

Decreased CO₂-Emissions by Adjusting CO-Concentration During Heat Treatment

Sven Haglund sven.haglund@swerim.se

SWERIA

Outline

- Carburizing/neutral hardening
- Control of furnace atmospheres
- Carbon mass transfer coefficient, β
- Dynamic control of CO
- DynaSty project
- Digital twin
- Optimization of heat treatments
- Industrial test
- Conclusions

Carburizing / neutral hardening

- Carbon containing atmosphere (CO, CO₂, CH₄, N₂)
- To increase or maintain carbon content in part
- As much as 98% of furnace gases pass through without taking part and are burnt off as CO₂

From "Steel and its Heat Treatment – a handbook"

Control of furnace atmospheres

- Furnace atmosphere is usually controlled by an oxygen probe
- CO-content is often not measured but assumed to be ~20%
- CO content is usually set to 20% since that is what endogas generators used to produce
- Carbon potential can then be calculated and controlled
- If actual CO-content deviates from 20%
 →calculated Cp will be false

Figure 15.10 Simplified illustration of an oxygen probe installed in a furnace wall with magnification of the section where platinum electrodes are mounted.

From "Steel and its Heat Treatment – a handbook"

Furnace reactions

· Carburizing reactions

$$\begin{split} 2CO &\to C_{(\gamma-Fe)} + CO_2 \,, \\ CH_4 &\to \ C_{(\gamma-Fe)} + 2H_2 \,, \\ CO + H_2 &\leftrightarrow \ C_{(\gamma-Fe)} + H_2O \,. \end{split}$$

- Reaction with propane
 - To reduce CO₂ and H₂O
 - Increase Cp

$$C_3H_8 + 3H_2O -> 3CO + 7H_2$$

Carbon potential, Cp

- Furnace atmospheres are usually controlled by the carbon potential Cp
- Definition: The carbon content that pure iron in austenite form would have when in equilibrium with the gas.

$$a_c = \gamma^0 \frac{x_C}{1 - 2x_C}$$
 $x_C = \frac{\frac{C_p}{12,01}}{\frac{C_p}{12,01} + \frac{(100 - C_p)}{55,85}}$

Cp is proportional to (P_{CO})²/P_{CO2}

Carbon mass transfer coefficient, β

• β controls the rate of carbon uptake during the initial stage of carburizing

From "Steel and its Heat Treatment – a handbook"

Figure 8.4.10 The flux of carbon as a function of carburizing time, [4]

Variation of β with CO content

Figure 3. Variation in β with gas atmosphere composition and C_P : (a) according to Rimmer et.al. at 913 °C [2], and (b) according to Stolar at 920 °C [1].

P. Stolar and B. Prenosil (1984)

$$\beta = \frac{6.31 \cdot 10^{5} \cdot \exp\left(\frac{-22350}{T}\right) \cdot \frac{P_{H_{2}O}}{\sqrt{P_{H_{2}}}}}{1 + 5.6 \cdot 10^{6} \cdot \exp\left(\frac{-12900}{T}\right) \cdot \frac{P_{H_{2}O}}{\sqrt{P_{H_{2}}}}}$$
Collin et al 1972

Determination of the carbon transfer rate β at 900°C from the composition of the carburising atmosphere.

β rises from 1.3 x 10⁵ cm/s with endothermic gas to 3.1 x 10⁵ cm/s with CARBOQUICK®.

n according to Neumann and Wyss)

LINDE GAS – CARBOQUICK – product sheet

Carbon profiles at different β

Fig. 1. C-profile = f (Cd, β), left graph always $\beta = 1,3$, right graph $\beta = 3,0 \cdot 10^{-5}$ cm/sec

Jurmann (1999)

Cp and CO

- Most important factor for heat treatment result is a correct Cp
- Cp is proportional to (P_{CO})²/P_{CO2}
- Cp can be controlled independently of the CO content, just keep the relation $(P_{CO})^2/P_{CO2}$ constant
- If CO is lowered emissions are lowered
- If CO is increased carbon mass transfer is increased
- This opens for dynamic control of CO content

Dynamic control of CO content

- If CO-content is varied during the heat treatment one could:
 - Boost with high CO in initial stage to increase carbon flux
 - Reduce CO in later stages where diffusion is dominant
- For a given carbon profile this could:
 - Reduce furnace time and/or
 - Reduce CO₂-emissions

Influence of CO on internal oxidation

- Cp is proportional to (P_{CO})²/P_{CO2}
- Higher CO₂ concentration increase oxidation potential
- Reduced CO for a given Cp should decrease CO₂ and thus also internal oxidation

 For instance, Daves and Cooksey (1966) reported doubled internal oxidation when increasing CO from 20% to 40%

The idea behind the DynaSty project

- Through the use of dynamic CO-content and a digital twin
 - Reduce CO₂-emission
 - Optimize furnace recipes
 - Increase product quality through reduced scrap

DynaSty

Duration: 2021-10-01 - 2024-12-31

Budget: 5,3 MSEK (Vinnova 2,65 MSEK)

Project leader: Sven Haglund, Swerim

Participants

- Bodycote Värmebehandling AB
- Volvo Lastvagnar AB
- Linde Gas
- Bulten

Digital twin

 \bullet Basic components: Fick's second law, mass transfer equation and Collins evaluation of β

$$\frac{\partial C_c}{\partial t} = D_C \frac{\partial^2 C_C}{\partial x^2} \qquad D = D_o \exp(-Q/RT) \qquad J = \beta (C_p - C_S) \qquad \beta = \frac{6.31 \cdot 10^5 \cdot \exp\left(\frac{-22350}{T}\right) \cdot \frac{P_{H_2O}}{\sqrt{P_{H_2}}}}{1 + 5.6 \cdot 10^6 \cdot \exp\left(\frac{-12900}{T}\right) \cdot \frac{P_{H_2O}}{\sqrt{P_{H_2}}}}$$

- Input data: Furnace program, T, Cp, CO, either nominal or measured
- Output data: carbon profile, estimate of CO₂-emission
- Model tuned to experiments with different CO contents
- Model can be used with an optimizer to optimize recipes with respect to desired outcome (i.e. low CO₂, fast process, ...)

Optimization

- Three case hardening cycles at Sandvik and Bodycote
- Boost-diffusion, 0.7, 0.9 and 1.3 mm case depth
- Fixed total furnace time but lowest possible CO₂-emission

Original recipes

- 0.7 mm 0.9 mm 1.3 mm
- Parameters to optimize: CO-content, Cp, time for boost and diffusion

Optimized cases

Case depth: 0.7 mm

CO₂ reduction: 50%

0.9 mm

33%

1.3 mm

26%

Optimizer gives overall low CO-contents

Prefer high Cp

Experimental results of furnace trials

 Almost identical carbon profiles in original and optimized recipes

Internal oxidation

- Neutral hardening experiments at Bodycote
- 20, 10, 5% CO
- 100Cr6 specimen
- GD-OES

Internal oxidation 20-10-5% CO

Could CO₂-emissions be reduced by 75% in neutral hardening?

Industrial full-scale test at Bulten

- Successful full-scale test was performed at Bulten in Hallstahammar 2024
- Four tests, CO=10%, 15% and Cp=0.25%, 0.53%
- A couple of tons of bolts were heat treated in each test
- All products passed quality tests. Hardness OK and microstructure OK.
- CO2 emissions reduced up to 50%
- Bulten also sees a potential for a more stable process and estimates that this could be implemented without increasing costs

Conclusions

- CO₂ emissions can be reduced with up to ~50% by reducing the COcontent in the furnace
- Internal oxidation is reduced with lower CO-content
- Reduced CO-content requires less methanol input →lower costs
- Reducing CO from 20% to 10% did not result in major furnace instabilities
- As a result of the project:
- Bodycote has already lowered CO-content to 10% in one furnace
- Bulten plans to reduce CO-content to 10% in Hallstahammar in 2025

SWERIM