

Optimization Framework for Low Pressure Carburization Process

Andreas Markström, Henrik Lasu, Carl-Magnus Lancelot

SHTE Höstmöte, Scandic Skogshöjd, 2023-10-11

www.thermocalc.com

Outline

- 1. Introduction
 - 1. Thermo-Calc
 - 2. Thermodynamics: Calphad method
 - 3. Diffusion simulations (DICTRA)
- 2. Low Pressure Carburization framework
 - 1. Setup in DICTRA
 - 2. Results
 - 3. Future work

Thermo-Calc Software

- Company dedicated to provide computational tools in the field of materials engineering
- Originating at KTH Stockholm in late 70s, Company Founded in 1997
- □ Headquarters in Stockholm (45 employees)
- Subsidaries in US, Pittsburgh (8 employees) and South Korea (1 employee)
- Offices in Zurich, Düsseldorf, Gothenburg, Vancouver, São Paulo.
- Worldwide representation through local partners in Japan, China, India, Dubai, Australia, Brazil and Turkey
- □ > 1800 customers in 70+ countries

Product overview

Why does water melt at 0°C?

Example Fe-C

Thermodynamic Databases (The CALPHAD approach)

- Calphad: Calculation of Phase Diagrams
- Models describe Gibbs Energy of phases
- Optimize model parameters

Example Fe-C Per Gustafson, 1985, Scand. Journal of Metallurgy 14(5):259-267

Not only thermodynamics

- Equilibrium Thermodynamics > Phase Diagram
- Many alloys / processes do not reach equilibrium!
 - Fe-C, Ni-base alloys, Al-alloys...
- Kinetics important
 - Diffusion module DICTRA

Outline

- 1. Introduction
 - 1. Thermo-Calc
 - 2. Calphad method
 - 3. Diffusion simulations (DICTRA)
- 2. Low Pressure Carburization framework
 - 1. Setup in DICTRA
 - 2. Results
 - 3. Future work

Diffusion Module (DICTRA)

- Software package for simulation of diffusion controlled reactions in multi-component alloys.
- 1-dimensional simulation, with geometrical symmetry (planar, cylindrical or spherical)
- Linked to Thermo-Calc, which provides all necessary thermodynamic properties.
- □ The result of more than 30 years R&D at:
 - Royal Institute of Technology in Stockholm, Sweden
 - Max-Planck Institute f
 ür Eisenforschung in D
 üsseldorf, Germany
 - Thermo-Calc Software AB

Basic calculation procedure

A numerical finite difference scheme is used for solving a system of coupled parabolic partial differential equations

All simulations depend on assessed kinetic and thermodynamic data, which are stored in databases

Kinetic Databases (in a CALPHAD spirit)

Modelling of the atomic mobility

From absolute reaction-rate theory arguments Andersson and Ågren¹⁾ suggested:

$$M_{B} = M_{B}^{0} \exp\left(\frac{-Q_{B}}{RT}\right) \frac{1}{RT} \qquad \begin{cases} M_{B} & \text{Mobility for element } B \\ M_{B}^{0} & \text{Frequency factor} \\ Q_{B} & \text{Activation energy} \end{cases}$$

When treating the composition dependency of the mobility, Jönsson²⁾ found it superior to expand the logarithm of the mobility rather than the value itself, i.e.

$$RT\ln\left[RTM_B\right] = RT\ln M_B^0 - Q_B$$

Because $\ln[RTM_i]$ is often found to have a fairly linear composition dependency

1. Andersson, Ågren, J Appl Phys 72(1992)1350 2. Jönsson, Scand J Metall 24(1995)21

Composition dependency

How does this then affect the Carbon diffusion?

Example, Carbon diffusion in Austenite: Fe-0.5C

Composition dependency

How does this then affect the Carbon diffusion?

Example, Carbon diffusion in Austenite: Fe-0.5C Fe-2Cr-0.5C Fe-5Cr-5Ni-0.5C

Note: Also ferromagnetic and chemical ordering is considered

Diffusion Module (DICTRA)

Example of applications:

- Microsegregation during solidification
- Homogenisation treatment
- Precipitate growth and dissolution
- Carburization- Nitriding
- Interdiffusion in coating/substrate systems
- □ TLP bonding of alloys and much more...

Dissolution of Mg₂Si precipitate in alloy A6401

Multicomponent diffusion couple

Micro-segregation during solidification in alloy AA5182

Interdiffusion between NiAl coating and Ni-base superalloy

Diffusion Module (DICTRA)

Two proven models for dealing with situations that involves more than a single phase. Program may switch automatically between them.

Multiphase problems with/without finite interface

Outline

- 1. Introduction
 - 1. Thermo-Calc
 - 2. Calphad method
 - 3. Diffusion simulations (DICTRA)

2. Low Pressure Carburization framework

- 1. Setup in DICTRA
- 2. Results
- 3. Future work

Basic setup, Carburization - Nitriding

Region with a length z, and with phases A, B, C

Concentration Profile

Ζ

Concentration, C_k of an element as a function of distance z

Global Conditions

Conditions valid for entire system, T and P Define grid point distribution

Boundary Conditions

a_c=1 (carburization)

Conditions that apply to region boundaries (could be functions of time and temperature)

LPC setup in DICTRA

General conditions:

- Temperature
- Geometry (cylinder Ø25cm)
- Initial composition
- Austenite matrix, carbides can form

Boost step:

- Activity of carbon on surface=1 (pure graphite)
 Diffusion step:
- Closed system (No elements can enter or leave system)

LPC validation

Run DICTRA simulations to reproduce LPC recipes from furnace programs, on 3 Steels A, B, C

3 different recipes for Steel A

LPC validation

Thermo-Calc Software

Steel A Steel B Steel C

LPC validation

Steel B phases at surface

Time [s]

Steel C phases at surface

Since we have proven that DICTRA gives good results of Carbon profiles, we can use a TC-Python framework to "optimize" a LPC-recipe for any steel and hardening depth.

The output of the algorithm is a recipe that contains a sequence of boost and diffusion steps with calculated lengths that will result in the specified carbon profile, within the tolerances.

Mandatory input to the algorithm

<u>Material name</u> The name of the material Example: 'Steel 18-8'

Initial_composition_

The material in mass% Example {"C": 0.08, "Cr": 18, "Ni": 8}

<u>Radius</u>

The radius of the cylindrical material in m Example 12.5e-3

Optional input to the algorithm

<u>hardening depth</u> Hardening depth in m, measured from the centre of the cylindrical material. Default value: 12.1e-3

done when c at hardening depth The carbon content to achieve at hardening depth when done, in mass fraction Default value: 0.0035

done when c at surface The carbon content to achieve at surface when done, in mass fraction. Default value: 0.007

temperature

The temperature in Kelvin. Default value: 1233

min frac fcc at surface when done

The minimum phase fraction of FCC on the surface that is allowed after the **last** diffusion step. (this is for dissolving carbides e.c.t.) Default value: 0.999

Internal parameters

base_diffusion_step_in_s = 3600
max_boost_step_in_s = 600
min_boost_step_in_s = 50
tolerance_c_at_solution = 0.03 (in percent)

These numerical parameters are internal and not exposed to the user right now. That could easily be changed.

Calculating recipe

Hardening depth C-content vs Time

Calculating recipe

Surface C-content vs Time

Summary

- DICTRA has proven to accurately predict the LPC process for varying recipes and alloys.
- TC-Python can be used as an "Optimization Framework" for developing new recipes.
- More experimental verification is needed for more high alloyed steels (Ongoing) and for validating the recipes from the optimizer.
- Optimize for other criterions?
- Future product model: package this as a specific software/service?

Tack för att ni lyssnade!