubsets and is illustrated in Fig. 8 . Ultimately, the embedded metric score
or feature 𝑥 𝑖 was defined as the number of splits in which 𝑥 𝑖 was se-
ected, summed across linear and tree-based models. Consequently, the
mbedded metric score is a natural number comprised between 0 (i.e.,
 𝑖 was never selected) and 500 (i.e., 𝑥 𝑖 was selected by each of the 5
lassification models in each one of the 100 splits). 

Similarly, for each one of the 100 subsets, linear and non-linear cor-
elation metrics were evaluated to quantify the degree of association
etween each radiomic feature and the patch label. Metrics included
oint Biserial correlation, Kendall’s 𝜏, ANOVA F-value, 𝜒2 , and mutual
nformation. For each metric, features were ranked in ascending correla-
ion magnitude. The filter metric score of a feature 𝑥 𝑖 was then defined as
he number of splits in which 𝑥 𝑖 was selected across correlation metrics.
gain, the filter metric score is a natural number comprised between 0

i.e., 𝑥 𝑖 was never selected) and 500 (i.e., 𝑥 𝑖 was selected by each of the
ve correlation metrics in each one of the 100 splits). Importantly, by
electing a fixed number of features for each split and for each scoring
ethod, we allow for conceptually different feature importance metrics

o be transformed to a common space of natural numbers in the range
0:500]. The resulting embedded and filter scores are then each mapped
o [ 0 ∶ 1 ] via min-max normalization across features, yielding relative
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Fig. 7. Diagram of our end-to-end feature selection and classification pipeline, yielding an optimized classification model coupled with a low-dimensional 𝛼-radiomics 
signature. 

Fig. 8. Diagram showing the our multi- 
objective feature ranking pipeline, combin- 
ing the respective strengths of filter and em- 
bedded approaches to features selection. 
Abbreviations: SVM, support vector ma- 
chine. 
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etrics which are ultimately summed together to give the prevalence
core 𝑝 ( 𝑥 𝑖 ) . By summing together min-max normalized metrics (instead
f summing up ranks across metrics, for example), the definition of 𝑝 ( 𝑥 𝑖 )
onserves the magnitude of relative discrepancies between features as
easured by the embedded and filter metrics. 

Finally, features were ranked using their prevalence score. The top-K
ost informative features could then be retrieved to construct the set of

eatures  𝐾 . We specifically enforced that, for each radiomic variable
etrieved in this way, the measures extracted from both the original
nd inpainted MRI data should be selected. This was enforced by iter-
ting from the best-ranked variable to the worst-ranked variable and
opulating the K -dimensional subspace of selected features with both
he current-rank variable as well as its original or inpainted counter-
art, via a “tag-along ” strategy. This ensures that, although original and
npainted MRI features were scored separately using 𝑝 , each set  𝐾 con-
ists of pairs of original and inpainted texture radiomics such that  𝐾 

efines an 𝛼-radiomics signature. 
9 
.5.2. Classification 

The ensemble classification module then yields, from a dataset con-
aining a subset  𝐾 of top- 𝐾 radiomic features, an ensemble classifier
  𝐾 

discriminating acute from chronic patches. Specifically,   𝐾 was
onstructed by ensembling five base classifiers. The set of candidates
rom which these five models were selected included K-Nearest Neigh-
or, Linear Support Vector Machine (SVM), Polynomial SVM, Radial
asis Function SVM, Decision Tree, Random Forest, Adaboost, XGBoost,
istGradBoost, Gaussian Naive Bayes, Quadratic Discriminant Analysis
nd Multi-Layer Perceptron. 

First, the hyperparameters of each model taken from the candi-
ates’ pool were tuned via an extensive deterministic grid search, cross-
alidated three times using subject-level splits. Second, tuned models
rom the pool were evaluated via 5-fold cross-validations. Models were
anked in ascending order of balanced classification accuracy and the
op-5 were selected, excluding models exhibiting a train-validation per-
ormance gap exceeding 35% in balanced accuracy. Third, the predic-
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Table 3 

Recall and precision statistics for the acute and chronic classes 
of patches for our ensemble classifier trained in the subspace of 
32 𝛼-radiomic features. 

Dataset Class Recall (%) Precision (%) 

ADVANCE 

(training) 

Acute 82.9 82.1 
Chronic 82.0 82.7 

ADVANCE 

(validation) 

Acute 74.7 76.4 
Chronic 77.0 75.2 

ASCEND 

(testing) 

Acute 71.1 76.4 
Chronic 78.1 73.0 

DECIDE 

(testing) 

Acute 75.9 73.6 
Chronic 72.7 75.1 
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ions of the top-5 classifiers were combined under different ensem-
ling strategies including hard voting, accuracy-weighted hard vot-
ng (whereby the vote of each base model was weighted by its cross-
alidated validation accuracy), soft voting, accuracy-weighted soft vot-
ng, and stacking. In stacking, a logistic regressor was trained to map
he probabilistic output of the top-5 base estimators to the patch class
acute/chronic). The best-performing ensemble model   𝐾 was selected
ia evaluation on the validation set from the ADVANCE trial, using bal-
nced classification accuracy as the objective metric. 

.5.3. Recursive feature elimination 

The ensemble classification module was applied for different values
f 𝐾 from 4 up to 𝑁 , which yielded a series of trained classifiers
   4 

, … ,   𝑁 } . Among this set of classifiers and their associated fea-
ure spaces, the smallest feature space size 𝐾 

∗ associated with classi-
er   𝐾 ∗ yielding a validation accuracy comprised within a reasonable
argin of the best accuracy achieved across all trained classifiers was

elected as the initial feature space for the mod-RFE pipeline (i.e., the
econd stage of feature selection). Importantly, the computational com-
lexity of mod-RFE exceeds an arithmetic sum up to the size 𝐾 of the
nitial feature space, thus initializing mod-RFE with 𝐾 

∗ features, rather
han 𝑁 features, improves the tractability of this last feature selection
tage. 

Specifically, our mod-RFE module integrates the ensemble classifica-

ion module within a continuous optimization loop of greedy RFE. Start-
ng from a feature space of size 𝐾 

∗ , the classification module first yields
n optimal classifier   𝐾 ∗ . Then, we iteratively loop over all pairs of

adiomic features ( 𝑥 𝑜𝑟𝑖 
𝑖 
, 𝑥 

𝑖𝑛𝑝 
𝑖 

) in  𝐾 ∗ , where 𝑥 𝑜𝑟𝑖 
𝑖 

and 𝑥 𝑖𝑛𝑝 
𝑖 

denote features
orresponding to a radiomic variable 𝑥 𝑖 measured from original and
npainted MRI data, respectively. In each iteration from this loop, we
rained   𝐾 ∗ on a feature space of size 𝐾 − 2 in which ( 𝑥 𝑜𝑟𝑖 

𝑖 
, 𝑥 

𝑖𝑛𝑝 
𝑖 

) were
emoved. The performance of each newly derived classification model
rained in the absence of ( 𝑥 𝑜𝑟𝑖 

𝑖 
, 𝑥 

𝑖𝑛𝑝 
𝑖 

) was evaluated via 5-fold cross-
alidation. This was repeated for each of the 𝐾 

∗ ∕2 pairs of features in
 𝐾 ∗ . After 𝐾 

∗ ∕2 experiments, the pair of features whose removal caused
he least decrease in balanced accuracy was removed, yielding a feature
pace of size 𝐾 

∗ − 2 , and a new classifier   𝐾 ∗ −2 was defined. This pro-
ess was repeated recursively, pruning the feature space by two features
n each iteration, terminating at a feature space of size 2. 

To limit the computational cost of this approach, a random subset of
0% of the samples from the training set of patches was selected at each
ecursive loop, from which the impact of the removal of each features
air ( 𝑥 𝑜𝑟𝑖 

𝑖 
, 𝑥 

𝑖𝑛𝑝 
𝑖 

) was evaluated. Finally, the trace of validation accuracy
gainst feature space sizes was plotted in Stage 2 of Fig. 10 , from which
n 𝛼-radiomics signature was selected via visual inspection, to identify
he smallest feature space size maintaining near-optimal classification
ccuracy on the validation set. 

.6. Code and data availability statement 

Requests for data should be submitted via the Biogen Clinical Data
equest Portal ( www.biogenclinicaldatare quest.com). To gain access,
ata requestors will need to sign a data-sharing agreement. Data are
ade available for 1 year on a secure platform. The code for this paper

s proprietarily owned by Biogen and cannot be shared. 

.7. Ethics statement 

All patients provided written informed consent to participate in the
linical studies, which included consenting to future use of their study
ata for medical and pharmaceutical research, such as this post-hoc
nalysis. 
10 
. Results 

.1. MS lesion inpainting 

A sample inpainting result is shown in Fig. 9 . The performance of
ur inpainting model is evaluated both quantitatively and qualitatively
n the Appendix. 

.2. Patch sampling 

Using the sampling strategy described in Section 5.3.2 “Patch Sam-
ling Strategy ”, we extracted a set of 40,160 patches (see Table 2 ) taken
rom 11,267 timepoints of MRI scan acquisition collected across 3,924
articipants with MS. 

.3. Classification performance 

The set of 704 radiomic features were ranked and a series of ensem-
le classifiers were constructed for values of 𝐾 ranging from 4 up to 704
see Stage 1 of Fig. 10 ). The optimal initial 𝐾 for initializing mod-RFE
as determined as 𝐾 𝑜𝑝𝑡 = 200 (for 𝐾 > 𝐾 𝑜𝑝𝑡 , we observed an undesirable

ncrease in approximation error and little to no increase in validation ac-
uracy). The results of the mod-RFE pipeline (see Stage 2 of Fig. 10 ) led
o the selection of a compact 𝛼-radiomics signature of 32 features com-
rising 16 unique variables each extracted from both original and in-
ainted MRI data. This signature contained 11 T2-based and 5 T1-based
ariables (nine of which were periphery-based and seven were core-
ased). The ensemble classifier optimized in this feature space combined
 polynomial SVM of degree 3 and regularization parameter 𝐶 = 20 . 0 , a
adial basis function SVM with 𝐶 = 10 . 0 , a multi-layer perceptron with
ne hidden layer comprising 100 units with Rectified Linear Unit (ReLu)
ctivation, trained via Adam optimization with a learning rate of 0 . 001
nd constrained with L2 regularization strength 𝛼 = 0 . 1 , XGBoost op-
imizing the binary logistic loss via gradient-boosted decision trees of
aximum depth 7 with 0.1 learning rate and 600 boosting rounds, and
istGradBoost optimizing the binary logistic loss via gradient-boosted
ecision trees (unconstrained in depth) with a minimum of 20 samples
er leaf, with shrinkage coefficient 0.2 and L2 regularization strength
.0. Detailed benchmarking results for all classification models evalu-
ted in this paper are reported in Table 8 in the appendix. 

The base estimators were combined via weighted soft voting (bench-
arking results for other ensembling strategies evaluated in this paper

re reported in Table 9 in Appendix). The final ensemble model achieved
5 . 8% balanced accuracy, 76 . 4% precision, 74 . 7% sensitivity, 77 . 0% speci-
city, and 83 . 4% ROC AUC on the validation set. The corresponding
esting set metrics in the ASCEND/DECIDE cohorts were 74 . 6% / 74 . 3% ,
6 . 4% / 73 . 6% , 71 . 1% / 75 . 9% , 78 . 1% / 72 . 7% , and 82 . 2% / 82 . 2% , respectively
see Fig. 11 and Table 3 ). Lastly, NET2 lesions were further sub-classified

http://www.biogenclinicaldatare
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Fig. 9. Sample inpainting result on an axial 
slice from a T2-weighted brain MRI scan, 
showing the original lesion-present image 
(A), the dilated lesion mask (red, B), and 
the lesion-free inpainted image (C). 
Abbreviation: MRI, magnetic resonance 
imaging. 

Fig. 10. Panel A: Balanced classification accuracy obtained on the training and validation sets from the ADVANCE cohort for different subsets of 𝐊 -best radiomic 
features (stage 1), along with the mod-RFE curve initialized with 𝐊 𝐨𝐩𝐭 = 200 radiomic features, showing balanced classification accuracy on the validation set (stage 
2). Panel B: Radar plot showing the average signature of the acute and chronic populations of patches across each one of the 16 radiomics variables selected via 
mod-RFE. Each variable was z-scored prior to plotting (radial ticks are spaced by 0 . 1 standard deviation). 
Abbreviations: GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix, NGTDM, neighboring gray tone difference matrix. 

Fig. 11. Confusion matrices showing the performance of our ensemble classifier trained in the subspace of 32 𝛼-radiomic features. 

Table 4 

Sensitivity (number of patches correctly detected as acute over the total 
number of patches with ground truth class acute) for gadolinium-enhancing 
and non-enhancing NET2 lesions on the validation and testing sets. 

Cohort 

Gadolinium- 

enhancing Non-enhancing 

ADVANCE Validation 82.8% (1518/1834) 66.6% (1648/2474) 
ASCEND Testing 73.2% (2116/2892) 69.0% (1564/2267) 
DECIDE Testing 81.8% (4680/5721) 70.0% (3617/5167) 

Abbreviation: NET2, new or substantially enlarging T2-weighted. 
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s gadolinium-enhancing if they overlapped by at least one voxel with
 Gd + region, or non-enhancing otherwise. The sensitivity of our clas-
ification model to each sub-population of acute patches across cohorts
s reported in Table 4 . 
11 
.4. Control experiments 

.4.1. Prediction from lesion location or volume 

In addition, a set of control experiments were designed to generate
eference results contextualizing the performance of our classifier. To as-
ess the effects of any potential spatial bias between acute and chronic
atch samples ( experiment 1 ), we applied our classification pipeline to
redict the ground truth class of each patch given the 3D location of
ts central voxel. We achieved a balanced accuracy of 62 . 5% on the val-
dation set from ADVANCE (compared to 75 . 8% with our 𝛼-radiomics-
ased approach), 63 . 4% on the testing set from ASCEND (compared to
4 . 6% ), and 61 . 3% on the testing set from DECIDE (compared to 74 . 3% ).
urthermore, to validate the efficacy of the volume-matching step per-
ormed between acute and chronic patches ( experiment 2 ), we attempted
o classify patches using the volume of their core and periphery regions.
s expected, classification accuracy was close to chance ( 50% ) across the
DVANCE ( 56 . 7% ), ASCEND ( 52 . 2% ), and DECIDE ( 53 . 9% ) trials, thereby
emonstrating appropriate elimination of the ROI volume bias. 



B. Caba, A. Cafaro, A. Lombard et al. NeuroImage 265 (2023) 119787 

Fig. 12. Receiver-Operating Curves (ROC) comparing our proposed pipeline (leveraging 𝛼-radiomics extracted from original and inpainted MRI images) versus a 
pipeline leveraging radiomic features extracted from the original MRI images only. 

6

 

(  

s  

e  

s  

r  

w  

a  

o  

𝛼  

6

 

p  

f  

p  

w  

T  

b  

a  

p  

p  

h  

l  

a  

3  

t  

l  

C  

t  

a  

p  

(  

O  

s  

F  

i

6

 

f  

p  

m  

t  

F  

i  

s  

“  

b  

p  

m  

t  

s

7

 

f
7  

d  

e  

s

7

 

d  

w  

s  

t  

n  

N  

m  

o  

P  

T  

a  

o  

h  

t  

t  

o  

g  

1  

2

3 In this context, a coarse texture is defined as consisting of thick threads or 
large pieces: it is locally homogeneous and exhibits regularity over a large spatial 
scale. In prior studies ( Zhang et al., 2008 , 2009 ), coarseness has traditionally 
been measured via low-frequency spectrum energy, as measured via the Polar 
Stockwell Transform. 
.4.2. Prediction without inpainting features 

Furthermore, to assess the benefit of including inpainting features
 experiment 3 ), our classification pipeline was applied to the restricted
ubset of radiomic features extracted from the original MRI scans. To
nsure a fair comparison, a feature space of 32 radiomic features was
elected via mod-RFE. The resulting model achieved a balanced accu-
acy of 70 . 1% on the validation set from ADVANCE (compared to 75 . 8%
ith inpainted information), 71 . 4% on ASCEND (compared to 74 . 6% ),
nd 71 . 2% on DECIDE (compared to 74 . 3% ). The radiomics model with-
ut inpainted features is additionally compared against our proposed
-radiomics pipeline via receiver operating curves, as shown in Fig. 12 .

.4.3. Prediction using a simple convolutional neural network 

Lastly, we compared our 𝛼-radiomics ML classifier against a sim-
le convolutional neural network (CNN) trained to discriminate acute
rom chronic patches ( experiment 4 ) using the same input data as our
roposed model (T1-weighted, T2-weighted, and inpainted T1- and T2-
eighted patches concatenated together with the WMH mask patch).
he CNN architecture consisted of two convolutional blocks followed
y two fully-connected layers. The convolutional blocks comprised eight
nd 16 filter kernels of dimensions 3 × 3 × 3 with stride 1 and 1-voxel
adding, each followed by a leaky ReLu activation function and a max-
ooling block of kernel size 2. The fully-connected layers contained 32
idden units and one output unit respectively, and were connected via a
eaky ReLu activation function, followed by a batch-normalization layer
nd a drop-out layer with 𝑝 = 0 . 4 . The model thus contained a total of
7,457 trainable parameters. A sigmoid activation function was applied
o the output node, and the model optimized the binary cross-entropy
oss using the Adam optimizer with a learning rate of 0 . 001 . The resulting
NN was cross-validated by generating 20 train/validation splits from
he original training set on the basis of 80:20. It achieved a balanced
ccuracy of 74 . 3% ( ±0 . 7 ) on the validation set from ADVANCE (com-
ared to 75 . 8% with our 𝛼-radiomics approach), 74 . 9% ( ±0 . 7 ) on ASCEND
compared to 74 . 6% ), and 74 . 3% ( ±0 . 8 ) on DECIDE (compared to 74 . 3% ).
verall, our proposed 𝛼-radiomics pipeline performed similarly to this

imple CNN, as demonstrated via the receiver operating curves shown in
ig. 13 . The results of each control experiment are summarized together
n Table 5 . 

.5. Full-Brain prediction 

Our patch-based classification framework may be adapted to the
ull-brain dense acute MS lesion segmentation task by independently
redicting the label of each WMH voxel ( acute or chronic ) using infor-
ation contained in its surrounding patch. Sample predictions showing

rue positive, false negative and false positive examples are shown in
ig. 14 . In addition, the performance of our classification framework
12 
n the context of brain scans containing no ground truth acute MS le-
ion activity is illustrated in Fig. 15 , showing varying degrees of acute
over-prediction ”. Future histopathology-MRI correlation analysis will
e needed to determine whether some of these areas of apparent “over-
rediction ” may nevertheless contain foci of pathologically “active ” de-
yelination which are currently missed by the ground truth conven-

ional MRI definition of “acute ” lesions (the limitations of which were
ummarized in the Introduction section). 

. Discussion 

We have developed an ensemble ML algorithm discriminating acute
rom chronic MS lesion patches with accuracy in the range 74.3–
4.6% using a compact set of 32 𝛼-radiomic features. This algorithm
emonstrated good generalization properties across different MS dis-
ase stages (relapsing-remitting MS [RRMS] in ADVANCE/DECIDE ver-
us secondary progressive MS [SPMS] in ASCEND). 

.1. Interpretation of radiomic features 

The potential interpretation of the 32 selected radiomic features that
istinguished acute from chronic lesions was explored. In line with prior
ork ( Zhang et al., 2008 , 2009 ), our results suggest that acute MS le-

ions are associated with a coarser texture on T2-weighted MRI relative
o chronic MS lesions. 3 Among the selected radiomic features, coarse-
ess is reflected by variables such as the coarseness (as extracted from the
eighboring Gray Tone Difference Matrix, NGTDM) as well as the nor-

alized inverse difference moment (as extracted from the Gray Level Co-
ccurrence Matrix, GLCM) measured in the core of T2-weighted patches.
revious studies have associated increased coarseness in MS lesions on
2-weighted MRI with higher levels of demyelination, axonal damage,
nd inflammation consistent with acute pathology, which suggests that
ur method has content validity ( Zhang et al., 2013 ). Furthermore, it
as been suggested that the increased coarseness in T2-weighted MRI
exture in acute MS foci may be associated with infiltration by inflamma-
ory cells (including macrophages, lymphocytes, and glial cells), loss of
ligodendrocytes, recruitment of undifferentiated oligodendrocyte pro-
enitors, phagocytosis of myelin proteins by macrophages ( Brück et al.,
995 ; Pittock and Lucchinetti, 2007 ; Prineas et al., 1993 ; Zhang et al.,
009 ), and acute axonal pathology ( Tedeschi et al., 2002 ). 
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Fig. 13. Receiver-Operating Curves comparing our proposed approach (leveraging 𝛼-radiomics via an ensemble of ML classifiers) versus a simple CNN, show- 
ing no statistically significant difference in performance. The 95% confidence interval (CI, shaded) was computed by fitting 20 different models on 20 different 
train/validation splits from the training set of patches, and applying each resulting trained model to each test set. 

Table 5 

Key global classification performance statistics across the ADVANCE, ASCEND, and 
DECIDE trials, for different input feature spaces in the context of 4 control experi- 
ments. 

Experiment # Cohort Balanced accuracy (%) ROC AUC (%) 

1: Location ADVANCE (training) 67.3 73.9 
ADVANCE (validation) 62.5 66.2 

ASCEND (testing) 63.4 67.3 
DECIDE (testing) 61.3 65.4 

2: Volume ADVANCE (training) 58.5 62.9 
ADVANCE (validation) 56.7 60.0 

ASCEND (testing) 52.2 55.4 
DECIDE (training) 53.9 56.4 

3: Original MRI 
only 

ADVANCE (training) 75.9 84.9 
ADVANCE (validation) 70.1 76.9 

ASCEND (testing) 71.4 78.4 
DECIDE (training) 71.2 77.8 

4: CNN ADVANCE (training) 83.8 ( ± 1.5) 91.2 ( ± 1.3) 
ADVANCE (validation) 74.3 ( ± 0.7) 82.0 ( ± 0.9) 

ASCEND (testing) 74.9 ( ± 0.7) 82.5 ( ± 0.8) 
DECIDE (training) 74.3 ( ± 0.8) 82.0 ( ± 0.8) 

Ours: 
𝛼-radiomics 

ADVANCE (training) 82.4 91.4 
ADVANCE (validation) 75.8 83.4 

ASCEND (testing) 74.6 82.2 
DECIDE (training) 74.3 82.2 
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In addition, many of the features discriminating acute from chronic
esions were found to be in the periphery of the patch, which is con-
istent with prior results demonstrating the presence of rich textural
iomarkers within the peri ‑plaque tissue space in MS ( Zhang et al.,
013 ). We observed a greater degree of T1-weighted signal hypointen-
ity in the periphery of acute patches, along with a greater degree of
2-weighted signal inhomogeneity in this region, as measured via the

oint entropy (GLCM) and gray level variance (Gray Level Run-Length Ma-
rix) variables. This may be consistent with clearance of debris at the
esion site, which occurs predominantly at the periphery of an MS le-
ion ( Zhou et al., 2019 ), as well as partial demyelination in the tissue
urrounding acute foci. Nonetheless, it is important to recognize that
he periphery region as defined in this study may not systematically
verlap with the NAWM surrounding a focal MS lesion. Instead, it may
ntersect with varying degrees of WMH, depending on the proximity of
hat MS foci to other regions associated with MS damage. In particular,
he periphery of patches extracted from confluent lesions will primarily
ontain neighboring lesion tissue and in contrast will contain little to no
eri ‑plaque tissue. Consequently, we cannot exclude that the increased
2-weighted inhomogeneity and decreased median T1-weighted signal

ntensity observed in the periphery of acute patches could also reflect
he presence of WMHs in the vicinity of acute foci. 
13 
.2. Sensitivity to gadolinium-enhancing lesions 

The sensitivity of our ensemble classifier to the detection of acute
esions at different ages was investigated by using the presence of Gd +
s a marker of lesion age. Since the timescale for persistence of BBB
isruption, as measured via Gd + , has been reported to be around 1.5
o 3 weeks ( Cotton et al., 2003 ; Guttmann et al., 2016 ), then Gd + le-
ions can be expected to have emerged on average within 1.5 to 3 weeks
rior to scan acquisition. Across all cohorts, we achieved a significantly
igher ( +10% improvement on average) sensitivity to Gd + than non-
nhancing NET2 lesions. Intuitively, since NET2 lesions are most dis-
inguishable from chronic lesions shortly after their inception, before
hey may slowly transition towards a chronic lesion profile over time
 Guttmann et al., 1995 ; Meier et al., 2007 ; Meier and Guttmann, 2003 ;
ovira et al., 2013 ), we may indeed expect that more recent NET2 may
arbor maximal textural discrimination versus chronic lesions. Never-
heless, our classifier was still able to accurately discriminate acute from
hronic lesions when the former was not Gd + , emphasizing that the dis-
inguishing features selected by our algorithm are not restricted to the
arly-acute stage of new lesion formation. 
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Fig. 14. Panel showing axial slices sam- 
pled from three full-brain prediction maps 
derived from three participants from the 
ASCEND test cohort, obtained by indepen- 
dently predicting the label of each WMH 

voxel using information contained in its 
surrounding patch. This panel illustrates, 
from top to bottom, an example of true pos- 
itive acute MS lesion detection, an exam- 
ple of false negative (acute lesion incor- 
rectly predicted as chronic) and an exam- 
ple of false positive (chronic lesion incor- 
rectly predicted as acute). In each row we 
display, from left to right, (A) axial slice 
of T2-weighted brain MRI scan, (B) ground 
truth map of acute (red) and chronic (blue) 
MS lesions, and (C) probabilistic prediction 
map generated via the application of our 
patch-based classifier, where blue indicates 
a low predicted probability of acute MS 
lesion and red indicates a high predicted 
probability of acute MS lesion. 
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.3. Analysis of control experiments 

.3.1. Location-driven classification 

In experiment 1 , the significant improvement in performance ( +12% )
bserved in the 𝛼-radiomics classification relative to the location-driven
ontrol demonstrates the ability of our 𝛼-radiomics model to detect local
extural biomarkers specifically associated with acute versus chronic MS
esion activity, beyond location-dependent textural clues revealing the
natomical context of each patch. 

.3.2. Benefit of inpainting features 

In experiment 3 , we observed a consistent 4% increase in classifica-
ion accuracy under the inclusion of inpainted information, relative to
sing original MRI data only. Importantly, it should be observed that,
ince the inpainting model was trained from non-lesion white matter
issue from MS-diagnosed patients, and since the totality of the white
atter in the brain of MS patients is abnormal relative to healthy sub-

ects ( Elliott et al., 2021 ), we expect our inpainting model to reproduce
S-associated white matter abnormalities, rather than generate a truly

healthy ” white matter tissue profile. We hypothesize that the observed
erformance gain may result from the improved detectability of anatom-
cal landmarks within the inpainted image, relative to the original MRI
cans. In particular, the presence of a hyperintense T2-weighted signal
n the periphery of a patch taken from the original MRI scan could de-
ote either proximity to a WMH, or proximity to a region rich in cere-
rospinal fluid (CSF), such as the ventricles. In contrast, after removing
MHs via inpainting, the presence of a hyperintense T2-weighted sig-

al in the periphery of a patch acts as a specific marker of proximity to
SF-rich brain regions. This may allow for a better spatial contextualiza-
ion of each patch, potentially supporting the construction of a location-
14 
ependent decision rule. Additionally, it should be observed that lesion
npainting transfers information from various brain locations into the
npainted region (via attention mechanisms) and as such expands the
eceptive field offered to our classifier beyond the core and periphery
OIs. 

.3.3. Comparison against CNN 

Lastly, in experiment 4 we observe that our 𝛼-radiomics classifier out-
erforms (on DECIDE) or matches (on ASCEND) the accuracy reached
y a simplistic CNN classifier. With regards to the unsophisticated nature
f the CNN evaluated in this study, these results are promising for future
pplications of deep learning techniques to lesion classification in MS. In
act, the CNN-based approach is particularly advantageous with respect
o timing consideration, as it accelerates inference by a factor of 100 rel-
tive to our 𝛼-radiomics approach (approximately 300 patches/second
n GTX-1080 GPU for the CNN, relative to 3 patches/second on AMD
PYC 7742 64-Core Processor CPU for our approach). 

Nonetheless, it should be noted that in contrast with the “black-box ”
haracteristics of a CNN-based approach, our radiomics-based method
etains a higher degree of interpretability, owing to our ability to asso-
iate specific radiomic features with their biological correlates. These
ssociations may be leveraged to independently justify acute MS lesion
redictions. As an example, some MS lesions may be predicted as acute
wing to their abnormally high T2-weighted signal in the periphery ROI,
uggestive of peripheral edema, while others may similarly be predicted
s acute because of their high T2-weighted coarseness in the core ROI,
uggestive of infiltration of inflammatory cells. 
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Fig. 15. Panel showing axial slices sam- 
pled from three full-brain prediction maps 
derived from three participants from the 
ASCEND test cohort for which no ground 
truth acute MS lesion was detected, ob- 
tained by independently predicting the la- 
bel of each WMH voxel using information 
contained in its surrounding patch. This 
panel illustrates, from top to bottom, ex- 
amples of small, medium and severe acute 
over-prediction. In each row we display, 
from left to right, (A) axial slice of T2- 
weighted brain MRI scan, (B) ground truth 
map of acute (red) and chronic (blue) MS 
lesions, and (C) probabilistic prediction 
map generated via the application of our 
patch-based classifier, where blue indicates 
a low predicted probability of acute MS 
lesion and red indicates a high predicted 
probability of acute MS lesion. 
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.4. Limitations 

.4.1. Population bias: clinical trial participants 

This study has several limitations. Importantly, models were trained
nd evaluated on a population of participants pooled from the placebo
nd treatment groups of randomized controlled clinical trials, and while
reatment effects may alter the textural properties of acute and chronic
S lesions relative to a natural history population, this was not explic-

tly investigated. Furthermore, although the inclusion criteria for these
rials spanned the MS spectrum (see Table 1 ), which allows our algo-
ithm to model population variability, some differences are nonetheless
ikely to exist between the population considered in this study and the
istribution of patients typically encountered in routine clinical settings.

.4.2. Under-Representation of variability in MRI acquisition parameters 

Furthermore, the acquisition parameters used to generate the T1-
nd T2-weighted MRI brain scans leveraged in this study were con-
trained (as verified via dummy runs ) to similar ranges across all tri-
ls (see Table 1 ), yielding highly standardized images that may under-
epresent the variability of image contrasts and noise conditions encoun-
ered across real-world practice. Notwithstanding, it should be noted
hat the compactness of the selected feature space, the inherent robust-
ess of radiomic features to MRI acquisition parameters, and the use of
n ensemble learning strategy endow our classification framework with
obustness properties. 

.4.3. Limitations associated with a patch-based approach 

Another important limitation of this work is its focus on a patch-
evel classification task guided by a handcrafted patch sampling strat-
gy, which differs from the brain-level task of acute MS lesion detection
nd/or segmentation. While our approach may be adapted to the dense
egmentation setting as discussed in Section 6.5 “Full-Brain Prediction ”,
15 
t nonetheless lacks a mechanism to ensure consistency of predictions
cross voxels within a discrete MS lesion component, or to enforce spa-
ial smoothness of predictions across a confluent MS lesion mass (see
ig. 14 and Fig. 15 ). 

Furthermore, we have chosen to facilitate model training by rejecting
mbiguous patch samples (see Section 5.3.2 “Patch Sampling Strategy ”)
nd artificially class-balancing our dataset (see Section 5.3.3 “Class Bal-
ncing across Patches ”). This is not representative of the brain-level task,
here substantial class imbalance exists (see Table 1 ), and ambiguous
atches cannot be avoided. To deal with class imbalance, our framework
hould be adapted to include classification models designed to perform
ell under these conditions. Additionally, we may shift our optimiza-

ion objective focus from balanced accuracy (preferred in this work for
ts interpretability) to the F1-score metric (better suited for imbalanced
atasets where positive class occurrences are rare). We hypothesize that
his may contribute to reducing the occurrence of false positives, which
re illustrated in Figs. 14 and 15 . 

.4.4. Statistical testing 

Due to the high computational cost of training our proposed pipeline,
he results reported here were collected across a unique run generated
rom a single subject-level train/validation/test split. The lack of global
ross-validation limits our ability to statistically compare different clas-
ification experiments, beyond the ROC curves shown in Figs. 12 and
3 . 

.5. Translation into clinical practice 

This work tackles the task of acute versus chronic MS lesion clas-
ification in the cross-sectional setting and without contrast-enhanced
1-weighted MRI. As such, it is suited for estimating the volume and
patial distribution of acute lesion burden in MS patients for whom only
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w  
ne timepoint of MRI scan acquisition is available and/or for whom
afety concerns related to nephrotoxicity of gadolinium injection may
e relevant. In the context of a diagnostic MRI scan acquisition, our
roposed method may augment the information available to the clini-
ian, by increasing the sensitivity to acute lesion detection beyond the
elineation of Gd + foci, and as such may support the characterization
f dissemination of MS lesions in both time and space on a single scan
 Thompson et al., 2018 ). Furthermore, the detection of a high acute
esion burden from a diagnostic scan may provide motivation for select-
ng a treat-to-target treatment strategy, involving initiation of potent
MTs early in disease course, which may ultimately improve patient
utcomes. 

In the context of a clinical trial, our method may also support the im-
lementation of inclusion/exclusion criteria based on more comprehen-
ive measures of acute lesion burden estimated from a single screening
RI session. Lastly, our proposed algorithm may be able to detect foci of

cute MS lesion activity occurring in areas of pre-existing T2 lesion and
aptured outside of their gadolinium enhancement phase, and as such
ay improve the sensitivity to acute MS lesion detection beyond cur-

ent methods. All these potential claims would be subject to full clinical
alidation either in retrospective or prospective cohorts. 

.6. Future work 

Future work should primarily focus on evolving the voxel-level MS
esion classifier to a brain-level segmentation that would augment cur-
ent methods and potentially eliminate the need for gadolinium injec-
ion. This may involve integrating the set of independent voxel pre-
ictions produced by our model into a spatially smooth and consistent
oxel-level prediction map, constrained within the bounds of the WMH
ask. Smoothness may be enforced by post-processing the raw voxel-

evel prediction map generated by our current framework, via Gaussian
moothing and/or techniques derived from Markov Random Fields. 

In the context of future deep learning efforts, further work may eval-
ate the association between textural radiomic features and latent patch
mbeddings produced via the feature representation mechanism inher-
nt to CNNs. Furthermore, attention-based frameworks, or visual expla-
ation tools such as Grad-CAM ( Selvaraju et al., 2017 ), may be used
o investigate the potential relationship between those input regions to
hich the CNN prediction is sensitive, and the “core ” or “periphery ”
OIs as defined in this work. We may also investigate the possibility of
onstructing a CNN producing a dense segmentation map from a multi-
hannel input consisting of T1- and T2-weighted MRI scans along with
oxel-level feature maps computed for each one of the 32 selected ra-
iomic features. This approach offers several benefits, such as decreased
nference time, and would naturally enforce spatial consistency by pro-
ucing voxel-level predictions in a globally dependent fashion. Such
 model may also be informed with patient-level demographic and/or
linical disease variables. 

Lastly, and most importantly, future efforts should focus on correlat-
ng predicted acute lesion burden with subsequent clinical disease out-
omes. Indeed, a thorough clinical validation supported by patient-level
etrics derived from a voxel-level map of predicted acute MS lesion ac-

ivity may support the integration of an automatic acute MS lesion de-
ection tool into clinical practice, by allowing inference to be drawn at
he level of individual patients. 

onclusions 

We have developed a ML-based ensemble classifier that can discrimi-
ate acute from chronic MS lesions using unenhanced cross-sectional T1-
eighted and T2-weighted scans without the use of a previous compara-

ive reference scan and/or gadolinium. The model leveraged a compact
et of 32 𝛼-radiomic features encoding textural patterns associated with
cute versus chronic MS lesion activity. The model achieved 75 . 8% bal-
nced accuracy on a validation set of RRMS subjects, which was main-
16 
ained on independent test datasets comprising data from both SPMS
 74 . 6% accuracy) and RRMS ( 74 . 3% accuracy) populations. 
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Table 6 

Comparison of PSNR and edge preservation for different in- 
painting methods. In each cell we report the mean ± variance 
across 30 randomly selected test cases. 

Metric SFL FSL 

Our 

Approach 

PSNR (dB) 69 . 5 ± 7 . 2 71 . 8 ± 6 . 4 76 . 2 ± 4 . 3 
Edge 

Detection 

F1 

0 . 85 ± 0 . 05 0 . 89 ± 0 . 04 0 . 94 ± 0 . 04 

Abbreviations: PSNR, peak signal-to-noise ratio. 
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ppendix 

1. Exclusion criteria for patch sampling 

1.1. Definitions 

Patches containing WMHs that did not exceed a volumetric threshold
f 9 mm 

3 (equivalent to 3 voxels in the native 1 × 1 × 3 mm spacing)
ere ignored. This heuristic was enforced to facilitate TA, as radiomics
nalysis is sensitive to outlier effects for small ROI sizes ( Jensen et al.,
021 ). Intuitively, textures characterized by patterns showing regularity
ver a distant spatial scale are also more difficult to detect in small ROIs.

Furthermore, let 𝐫 denote the voxel location defining the center of
 patch and let 𝑦 ( 𝐫) be the label of voxel 𝐫 (acute or chronic). Then,
he volumetric proportion of the section of WMH contained in the focus
egion of the patch that is of class 𝑦 ( 𝐫) is enforced to always exceed 80% .
his heuristic guarantees that our dataset of patches does not contain
mbiguous samples situated at the interface between acute and chronic
issue. On average, this exclusion criteria rejected 4 . 5% ( ±6 . 3% ) of the

MH voxels detected in ADVANCE scans, 2 . 6 % ( ±3 . 3% ) in ASCEND, and
 . 7% ( ±6 . 4% ) in DECIDE. 

Lastly, when a sampled voxel location was contained within a small
iscrete lesion, then that sampled location was corrected such as to co-
ocalize with the center of mass of the foci. Specifically, a lesion was con-
idered as “small" if it could be fully contained within the cubic patch of
imensions 15 × 15 × 15 mm. This encourages the selection of patches
entered on lesion foci, rather than on their border. In contrast, for WMH
omponents exceeding the patch size, any voxel from the core or border
f the lesion could be uniformly sampled. As previously specified, these
xclusion criteria constrained the generation of both the training set of
atches, as well as the validation/testing sets. 

1.2. Implications 

On the full-brain voxel-level inference task in which our classifica-
ion model could be applied to every voxel contained within the WMH
rea, we expect our classifier to reproduce the classification perfor-
ance reported in this paper only within the set of WMH voxels that

atisfy the above-mentioned rules. In contrast, we make no claim regard-
ng the performance of our classification model within areas consisting
f voxel locations that would fail to meet our patch inclusion criteria. 

2. Evaluation of MS lesion inpainting 

2.1. Registration to multiple atlases 

Fig. 16 

2.2. Qualitative Evaluation 

Our approach was visually evaluated against prior methods for MS
esion inpainting such as FSL (Oxford center for Functional MRI of the
rain [FMRIB]’s Software Library) ( Battaglini et al., 2012 ) and SFL (Au-
omatic Lesion Segmentation of Multiple Sclerosis [SALEM] Lesion Fill-
ng) ( Valverde et al., 2014 ), as shown in Fig. 17 . It matches or ex-
eeds the state-of-the-art while offering improvesuppd versatility (un-
ike ( Zhang et al., 2020 ), our model does not require the availability of
ealthy brain scans): in particular, unlike FSL and SFL our method is
ree from artifacts and identifiable margins around inpainted regions.
lthough our model does not explicitly enforce an edge prior guiding

he reconstruction of anatomical structures such as the ventricles, un-
ike the most recently-published deep learning method based on edge
rior constraints ( Zhang et al., 2020 ); qualitative results demonstrate
hat we achieve continuity in the reconstruction of the periventricular
pace. Furthermore, a V-net segmentation model ( Milletari et al., 2016 )
17 
rained to detect MS lesions was unable to detect any lesion after appli-
ation of the inpainting algorithm. 

The effect of extending the inpainting mask beyond the boundaries of
he WMH mask ( Francis, 2010 ) was investigated. For a 1-mm margin,
eri ‑lesional abnormalities remained visible outside of the inpainting
ask, resulting in diffuse hyperintensity occasionally "bleeding into" the

npainted region. Conversely, extending the margin to 3 mm results in
 large volumetric extent of tissue to be inpainted, which reduces the
uality of inpainting in the core of the inpainting mask owing to the
ncreasing distance to the non-masked region where valid information
s present. The effect of different margin thicknesses is illustrated in
ig. 18 . As previously reported, in the final inpainting model a margin
f 1 mm was preferred, based on extensive observations suggesting that
 1-mm margin yields better inpainting results. 

2.3. Quantitative Results 

The evaluation procedure for inpainting evaluation established in
 Zhang et al., 2020 ) was replicated, using peak signal-to-noise ratio
PSNR) as an evaluation metric. The quality of continuity of anatom-
cal structures was quantified by applying an edge detection algorithm
o both the original and lesion-free images, and subsequently compar-
ng the resulting edge maps. A Canny Edge filter with 𝛾 = 0 . 8 (as in
hang et al., 2020 ) was applied to a 5-mm periphery around each in-
ainted region, both within the original and inpainted images. The F1
core between the resulting binary edge maps is reported in Table 6 . 

Trivially, due to the presence of several MS lesions in the baseline
RI, pre-lesion ground truth is typically not available, which compli-

ates not only model training but also model evaluation. To tackle this
ssue, we sampled a lesion mask 𝐦 𝑖 from a given subject 𝑠 𝑖 and super-
mposed 𝐦 𝑖 on the brain scan of a different subject 𝑠 𝑗 selected such that
 𝑖 did not co-localize with any lesion in 𝑠 𝑗 . MSE, PSNR, and edge detec-

ion analyses were conducted by comparing the inpainted region con-
ained within 𝐦 𝑖 in 𝑠 𝑗 , across 30 subjects pooled from our test set, sam-
led equally between the ADVANCE and ASCEND populations of par-
icipants. In Table 6 , we report the PSNR and F1 edge detection scores
easured on T1-weighted MRI (FSL and SLF methods only support T1-
eighted MRI inpainting). 

2.4. Ablation Study 

Lastly, an ablation study was conducted to evaluate the effect of
nsembling over models trained on different anatomical templates and
iews. The L1 error (voxel-wise sum of absolute intensity differences)
veraged across the T1- and T2-weighted MRI scans of 150 cases sam-
led equally from the ADVANCE and ASCEND validation sets was com-
uted. The L1 error is expressed relative to the range of intensity values
n each scan (–1 to 1) in Table 7 . Ensembling across atlases and views
educes the relative L1 error by approximately 25% , with the largest
mprovement being attributed to the integration of information across
natomical planes. 

3. Classification Benchmarking in the Ablated Feature Space 

Tables 8 and 9 
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Fig. 16. Overview of our multi-atlas approach to MS lesion inpainting. Each 3D brain MRI scan is registered by an affine method to 4 common anatomical templates. 
For each anatomical template (and for each anatomical plane) one inpainting model is trained (yielding a total of 12 models). During inference, inpainted brains 
from difference atlas-specific models are mapped back to the source space by inverting the forward affine transformation, and predictions are aggregated across these 
models via averaging. 

Fig. 17. Comparison of inpainting results on T1-hypointense lesion masks extended by a 1 -mm margin, showing, from left to right, axial slices from the original 
T1-weighted brain MRI, the lesion mask (red), SFL inpainting, FSL inpainting, and our inpainting. 
Abbreviation: MRI, magnetic resonance imaging. 

Fig. 18. Comparison of results of inpaint- 
ing on T2-weighted MRI with peri ‑WMH 

margin extensions of 1 mm and 3 mm. Ex- 
tended WMH masks are shown in red for 
margins of 1 mm and 3 mm in B and C, 
leading to the associated inpainted results 
shown in D and E, respectively. 
Abbreviation: MRI, magnetic resonance 
imaging. 

18 
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Table 7 

Ablation study evaluating the effect of 
ensembling across atlases and views. 

Model 

Relative 

error (%) 

1 Atlas, 1 Axis 2 . 7 
4 Atlases, 1 Axis 2 . 5 
1 Atlas, 3 Axes 2 . 2 
4 Atlases, 3 Axes 2 . 0 

Table 8 

Classification benchmarking results showing the balanced classification accu- 
racy obtained on the training and internal validation sets (used for hyperparam- 
eter tuning, different from the independent validation set from ADVANCE) for 
each base estimator within the ablated feature space (bold: five best-performing 
algorithms selected for ensembling). In each cell, we indicate the mean and 
standard deviation in accuracy across all five cross-validations runs. 

Classifier 

Training 

balanced 

accuracy (%) 

Validation 

balanced 

accuracy (%) 

Multilayer 

perceptron 

79 . 5 ± 0 . 2 74 . 1 ± 0 . 7 

RBF SVM 77 . 0 ± 0 . 5 73 . 6 ± 1 . 0 
XGBoost 97 . 3 ± 0 . 3 73 . 0 ± 1 . 3 
HistGradBoost 80 . 3 ± 0 . 3 72 . 9 ± 1 . 3 
Polynomial SVM 75 . 6 ± 0 . 2 70 . 8 ± 1 . 6 
AdaBoost 72 . 4 ± 0 . 3 69 . 4 ± 1 . 1 
KNN 74 . 8 ± 0 . 2 68 . 0 ± 1 . 2 
Linear SVM 68 . 1 ± 0 . 2 68 . 0 ± 1 . 2 
Decision Tree 69 . 3 ± 0 . 4 68 . 0 ± 1 . 2 
QDA 63 . 6 ± 0 . 4 63 . 1 ± 1 . 1 
Random Forest 60 . 4 ± 0 . 4 60 . 2 ± 0 . 7 
Gaussian Naive 
Bayes 

55 . 3 ± 0 . 4 60 . 1 ± 0 . 8 

Sigmoid SVM 55 . 6 ± 0 . 6 55 . 1 ± 0 . 5 

Abbreviations: KNN: k-nearest neighbors; QDA: quadratic discriminant analysis; 
RBF: radial basis function; SVM: support vector machine. 

Table 9 

Classification benchmarking results showing the balanced classification ac- 
curacy obtained on the training, validation and testing sets for each ensem- 
ble classifier within the ablated feature space of 32 𝛼-radiomic features (red: 
best-performing ensemble model). 

Classifier 

Training 

balanced 

accuracy 

on 

ADVANCE 

(%) 

Validation 

balanced 

accuracy 

on 

ADVANCE 

(%) 

Testing 

balanced 

accuracy 

on ASCEND 

(%) 

Testing 

balanced 

accuracy 

on DECIDE 

(%) 

(weighted) 

Hard 

Voting 

83 . 9 75 . 1 73 . 9 73 . 8 

(weighted) 

Soft Voting 

82 . 4 75 . 8 74 . 6 74 . 3 

Stacking 82 . 8 75 . 6 74 . 7 74 . 2 
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