9700 PROTECTOR THERMAL PROTECTOR FOR MOTOR/FLUORESCENT BALLASTS AND TEMPERATURE SENSING CONTROLS

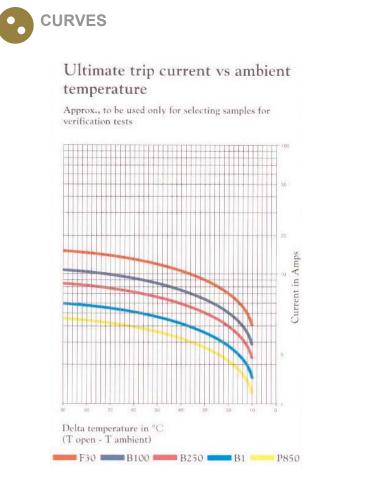
Introduction

The Klixon® 9700 protector is a field proven miniature protector developed to protect shaded pole and permanent split capacitor motors, fluorescent ballasts, solenoids, transformers and other electrical equipment against overheating.

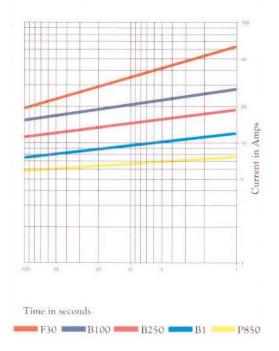
In addition to being small and lightweight, the unit is both temperature and current sensitive. Since the 9700 is sealed to withstand varnish dipping, it can be mounted directly in windings where it can best sense the true temperature of the electrical equipment. As a result, over-temperature protection is assured.

Sensata

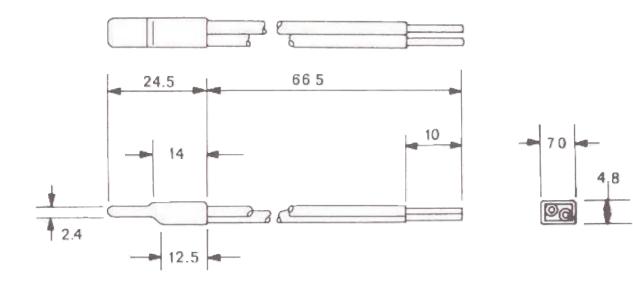
Technologies


Since the case is not electrically insulated, the protector is furnished with a durable Mylar insulating sleeve. Shrinkable and non-shrinkable sleeves are available.

TECHNICAL SPECIFICATIONS


Purpose of the Control	Thermal Motor Protector (TMP) Thermal Ballast Protector (TBP) Thermal Cut-Out (TCO)				
Contact Capacity	250VAC 13A for TCO 250VAC 2A for TBP				
Temperature Range	60°C to 150°C for TCO and TMP 60°C to 135°C for TBP				
Tolerance on Open Temp.	+/- 5K or +/- 8K				
Automatic Action	Type 3C for TMP Type 2C for TBP and TCO				
Operating Time	Continuous				
Pollition Station	Normal				
Extent of Sensing Element	Whole Control				
PTI of the Insulation	175				
Enclosure Protection Degree	IPOO				

Average first cycle tripping time vs current 25°C. ambient


Approx., to be used only for selecting samples for verification tests

0

DIMENSIONS

Dimensions in mm [Inch]

Example : 9700K01-215

Bimetal of 30 ohms/cmf, 120°C Operating Temperature, \pm 5K Tolerance with AWG#18 (UL3343 125°C -600V), 66.7mm Length Leads, Thick 0.15mm, Dia. 6.9mm, Legnth 34mm, Mylar Sleeve.

		9700 _	Х	Х	YY	_	_ ZZZZ	_ ZZZZ	ZZZZ
vice Identific	cation		T .	—	\top				—
D									
ntact Materi	al Combination								
rial Number is a	assigned for each desired	temperature and reista	nce rating.						
Code	Stationaly Contact	Movable Contact							
K	AgNi + Silver Cadmium Oxide	Steel + Copper + Silver Cadmium Oxide							
Н	Brass + Fine Silver	Steel + Copper + Silver Cadmium Oxide							
ote: We only provi	de H / K Type Devices. K type	e when new parr number i	s defined and se	etup.					
pen Temperat	ure Tolerance ——								
± 5K, 2: ±8K									
perating Temp	perature and Actuatio	on Disc Material -							
erial Number is a	assigned for each desired	temperature and reista	nce rating.						
		Rocie	tance of Ac	tuation D	ise				

Nominal	Resistance of Actuation Disc (ohms.cmf)						
Operating Temperature	30	250	850	100	475		
remperature	Temperature Code						
60	56	57	58	59	60		
80	91	92	93	94	95		
90	21	22	23	24	25		
100	26	27	28	29	30		
110	36	37	38	39	40		
120	1	2	3	4	5		
130	11	12	13	14	15		
140	66	67	68	69	70		
150	46	47	48	49	50		

Wire Lead and Sleeve

Serial number is assigned for each lead and sleeve configuration, i.e. wire type, length, AWG#, stripped length, sleeve type, and length.

AGENCY APPROVALS & CERTIFICATIONS

Agency	File Number	Standard	Note			
UL	E 15962	UL2111	Motor protector			
ENEC	2014531.10	EN60730-2-9	Thermal cut-out			
ENEC	2014531.10	EN60730-2-2	Thermal motor protector			
ENEC	2014531.10	EN60730-2-3	Thermal Ballast Protector			
COC	CQC0200	2001344				

Page 4

Sensata Technologies, Inc. ("Sensata") data sheets are solely intended to assist designers ("Buyers") who are developing systems that incorporate Sensata products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products. Sensata data sheets have been created using standard laboratory conditions and engineering practices. Sensata has not conducted any testing other than that specifically described in the published documentation for a particular data sheet. Sensata may make corrections, enhancements, improvements and other changes to its data sheets or components without notice.

Buyers are authorized to use Sensata data sheets with the Sensata component(s) identified in each particular data sheet. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER SENSATA INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN. SENSATA DATA SHEETS ARE PROVIDED "AS IS". SENSATA MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE DATA SHEETS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. SENSATA DATA SHEETS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO SENSATA DATA SHEETS OR USE THEROF.

All products are sold subject to Sensata's terms and conditions of sale supplied at www.sensata.com SENSATA ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR THE DESIGN OF BUYERS' PRODUCTS. BUYER ACKNOWLEDGES AND AGREES THAT IT IS SOLELY RESPONSIBLE FOR COMPLIANCE WITH ALL LEGAL, REGULATORY AND SAFETY-RELATED REQUIREMENTS CONCERNING ITS PRODUCTS, AND ANY USE OF SENSATA COMPONENTS IN ITS APPLICATIONS, NOTWITHSTANDING ANY APPLICATIONS-RELATED INFORMATION OR SUPPORT THAT MAY BE PROVIDED BY SENSATA.

Mailing Address: Sensata Technologies, Inc., 529 Pleasant Street, Attleboro, MA 02703, USA.