

Economic and efficient low-pressure carburizing in pit furnaces

Deep carburizing for massive parts

4.05.2022 Paweł Okińczyc

AGENDA

Typical equipment for LPC

Traditional technology

LPC technology - Fundamentals and benefits

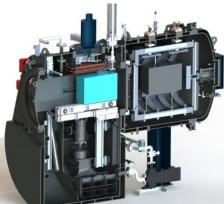
Pit LPC system design

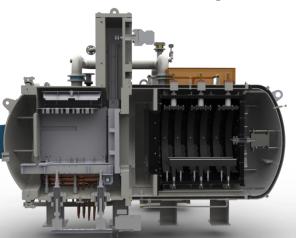
Economical Study of Carburizing: Atmospheric vs. Vacuum

Typical equipment for LPC

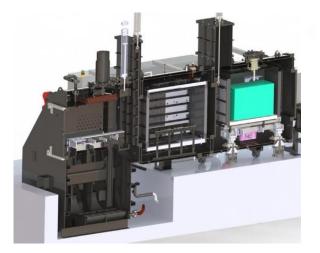
LOW PRESSURE CARBURIZING BY SECO/WARWICK

- ✓ 20+ years of experiences
- 150+ installations worldwide
- Process simulator SimVaC

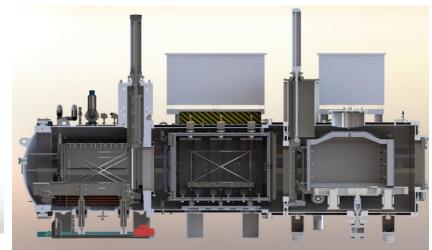



TYPICAL EQUIPMENT FOR LPC

Single chamber Gas Quenching 15 bar



Double quenching Oil hardening



Double chamber Gas Quenching 25 bar

SECO/WARWICK INVENTION MEETS RELIABILITY

Triple chamber Oil hardening

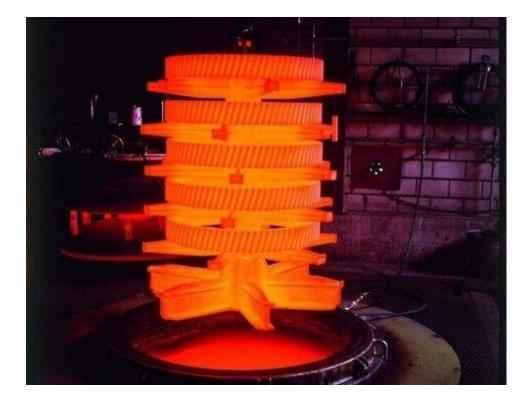
Triple chamber Gas Quenching 25 bar

EQUIPMENT FOR OVERSIZED PARTS

Technical data: - 850x1900x1700mm - 5000kg

Technical data:

- 1500x1500x1500mm - 2000kg


Traditional technology

TRADITIONAL PIT FURNACE APPLICATIONS

- ✓ Carburizing
- \checkmark Heating for quenching
- ✓ Large components

Characteristic feature: Opening to air at process temperature

TRADITIONAL TECHNOLOGY DISADVANTAGES

- ✓ Long process time, temperature limit
- ✓ Typical carburizing temp. 920-940°C
- \checkmark Limited lifespan of retorts and fans
- ✓ Presence of IGO
- ✓ Flammable atmosphere (CO + H_2)
- ✓ Emission of CO/CO_2
- $\checkmark\,$ Risk of fire and explosion
- $\checkmark\,$ Atmosphere conditioning time

LPC technology - Fundamentals and benefits

LOW PRESSURE CARBURIZING – FOUNDAMENTALS

- Process temperature above 850°C, typical 900-980°C and up to even 1100°C
- Process pressure 1-15 mbar abs (5-7 mbar pressure fluctuations to improve the gas penetration through the densely packed charges)

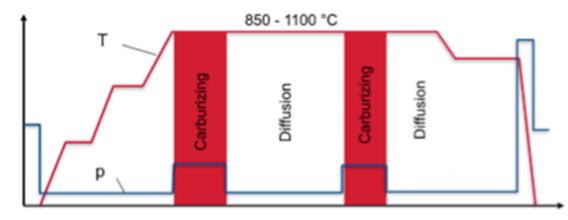
Process phases:

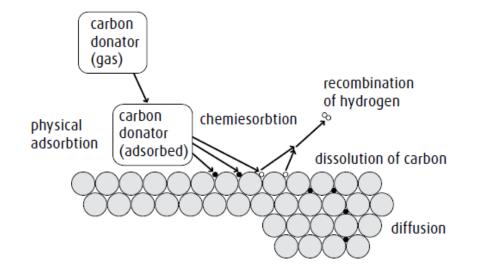
Carburizing

(gases transfer – carbon carriers (donator) – into the work zone)

Dissociation

(thermal or catalytical decomposition of process gases to obtain a high concentration of carbon in a relatively very short time)

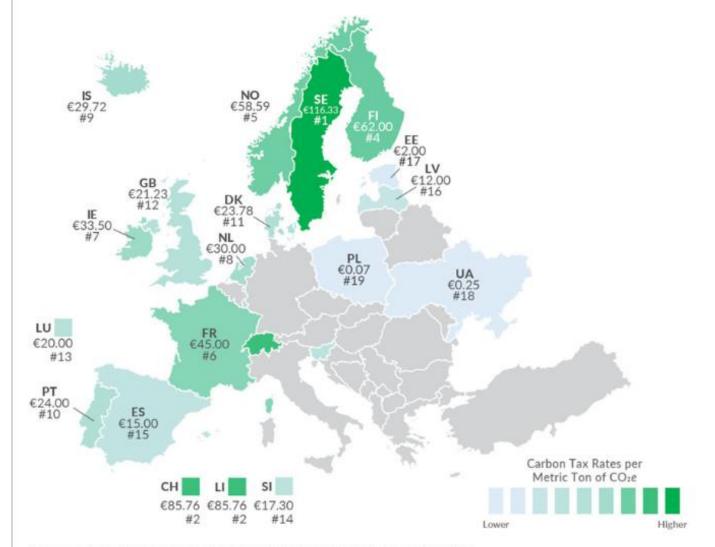

Absorption


(i.e. the deposition of free atoms of saturated component at the border of solid phase as a film with a thickness similar to the diameter of an atom)

Diffusion

(diffusion of carbon into the depths of the material)

LOW PRESSURE CARBURIZING



- $\checkmark~$ Effective and efficient carburizing
- ✓ Excellent process uniformity & quality
- ✓ Ideal surface quality
- ✓ Fast, high temperature processes
- ✓ No IGO
- Reduction of process consumables and costs
- ✓ Minimal consumption of process gases
- No time loss for atmosphere preparation and conditioning
- On-demand start-up and shut down
- ✓ Safe, no open flame, no risk of fire or explosion
- Low heat and by-product emission (without CO & CO2)
- ✓ Environmentally friendly

Carbon Taxes in Europe

Carbon Tax Rates per Metric Ton of CO2e, as of April 1, 2021

Note: The carbon tax rates were converted using the EUR-USD currency conversion rate as of April 1, 2021. Source: World Bank, "Carbon Pricing Dashboard."

SECO/WARWICK INVENTION MEETS RELIABILITY

@TaxFoundation

Atmosphere Carburizing:

- Natural gas, Methane, LNG
- Propan, LPG
- Methanol
- \rightarrow 25 m³/h ENDO atm = 10 kg/h CO₂
- = **2,7 kg** CO₂/kg = **3,0 kg** CO₂/kg = **1,4 kg** CO₂/kg
 - = **10 kg/h** CO₂ = **80 ton/y** CO₂

Vacuum carburizing, LPC:

Acetylene

= **0,0 kg** CO₂/kg

Electrical Energy:

- CoalOil
- ➢ OII➢ Gas

= **0,8 kg** CO₂/kWh = **0,6 kg** CO₂/kWh = **0,2 kg** CO₂/kWh

Carburizing:

- Size 9912
- ➢ ECD 1,1 mm
- Load 800 kg net

Atmosphere Carburizing gas heated:

- Electrical Energy
- > Natural gas
- Propan
- \succ Total CO₂ emission
- \succ Unit CO₂ emission

- = 308 kWh = 146 kg
- = 5 kg
- = 625 kg/proc
- = 0,78 kg/kg load

Vacuum Carburizing:

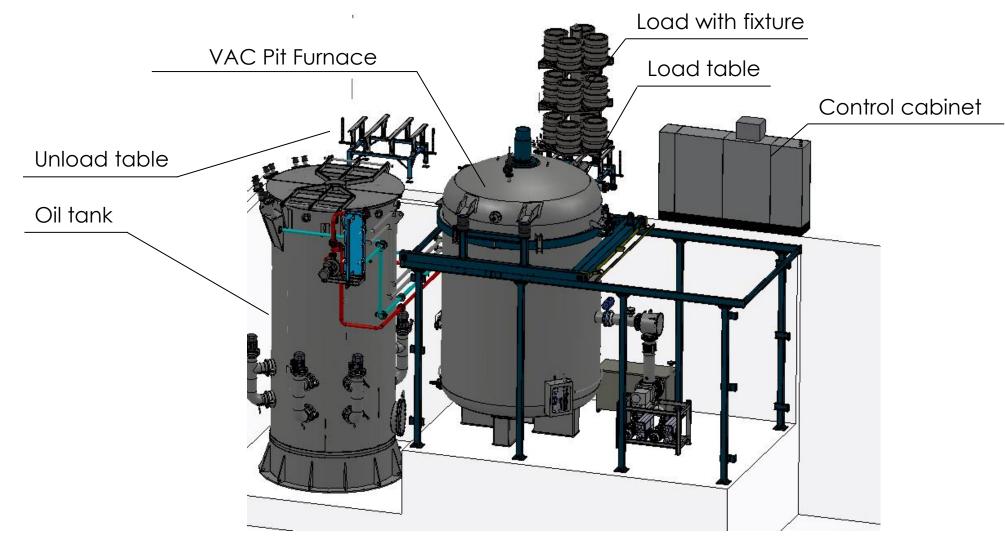
- Electrical Energy = 533 kWh
- Natural gas = 0
- Propan = 0
- > Total CO_2 emission = **373 kg/proc**
- Unit CO₂ emission = 0,47 kg/kg load

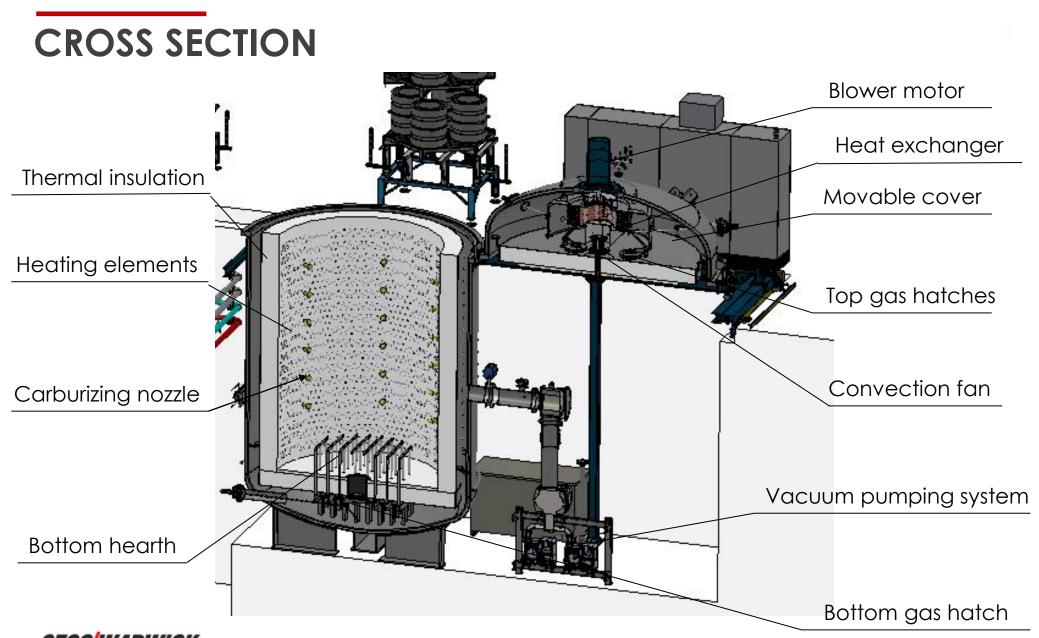
Less 40 % CO₂

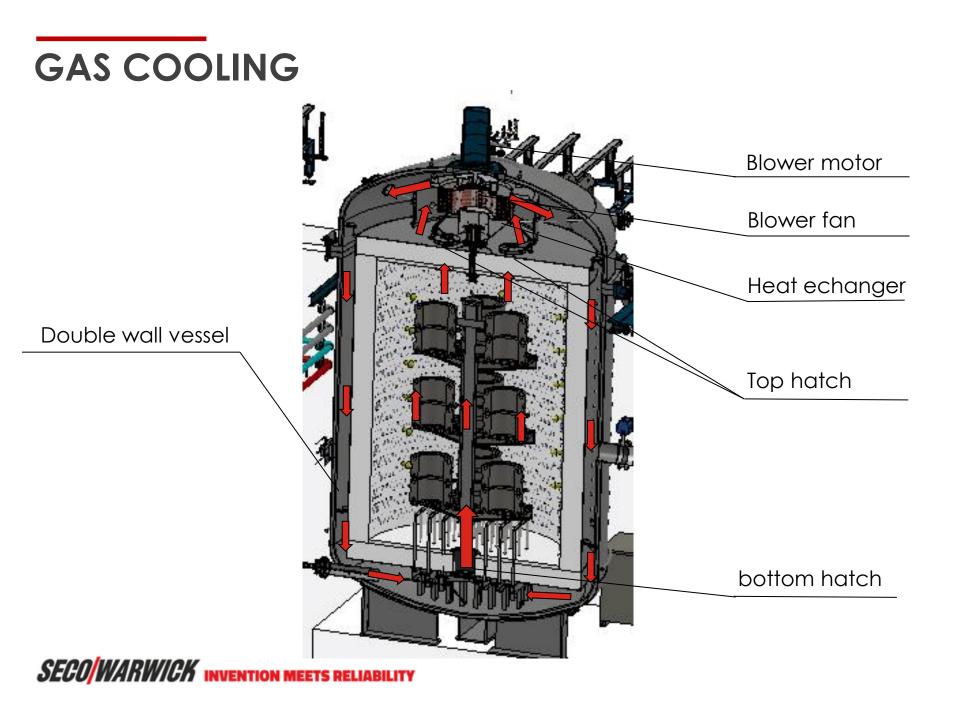
CARBURIZING TEMPERATURE EFFECT

Effective Case Depth [mm]	Carburizing Time						
	925°C	950°C	980°C	1000°C	1020°C	1040°C	
0.50	1h 23m	57min	39 min	30 min	24 min	19 min	
1.00	5h 30m	3h 50m	2h 35m	2 hours	1h 35m	1h 15m	
2.00	22 hours	15h10m	10h 20m	8 hours	6h 10m	4 h 50m	
Time relation	100 %	69 %	47 %	36 %	28 %	22 %	

Tab.1. Carburizing time of 16MnCr5 for the given case depth with criterion of 0.35%C, at particular temp.

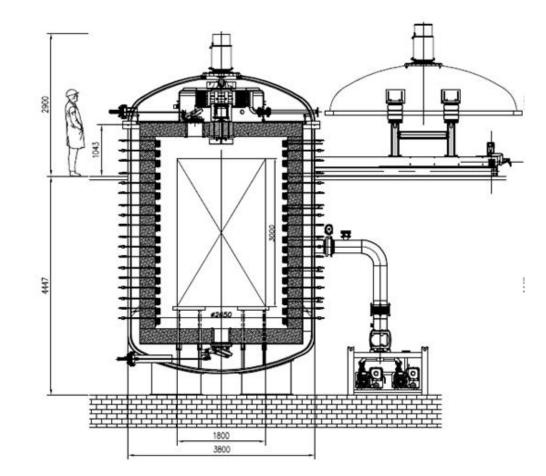

AUSTENITE GRAIN SIZE ASTM


950°C 900°C 9 30 30 1000°C 1050°C 5 30 1100°C 1150°C 2 30

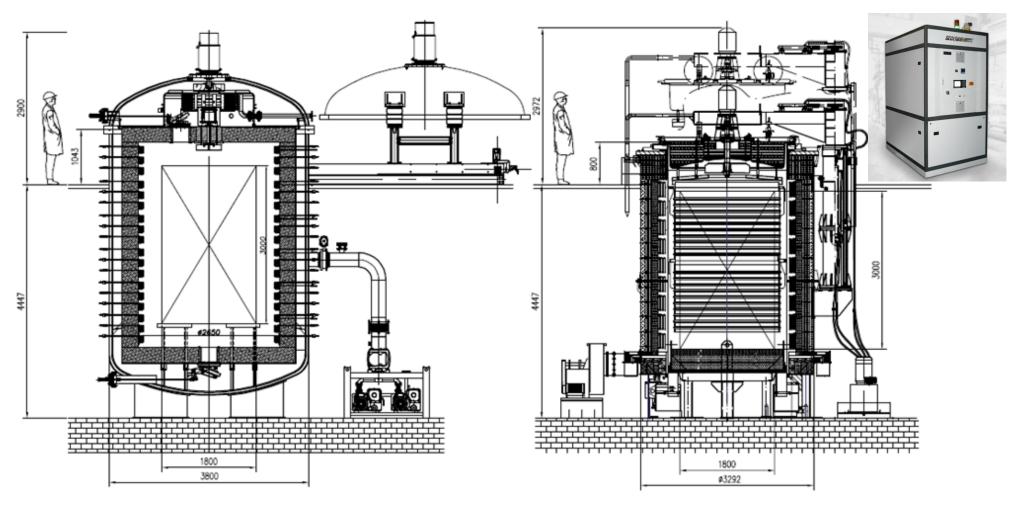

Industrial Limit ASTM 5

Pit LPC SYSTEM DESIGN

PIT LPC FURNACE – INSTALLATION



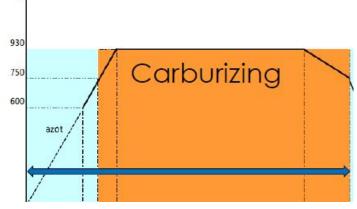
TECHNICAL SPEC. PIT LPC -1830


- ✓ Working zone dia.1800 x 3000 mm
- ✓ Load gross mass 8000 kg
- ✓ Temperature 1050 °C
- ✓ Heating power 360 kW
- ✓ Vacuum range 10⁻² mbar
- ✓ Carburizing gas acetylene
- ✓ LPC technology FineCarb
- ✓ Process simulator SimVaC
- ✓ Forced nitrogen cooling

VAC AND ATM FURNACES

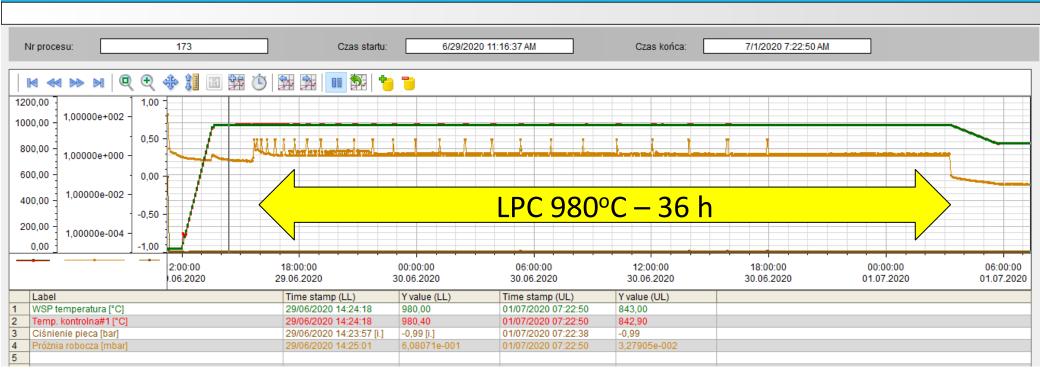
PIT LPC -1830

Economical Study of Carburizing Atmospheric vs. Vacuum


BASE PROCESS ASSUMPTION

Reference process taken from a pit retort carburizing furnace with endothermic atmosphere generated from propane, according to the following:

✓ Effective case depth	4,0 mm (18CrNiMo7-6)
 Carburizing temp. 	925 C
✓ Batch gross mass	8 000 kg
✓ Parts surface area	20 m2
Process timing:	
 ✓ Total process time 	90 h including:
✓ Heating-up	5 h
✓ Carburizing	82 h
✓ Cooling to 840 C	3 h


✓ Direct quenching in oil

PROCESS TREND

RAPORTY - TRENDY

UTILITIES CONSUMPTION ATM VS. VAC 1800X3000 MM

Parameter	Unit	ATM PIT	VAC PIT			
Carburizing temperature	°C	925	925	980	1040	
Process duration	h	90 100 %	90 100 %	50 55 %	31 34 %	
Electrical energy	kWh	8100 100 %	6400 79 %	4400 55 %	3600 44 %	
Nitrogen	Nm ³	140	310	200	170	
Acetylene	kg	-	16	16	16	
Propane	kg	200	-	-	-	
Cooling water	m ³	390	390	210	130	

UTILITIES COSTS COMPARISON PER PROCESS

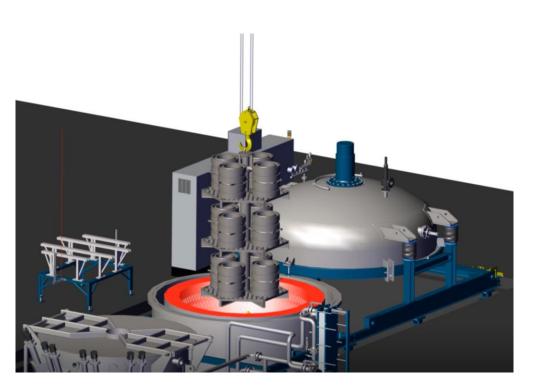
Parameter	Unit	ATM PIT	VAC PIT		
Carburizing temperature	°C	925	925	980	1040
Process duration	h	90 100 %	90 100 %	50 55 %	31 34 %
Electrical energy	EUR [0,15 eur/kWh]	1220	965	666	538
Nitrogen	EUR [0,30 eur/Nm3]	42	93	60	51
Acetylene	EUR [4 eur/kg]	-	64	64	64
Propane	EUR [0,5 eur/kg]	100	-	-	-
Cooling water	EUR	-	-	-	-
Total :	EUR	1362 100 %	1122 82 %	790 58 %	653 48 %

PROCESS ECONOMICS

Parameter	Unit	ATM PIT	VAC PIT		
Temperature	°C	925	925	980	1040
Number of processes	No./year 7000 h	77 100 %	77 100 %	139 180 %	219 285 %
Price per process	EUR 2 EUR/kg	9 000	9 000	9 000	9 000
Revenue [R]	EUR/y	692 308	692 266	1 247 182	1 970 152
Unit process costs	EUR	1362	1122	790	653
Yearly Processes costs [Pc]	EUR/y	104 777	86 279	109 473	142 858
R – Pc	EUR/y	587 531	605 986	1 137 709	1 827 294
Process costs SAVINGS of VAC Pit	EUR/y	0	18 456	550 179	1 239 764

CONCLUSION OF ECONOMIC COMPARISON

✓ Installation of a vacuum pit furnace with low pressure carburizing results in saving costs, reduction of process time and increases throughput.


✓ Process time can be reduced 2 times at 980 C and almost 3 times at 1040 C and the throughput increases accordingly.

✓ Process costs can be reduced of half at 980 C and 1040 C.

✓Total cost savings can reach 0,5 million Euro per year for processes in 980 C and 1,2 million Euro in 1040 C (for estimated unit costs, market price and the same costs of: labor, maintenance, depreciation, etc.).

✓ Austenite grains grow at high temperature therefore, processes over 1000 C may require additional actions for making grains finer what was not considered in this study

BENEFITS OF PIT LPC OVER ATMOSPHERE FURNACE

- ✓ Less process costs
- ✓ Multiple throughput
- ✓ Less utility consumption
- \checkmark Fit into existing space
- ✓ Elimination of an atmosphere generator
- ✓ Less emission
- ✓ ... plus all LPC benefits and over 20 years of experiences

POTENTIAL CUSTOMERS

- \checkmark Wind turbines
- ✓ Heavy machines
- ✓ Shipbuilding
- ✓ Railway
- ✓ Mining, oil & gas

Rys. 2. Nowoczesne pędniki azymutalne z zabudowanymi silnikami elektrycznymi o mocy 14 MW [2]

SECO WARWICK

öbö öbö

:24

1

WWW.SECOWARWICK.COM

SECO/WARWICK S.A. Paweł Okińczyc Vacuum Heat Treatment