

- ✓ Why heat-treatment in HIP?
- Background information on HIP-URQ
- Possibilities and limitations
- ✓ HIP-URQ in Uddeholm
- ✓ Preliminary results and new results (AM)
- ✓ Conclusions

Ш

OUTLIN

WHY HEAT TREATMENT IN HIP?

- Tool steels typically require austenitization & tempering/aging
- Faster cooling gives better material properties
 - Possible to achieve fast cooling without deformation/cracking?
- Reduce heat-treatment cycle time
 - Higher productivity?
- Delay phase transformations in the material decrease alloy content
 - New alloy-concepts?
- In-situ nitriding?

LIDDEHOLM

HIP-URC/Q: HOW DOES IT WORK?

- Ultra Rapid Cooling: URC
- Designed to reduce cycle time

- Uniform Rapid Quenching: URQ
- Designed for in-situ heat-treatment:
- Up to ~5000°C/min (~ oil)

Images property of Quintus Technologies AB

POTENTIAL BENEFITS AND CASES

High pressure gas has several effects

- Better heat transfer between component and gas (= faster cooling)
- Reduction of distortion/risk of cracking
- Change in kinetic of phase transformations
 Increased hardenability!
- HPGQ : ~ 12bar
- URQ: ~ 1700bar

Figure 4. TTT diagram for 4340 with grain size 15 μ m, calculated using JMatPro. 0.1% pearlite at 500 s and 99.9% pearlite at 7000 s at 650 °C.

From World PM2016 – A. Angré et al. SHTE 2019. Giulio Maistro 2019-10-09

LIMITATIONS:HOW BIG CAN WE GO?

Calculation on H13-type

- For a cross section of 300x300mm, t8/5 ~448s max 41°C/min <u>in the center!</u> (e.g. NADCA for HPDC 28°C/min <u>at the</u> <u>surface</u>!)
- Gas/edge temperature follow the same trend up to very high cooling speeds
- URQ most suitable for medium-small cross sections, maximized cooling speed
- More efficient heat-transfer + increased hardenability -> better properties in the core

VALIDATION

<u>URQ</u>: Stavax (modified 420) 95kg Ø153mm: t8/5 = ~420s, ~43°C/min

PREVIOUS PRELIMINARY RESULTS From SHTE 2017 – Staffan Gunnarsson

WUDDEHOLM RESULT FROM TEST WITH UDDEHOLM ARNE

The reason for the high hardness is that the hardness was measured before tempering When a similar component was cooled in oil, we got cracks in the material

The test showed that it is possible to thru-harden low alloyed steel up to a <u>certain dimension</u> in a HIP with URQ unit

RESULTS OF TESTS WITH ORVAR SUPREME

- By utilizing the change in phase transformation kinetics, new alloy concepts and heat treatment procedures can be developed.
- Conducted tests on Uddeholm Orvar Supreme (H13) have shown a delay in pearlite transformation at higher pressure.
- Slower phase transformation kinetics in the Fe-C system.
- High pressure stabilizes austenite
- Delay of Pearlite transformation
- Higher hardness in sample heat treated at a pressure of 1800 bar indicates larger portion of martensite, i.e. the pearlite nose is shifted towards longer times

LIDDEHOLM

HIP H.T. done at 750°C, to study the effect of pressure on phase transformation

Pressure: 100 bar Hardness: 223HB

RESULTS OF TESTS WITH DIEVAR

- Effect of high pressure on carbide • stability during high-pressure austenitising?
- Effect of pressure on bainitic • transformation?

arbide		Austenitizing temperature (°C)	Soaking time (min)	Pressure (MPa)	Туре	Holding Time (s)	temperature (°C)
9	EXP 1	1020	120	170	Quenching	-	-
	EXP 2	1020	120	12	Quenching	-	-
	EXP 3	1020	400	170	Quenching	-	-
)	EXP 4	1010	120	170	Isothermal	10000	300
	EXP 5	1010	120	12	Isothermal	10000	300

Curve H Hardness HV 10

681

627 2

620

592

566

488

468

464

405

Austenitizing

- Stabilization of MC/M2C carbides •
- Marginal/doubtful effect on bainite transformation •

EXP1

EXP2

5

Toughness

EXP3

EXP4

EXP5

Holding

LIDDEHOLM

Nr of

6

6 6

6

6

samples

NEW RESULTS – FOCUS ON AM

From 2018-2019

HIP-CAPABILITIES IN UDDEHOLM

- Delivered in February 2018
- Max pressure: 2000 bar
- Max temperature: 1250°C with stainless steel basket, 1400°C with Mo basket
- Mo heating elements
- Ar 99.9999% purity

2 furnaces URC (stainless): "Ultra Rapid Cooling" 1200x365mm/600kg URQ (Mo/stainless): "Uniform Rapid Quenching" 600x330mm/250Kg

RESULTS FROM CORRAX®

С	Si	Mn	Cr	Ni	Мо	Al
0,03	0,3	0,3	12,0	9,2	1,4	1,6

- High pressure/high cooling rate

 low hardness/high ductility
- 1. Strong stabilization of retained austenite by solution treating in HIP (11% vs 5%)
- 2. Releasing pressure after a URQ cycle causes a "sub-zero" effect. E.g. HIP1 has 11% RA, HIP2 has <2%RA
- **3**. The ageing process is not significantly affected by pressure.

Uddeholm Corrax®

Heat-treatment in Vac and in HIP 1: 850°C 30 min + 525°C 4h 2: 850°C 30 min 3: 525°C 4h

RESULTS FROM CORRAX®

Strong stabilization of retained austenite by solution treating in HIP (11% vs 5%)

Optical micrographs of Uddeholm Corrax® Vac1 (left) and HIP1 (right) samples (etched with Vilella's reagent).

RESULTS FROM URQ ON AM CORRAX® Uddeholm AM Corrax®

- URQ-treatment on L-PBF AM Corrax increased hardness to over 51HRC
- Potential for healing printing defects!
- Drop in impact toughness due to MnS precipitaiton at higher temperatures

300 55 51.4 51.2 49,9 250 50 200 45 Unnotched impact 150 toughness (J) 40 100 ▲ Hardness (HRC) 35 50 0 30 **URQ-HIP URQ-HIP** Vacuum 850°C 1140°C

RESULTS FROM VANAX®

- Decrease of retained austenite after URC and URQ
- Pressure release after HIP-hardening cause sub-zero cooling! $P \cdot V/T = K$

RESULTS FROM MODIFIED H13

20 µm

Print+HT

Upcoming publication MAMC2019

- Modified H13 L-PBF
 presents defects
- HIP closes most of the porosity
- URQ-Hardening decreases martensite packet size -> higher hardness and strength!

SHTE 2019, Giulio Maistro 2019-10-09

20 µm

Print+HIP+HT

20 µm

Print+HIP-URQ

- ✓ HIP-URQ has potential applicability for tool steels, especially in AM
- ✓ No effect observed on ageing of maraging steel
- Increased hardenability (perlite) but small/no effect on bainite
- HIP-URQ can be used for an in-situ sub-zero effect to decrease retained austenite/increase hardness
- Further research is necessary to fully understand the implications of highpressure treatments, especially with transformations at high-temperature (e.g. MnS, carbide stability)

THANK YOU FOR YOUR ATTENTION!

Tool Steel Tool Steel