

swerea

Induction hardening: Effect of Bainite in the Case Layer on Fatigue Strength

A. Stormvinter^{1,a*}, J. Senaneuch², G. Makander³ and H. Kristoffersen¹ ¹Swerea IVF AB, Mölndal, Sweden ²Swerea KIMAB AB, Kista, Sweden ³Scania CV AB, Södertälje, Sweden ^aalbin.stormvinter@swerea.se

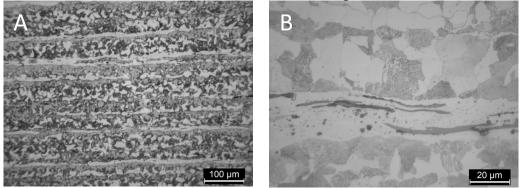
Acknowledgments

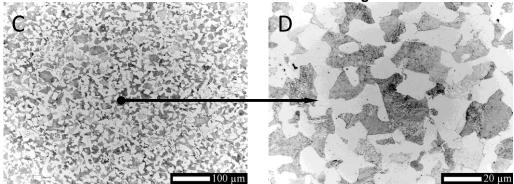
This project was financed by the Swedish Heat Treatment Centre – a collaborative research centre hosted by Swerea for applied research on heat treatment in close cooperation with Swedish manufacturing industry.

PART OF RI.SE

swerea IVF

Objective


- To investigate how bainite content in the case layer affects fatigue strength of induction hardened components.
- To provoke bainite formation in the case layer by altering the induction hardening process.


Material: Steel grade C45 (AISI 1045)

Alloying content of C45 (AISI 1045)									
С	Si	Mn	Ρ	S	Cr	Ni	Мо	Cu	
0.44	0.20	0.68	0.014	0.030	0.15	0.15	0.03	0.23	

Microstructure as delivered in rolling direction

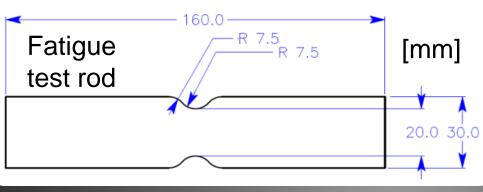
Microstructure as delivered in cross-rolling direction

swerea

PART OF RI.SE

Methods: Provoke bainite formation

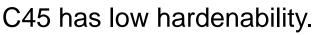
To provoke bainite formation a number of concepts were discussed:


- I. Pre-heating to reach a higher core temperature.
- II. Quench delay after heat treatment to change temperature gradient.
- III. Reduce quenching power by flow or polymer concentration.
- IV. Final surface temperature by changing heating power.
- V. Affect hardenability by changing steel heat or grade.
- VI. Partly dissolved as-delivered microstructure after heating.
- VII. Turning after heat treatment to achieve a bainitic surface zone.

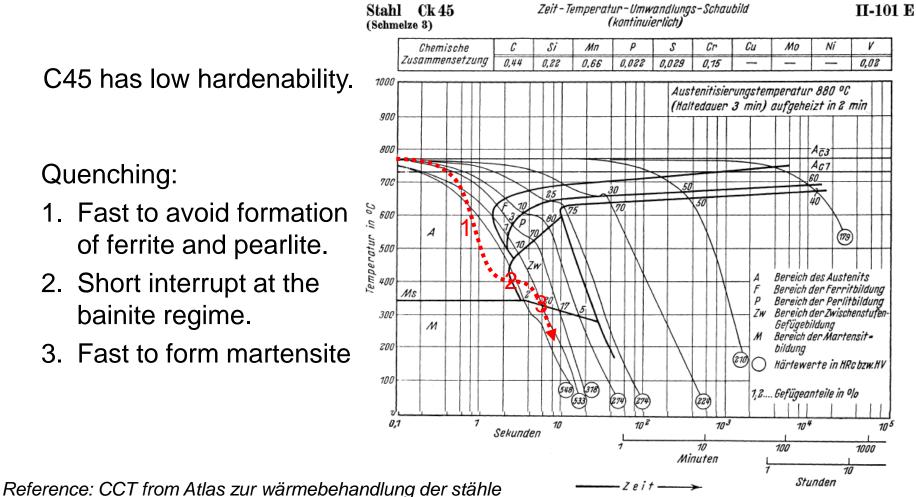
swerealive

Methods: Induction hardening

Induction heating:


- Frequency: 22 kHz
- Rotation: 300 rpm
- Power: 70 kW
- Heating time: 4.3 s
- Peak temperature: 985C

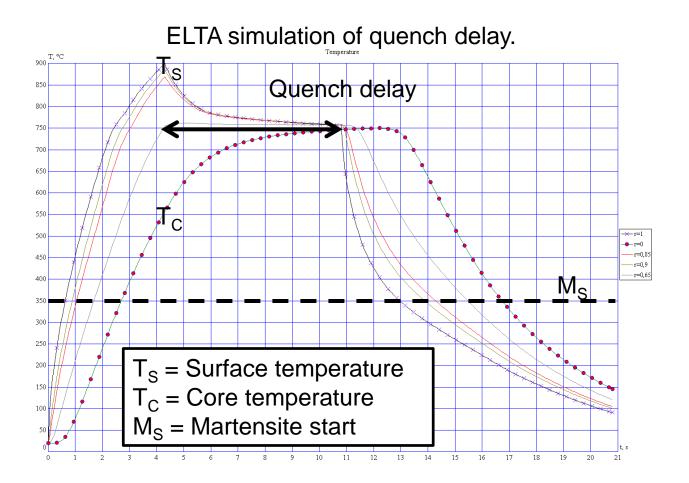
Induction hardening of test rods



PART OF RI.SE

Quenching:

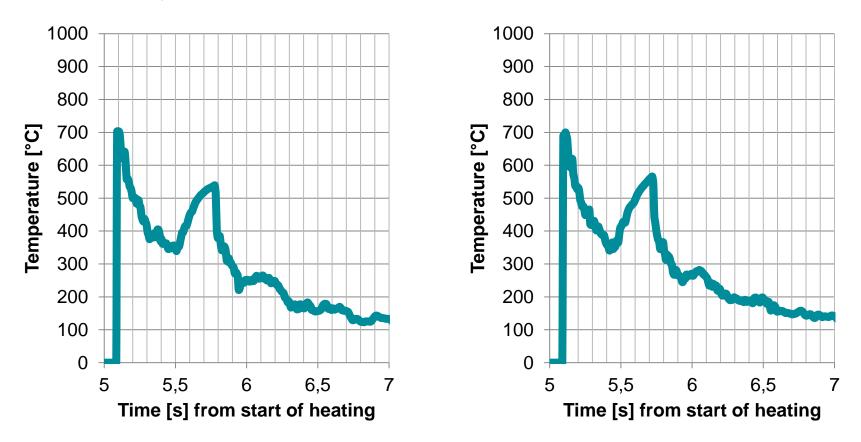
- 1. Fast to avoid formation of ferrite and pearlite.
- 2. Short interrupt at the bainite regime.
- 3. Fast to form martensite

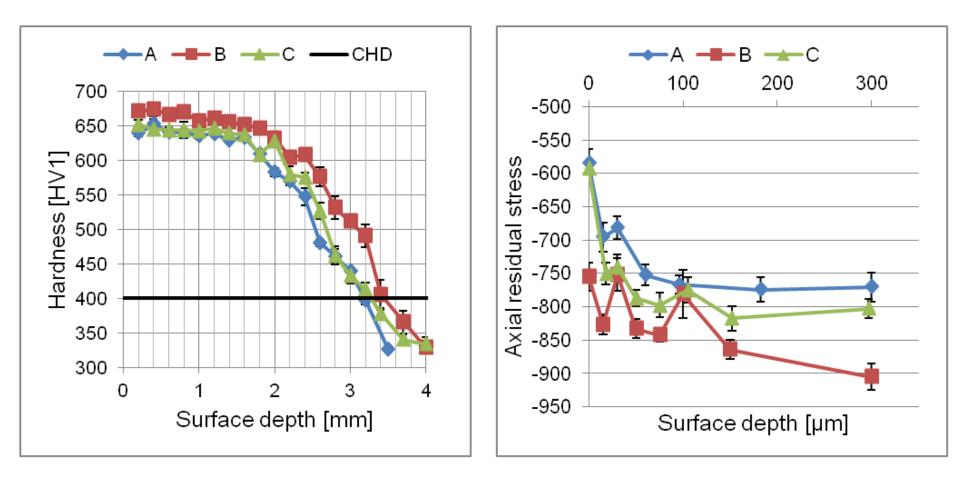


PART OF RI.SE

• A screening study was done to evaluate induction hardening with quench delay and interrupted quenching. Based on the findings three series of fatigue test bars were produced:

Series	Description (as programmed in PLC)				
A – Reference	Direct quenching for 30 seconds.				
B – Quench delay	2.5 s holding time before 30 seconds quenching.				
C – Interrupted quench	Quenching for 0.6 seconds, then 0.8 seconds quench				
	interruption followed by 30 seconds final quenching.				

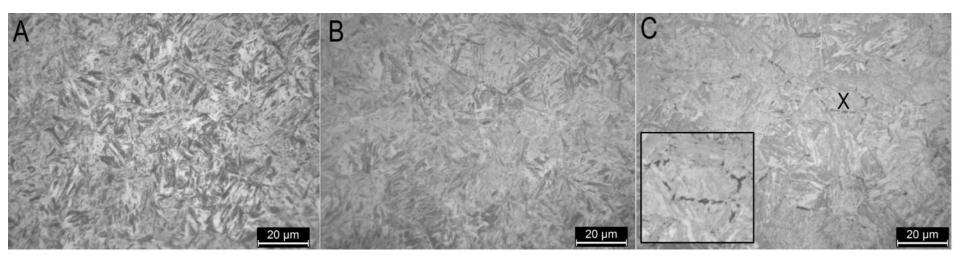

swerea


PART OF RI.SE

swerea

Interrupted quench, Series C, temperature measurements showed good repeatability. Temperature profiles show data from two heat treatments.

Results: Hardness and Residual stresses



PART OF RI.SE

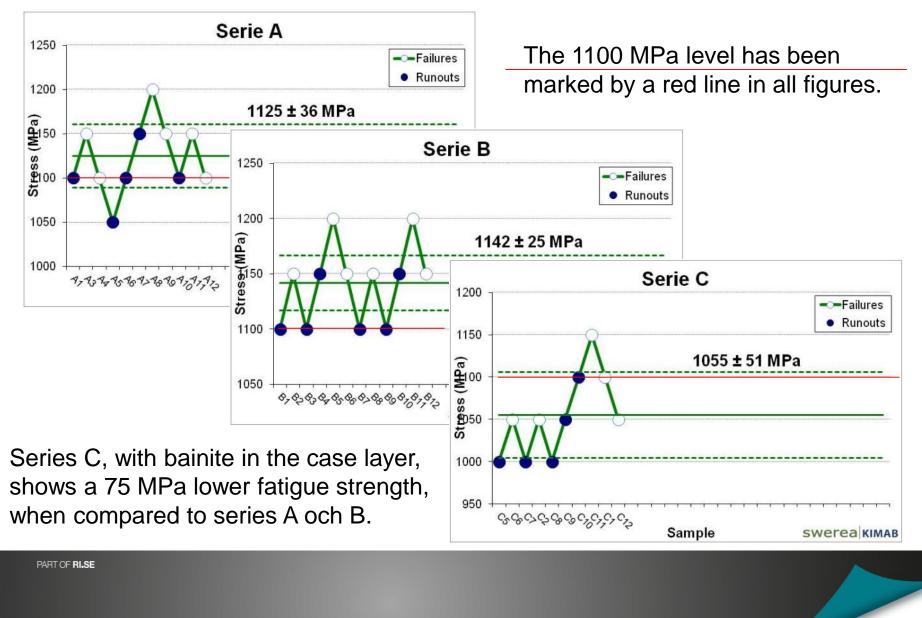
swerea

Results: Microstructure characterization

To define the presence of bainite we adopted: " B_T ": Depth with first tendency for bainite formation in 1000x magn. " B_U ": Depth with apparent bainite formation in 200x magn.

A – Reference						
B _T :	1.0 mm depth					
B _U :	1.4 mm depth					

3 – Quench delay						
З _т :	0.8 mm depth					
Յ _Ս :	1.4 mm depth					

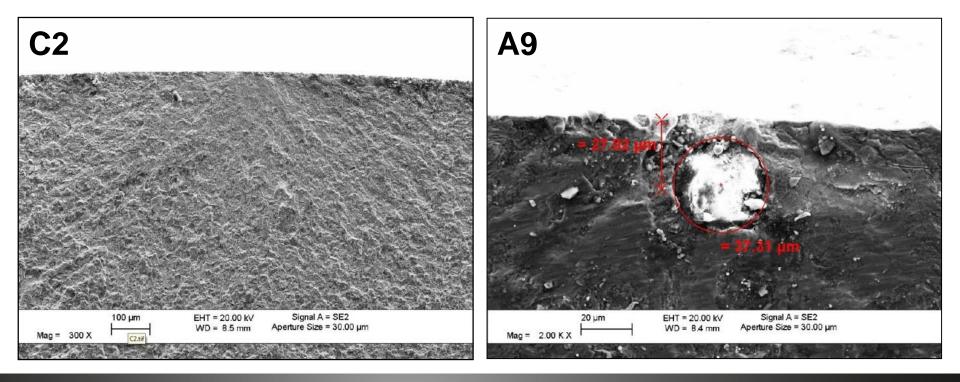

- C Interrupted quench
- B_{T} : 0.1 mm depth
 - 0.4 mm depth

swerea

PART OF **RI.SE**

B_U:

Results: Fatigue testing



12

swerea

Results: Fractography

Fractography micrographs showed surface initiation: (left) fracture surface of test rod C2, which is representative for all failed fatigue test rods except A9. (right) fracture surface of test rod A9 where a relative large inclusion was observed.

PART OF RI.SE

swerea

Results: Summary

	SHD	CHD	RSt	RSa	Β _τ	Bu	FS
Series A	640HV	3.2 mm	710	695	1.0 mm	1.4 mm	1125 ± 36 MPa
Series B	670HV	3.4 mm	920	825	0.8 mm	1.4 mm	1142 ± 25 MPa
Series C	650HV	3.2 mm	760	750	0.1 mm	0.4 mm	1055 ± 51 MPa

Details of fatigue testing – runouts and failures.

	Seri	es A	Serie	es B	Series C	
Stress level [MPa]	Runout	Failure	Runout	Failure	Runout	Failure
1000	-	-	-	-	3	-
1050	1	-	-	-	1	3
1100	3	2	4	-	1	1
1150	1	3	2	4	-	1
1200	-	1	-	2	-	-
Total	5	6	6	6	5	5

PART OF RI.SE

Conclusion

 In summary, the results from the present work suggest that bainite will have a negative impact on fatigue strength of induction hardened steel-components. However, small amounts of bainite will neither affect hardness nor residual stresses; hence impact on fatigue strength by bainite is most likely facilitation of crack initiation and growth.

PART OF RI.SE

Scientific Work for Industrial Use www.swerea.se

PART OF RI.SE

swerea

SWerea

