

Form A2-3: Compliance Verification Report for Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99. The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

2. To obtain Type Tested status for a product

This form can be used by the **Manufacturer** to obtain **Type Tested** status for a product which is used in a **Power Generating Module** by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

3. One-off Installation

This form can be used by the **Manufacturer** or **Installer** to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99. This form must be submitted to the **DNO** as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the **Interface Protection** is to be demonstrated on site.

Note:

Within this Form A2-3 the term **Power Park Module** will be used but its meaning can be interpreted within Form A2-3 to mean **Power Park Module**, **Generating Unit or Inverter** as appropriate for the context. However, note that compliance must be demonstrated at the **Power Park Module** level.

If the **Power Generating Module** is **Fully Type Tested** and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3) should include the **Manufacturer's** reference number (the Product ID), and this form does not need to be submitted.

Where the **Power Generating Module** is not registered with the ENA Type Test Verification Report Register or is not **Fully Type Tested** this form (all or in parts as applicable) needs to be completed and provided to the **DNO**, to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99.

PGM technology			Growatt 50KTL3 LV,60KTL3 LV,70KTL3 LV,80KTL3 LV, 60KTL3 MV, 70KTL3 MV, 80KTL3 MV, 90KTL3 MV, 100KTL3 MV		
Manufacturer name		Growatt New Energy 1	Fechnology Co., Ltd.		
Address		1st East & 3rd Floor of Building A,Building B,Jiayu Industria Park,#28,GuangHui Road,LongTeng Community,Shiyar Street,Baoan,District,Shenzhen, P.R.China			
Tel +86 755 2951 5888		Web site	www.ginverter.com		
E:mail Peng.zhu@growatt.com					
Registered Capacity		100kW			

There are four options for Testing: (1) **Fully Type Tested**, (2) Partially **Type Tested**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested PGMs** tests marked with * may be carried out at the time of commissioning (Form A4).

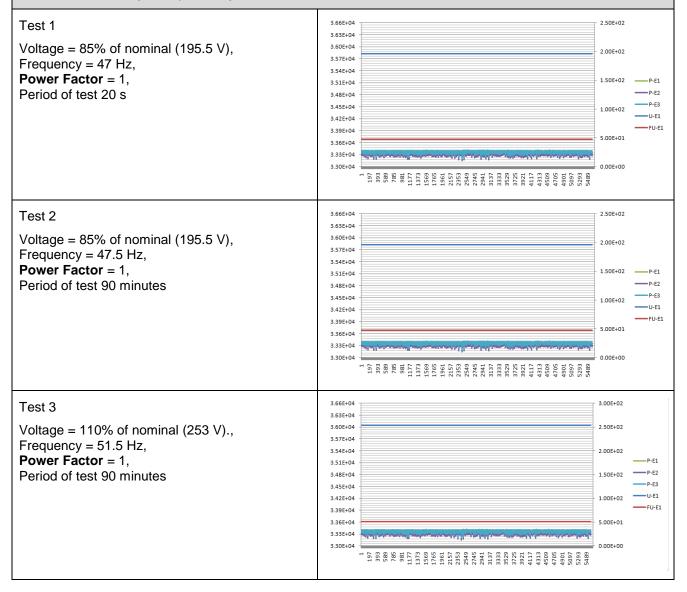
Tested option:	1. Fully Type Tested	2. Partially Type Tested	3. One-off Man. Info.	4. Tested on Site at time of Commission- ing
0. Fully Type Tested - all tests detailed below completed and evidence attached to this submission		N/A	N/A	N/A
1. Operating Range	N/A			
2. PQ – Harmonics				
3. PQ – Voltage Fluctuation and Flicker				
4. PQ – DC Injection (Power Park Modules only)				
5. Power Factor (PF)*				
6. Frequency protection trip and ride through tests*				
7. Voltage protection trip and ride through tests*				
8. Protection – Loss of Mains Test*, Vector Shift and RoCoF Stability Test*				
9. LFSM-O Test*				
10. Protection – Reconnection Timer*				
11. Fault Level Contribution				
12. Self-monitoring Solid State Switch				
 Wiring functional tests if required by para 15.2.1 (attach relevant schedule of tests)* 				
14. Logic Interface (input port)*				
* may be carried out at the time of commissioning (Form A. Document reference(s) for Manufacturers' Information:	2-4).			

٦

Type Test as stated i	Manufacturer compliance declaration I certify that all products supplied by the company with the above Type Tested Manufacturer's reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site Modifications are required to ensure that the product meets all the requirements of EREC G99.							
Signed	Signed Image: Signed On behalf of Growatt New Energy Technology Co., Ltd							
Note that t	esting can be done by the Manufa	cturer of an individu	al component or by an external test house.					

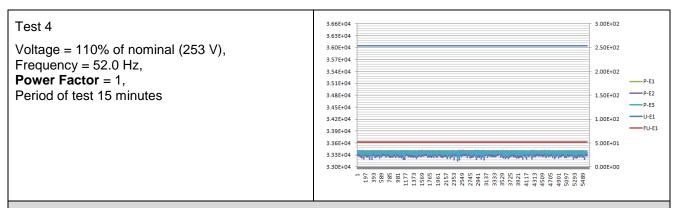
Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules – test record


1. Operating Range: Two tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within ± 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.

The **Interface Protection** shall be disabled during the tests.


In case of a PV **Power Park Module** the PV primary source may be replaced by a DC source.

In case of a full converter **Power Park Module** (eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a DC source.

Type A Power Generating Modules

2. Power Quality – Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12 The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module** in order to accept the connection to a **Distribution Network**.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC G5.

Power Generating Module tested to BS EN 61000-3-12

Power Gene phase (rpp)	erating Module ra	ating per	16.67	kVA		6 = Measured Value ng per phase (kVA)	
		Average ha	armonic current i	results – Phas	e 1		
Harmonic	Harmonic At 45-55% of Registered Capacity		100% of Registe Capacity	ered	Limit in BS	Limit in BS EN 61000-3-12	
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase	
2	0.694	0.957	0.705	0.974	8%	8%	
3	0.089	0.123	0.177	0.244	21.6%	Not stated	
4	0.553	0.764	0.824	1.138	4%	4%	
5	0.880	1.214	0.978	1.350	10.7%	10.7%	
6	0.035	0.048	0.029	0.040	2.67%	2.67%	
7	0.597	0.824	0.891	1.230	7.2%	7.2%	
8	0.212	0.293	0.263	0.363	2%	2%	

9	0.009	0.012	0.094	0.130	3.8%	Not stated
10	0.067	0.092	0.086	0.119	1.6%	1.6%
11	0.252	0.348	0.363	0.500	3.1%	3.1%
12	0.030	0.041	0.029	0.040	1.33%	1.33%
13	0.191	0.264	0.091	0.125	2%	2%
THD	-	2.394	-	1.496	23%	13%
PWHD	-	2.563	-	1.602	23%	22%

	Average harmonic current results – Phase 2									
Harmonic	At 45-55% of R Capacity	egistered	100% of Regis Capacity	100% of Registered Capacity		EN 61000-3-12				
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase				
2	0.477	0.658	0.568	0.784	8%	8%				
3	0.123	0.169	0.186	0.256	21.6%	Not stated				
4	0.524	0.723	0.739	1.020	4%	4%				
5	0.816	1.126	0.787	1.086	10.7%	10.7%				
6	0.012	0.017	0.017	0.023	2.67%	2.67%				
7	0.598	0.825	0.926	1.278	7.2%	7.2%				
8	0.203	0.280	0.200	0.275	2%	2%				
9	0.049	0.068	0.084	0.115	3.8%	Not stated				
10	0.036	0.050	0.089	0.123	1.6%	1.6%				
11	0.263	0.364	0.280	0.386	3.1%	3.1%				
12	0.023	0.032	0.012	0.016	1.33%	1.33%				
13	0.143	0.198	0.106	0.146	2%	2%				
THD	-	2.178	-	1.361	23%	13%				
PWHD	-	2.437	-	1.523	23%	22%				

		Average ha	armonic current	results – Phas	e 3		
Harmonic	monic At 45-55% of Registered Capacity		100% of Regist Capacity	100% of Registered Capacity		Limit in BS EN 61000-3-12	
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase	
2	0.668	0.921	0.532	0.734	8%	8%	
3	0.111	0.153	0.071	0.098	21.6%	Not stated	
4	0.588	0.812	0.743	1.025	4%	4%	
5	0.930	1.284	0.992	1.369	10.7%	10.7%	
6	0.016	0.021	0.015	0.021	2.67%	2.67%	
7	0.533	0.736	0.876	1.209	7.2%	7.2%	
8	0.219	0.303	0.216	0.298	2%	2%	
9	0.055	0.076	0.040	0.055	3.8%	Not stated	
10	0.054	0.074	0.090	0.124	1.6%	1.6%	
11	0.253	0.349	0.252	0.348	3.1%	3.1%	
12	0.018	0.024	0.003	0.004	1.33%	1.33%	
13	0.163	0.224	0.129	0.177	2%	2%	
THD ¹	-	2.226	-	1.391	23%	13%	
PWHD ²	-	2.501	-	1.563	23%	22%	
Power Gen phase (rpp)	erating Module ra	ating per	20	kVA		6 = Measured Value ing per phase (kVA)	
		Average ha	armonic current	results – Phas	e 1		
Harmonic	At 45-55% of Re Capacity	egistered	100% of Regist Capacity	ered	Limit in BS	EN 61000-3-12	
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase	

¹ THD = Total Harmonic Distortion

² PWHD = Partial Weighted Harmonic Distortion

2	0.0231	0.133	0.0514	0.296	8%	8%
3	0.046	0.265	0.0696	0.400	21.6%	Not stated
4	0.0137	0.079	0.0297	0.171	4%	4%
5	0.1239	0.712	0.2176	1.251	10.7%	10.7%
6	0.0021	0.012	0.0021	0.012	2.67%	2.67%
7	0.0384	0.221	0.1424	0.819	7.2%	7.2%
8	0.0046	0.027	0.0095	0.055	2%	2%
9	0.0144	0.083	0.0176	0.101	3.8%	Not stated
10	0.0032	0.018	0.0055	0.032	1.6%	1.6%
11	0.0245	0.141	0.0691	0.397	3.1%	3.1%
12	0.0025	0.014	0.0032	0.018	1.33%	1.33%
13	0.0187	0.108	0.0617	0.355	2%	2%
THD		1.852	-	1.590	23%	13%
PWHD		2.179	-	1.796	23%	22%

	Average harmonic current results – Phase 2										
Harmonic	At 45-55% of Registered Capacity		red 100% of Registered Capacity		Limit in BS EN 61000-3-12						
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase					
2	0.0254	0.146	0.0531	0.305	8%	8%					
3	0.0291	0.167	0.0472	0.271	21.6%	Not stated					
4	0.0167	0.096	0.0356	0.205	4%	4%					
5	0.1212	0.697	0.2115	1.216	10.7%	10.7%					
6	0.0034	0.020	0.0042	0.024	2.67%	2.67%					
7	0.0709	0.408	0.1424	0.819	7.2%	7.2%					
8	0.0041	0.024	0.0074	0.043	2%	2%					

9	0.0072	0.041	0.015	0.086	3.8%	Not stated
10	0.0045	0.026	0.0056	0.032	1.6%	1.6%
11	0.0276	0.159	0.0718	0.413	3.1%	3.1%
12	0.0025	0.014	0.0039	0.022	1.33%	1.33%
13	0.0201	0.116	0.0646	0.372	2%	2%
THD	-	2.076	-	1.581	23%	13%
PWHD	-	2.351	-	1.779	23%	22%

	Average harmonic current results – Phase 3										
Harmonic	At 45-55% of R Capacity	egistered	100% of Regis Capacity	100% of Registered Capacity		EN 61000-3-12					
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase					
2	0.0251	0.144	0.0592	0.340	8%	8%					
3	0.0074	0.043	0.0196	0.113	21.6%	Not stated					
4	0.0156	0.090	0.0374	0.215	4%	4%					
5	0.1216	0.699	0.2145	1.233	10.7%	10.7%					
6	0.0021	0.012	0.0021	0.012	2.67%	2.67%					
7	0.0674	0.388	0.1387	0.798	7.2%	7.2%					
8	0.0042	0.024	0.0071	0.041	2%	2%					
9	0.0054	0.031	0.0053	0.031	3.8%	Not stated					
10	0.0041	0.024	0.0052	0.030	1.6%	1.6%					
11	0.0289	0.166	0.0714	0.411	3.1%	3.1%					
12	0.0011	0.006	0.0036	0.021	1.33%	1.33%					
13	0.0188	0.108	0.0634	0.365	2%	2%					
THD ³	-	1.919	-	1.527	23%	13%					

³ THD = Total Harmonic Distortion

PWHD ⁴	-	2.147	-	1.882	23%	22%
Power Generating Module rating per phase (rpp)			23.3	kVA		6 = Measured Value ing per phase (kVA)
		Average h	armonic current	results – Phas	e 1	
Harmonic	At 45-55% of R Capacity	egistered	100% of Regis Capacity	tered	Limit in BS	EN 61000-3-12
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase
2	0.0671	0.356	0.1032	0.548	8%	8%
3	0.1404	0.746	0.2412	1.281	21.6%	Not stated
4	0.0382	0.203	0.0590	0.313	4%	4%
5	0.2484	1.319	0.2741	1.456	10.7%	10.7%
6	0.0071	0.038	0.0060	0.032	2.67%	2.67%
7	0.1676	0.890	0.1912	1.016	7.2%	7.2%
8	0.0032	0.017	0.0061	0.032	2%	2%
9	0.0238	0.126	0.0265	0.141	3.8%	Not stated
10	0.0051	0.027	0.0071	0.038	1.6%	1.6%
11	0.0820	0.436	0.0902	0.479	3.1%	3.1%
12	0.0041	0.022	0.0087	0.046	1.33%	1.33%
13	0.0779	0.414	0.0791	0.420	2%	2%
THD	-	1.619	-	1.489	23%	13%
PWHD	-	1.932	-	1.670	23%	22%

	Average harmonic current results – Phase 2							
Harmonic	At 45-55% of Registered Capacity		100% of Registered Capacity		Limit in BS EN 61000-3-12			
	Measured % Value MV in		Measured Value MV in	%	1 phase	3 phase		

⁴ PWHD = Partial Weighted Harmonic Distortion

	Amps		Amps			
2	0.0642	0.341	0.1234	0.655	8%	8%
3	0.0856	0.455	0.0996	0.529	21.6%	Not stated
4	0.0497	0.264	0.0814	0.432	4%	4%
5	0.2372	1.260	0.2697	1.433	10.7%	10.7%
6	0.0056	0.030	0.0081	0.043	2.67%	2.67%
7	0.1581	0.840	0.1801	0.957	7.2%	7.2%
8	0.0074	0.039	0.0132	0.070	2%	2%
9	0.0147	0.078	0.0125	0.066	3.8%	Not stated
10	0.0072	0.038	0.0091	0.048	1.6%	1.6%
11	0.0901	0.479	0.0746	0.396	3.1%	3.1%
12	0.0022	0.012	0.0035	0.019	1.33%	1.33%
13	0.0786	0.418	0.0914	0.485	2%	2%
THD	-	1.714	-	1.353	23%	13%
PWHD	-	1.940.	-	1.556	23%	22%

	Average harmonic current results – Phase 3									
Harmonic	At 45-55% of Registered Capacity		100% of Regist Capacity	100% of Registered Capacity		EN 61000-3-12				
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase				
2	0.0802	0.426	0.0945	0.502	8%	8%				
3	0.0545	0.289	0.1425	0.757	21.6%	Not stated				
4	0.0556	0.295	0.0712	0.378	4%	4%				
5	0.2434	1.293	0.2664	1.415	10.7%	10.7%				
6	0.0061	0.032	0.0090	0.048	2.67%	2.67%				
7	0.1552	0.824	0.1833	0.974	7.2%	7.2%				
8	0.0081	0.043	0.0093	0.049	2%	2%				

9	0.0101	0.054	0.0176	0.093	3.8%	Not stated	
10	0.0078	0.041	0.0051	0.027	1.6%	1.6%	
11	0.0729	0.387	0.0935	0.497	3.1%	3.1%	
12	0.0039	0.021	0.0054	0.029	1.33%	1.33%	
13	0.0901	0.479	0.0721	0.383	2%	2%	
THD ⁵	-	1.788	-	1.562	23%	13%	
PWHD ⁶	-	2.052	-	1.748	23%	22%	
Power Generating Module rating per phase (rpp)			26.6	kVA		6 = Measured Value ing per phase (kVA)	
		Average h	armonic current	results – Pha	se 1		
Harmonic	At 45-55% of R Capacity	egistered	100% of Regis Capacity	tered	Limit in BS EN 61000-3-12		
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase	
2	0.1788	0.822	0.1825	0.840	8%	8%	
3	0.0361	0.166	0.2068	0.951	21.6%	Not stated	
4	0.2241	1.031	0.0844	0.388	4%	4%	
5	0.3280	1.509	0.0062	0.029	10.7%	10.7%	
6	0.0117	0.054	0.0208	0.096	2.67%	2.67%	
7	0.2000	0.920	0.0470	0.216	7.2%	7.2%	
8	0.0861	0.396	0.0072	0.033	2%	2%	
9	0.0070	0.032	0.0313	0.144	3.8%	Not stated	
10	0.0202	0.093	0.0223	0.103	1.6%	1.6%	
11	0.0474	0.218	0.0813	0.374	3.1%	3.1%	
12	0.0065	0.030	0.0057	0.026	1.33%	1.33%	
13	0.0324	0.149	0.0384	0.177	2%	2%	

⁵ THD = Total Harmonic Distortion

⁶ PWHD = Partial Weighted Harmonic Distortion

THD	-	1.543	-	1.259	23%	13%
PWHD	-	1.746	-	1.460	23%	22%

	Average harmonic current results – Phase 2									
Harmonic	At 45-55% of Registered Capacity		100% of Regis Capacity	tered	Limit in BS	EN 61000-3-12				
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase				
2	0.0922	0.424	0.1000	0.460	8%	8%				
3	0.0158	0.073	0.0157	0.072	21.6%	Not stated				
4	0.2190	1.007	0.2257	1.038	4%	4%				
5	0.4945	2.275	0.5101	2.346	10.7%	10.7%				
6	0.0088	0.040	0.0083	0.038	2.67%	2.67%				
7	0.3183	1.464	0.3098	1.425	7.2%	7.2%				
8	0.0900	0.414	0.0964	0.443	2%	2%				
9	0.0056	0.026	0.0101	0.046	3.8%	Not stated				
10	0.0236	0.109	0.0213	0.098	1.6%	1.6%				
11	0.0480	0.221	0.0828	0.381	3.1%	3.1%				
12	0.0058	0.027	0.0062	0.029	1.33%	1.33%				
13	0.0323	0.149	0.0408	0.188	2%	2%				
THD	-	1.52	-	1.273	23%	13%				
PWHD	-	1.741	-	1.564	23%	22%				

Average harmonic current results – Phase 3							
Harmonic	At 45-55% of Registered Capacity		100% of Registered Capacity		Limit in BS EN 61000-3-12		
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase	

		Average ha	armonic current	results – Pha	se 1		
Power Generating Module rating per phase (rpp)			20	kVA		Harmonic % = Measured Value (A) x 23/rating per phase (kVA)	
PWHD ⁸	-	1.682	-	1.556	23%	22%	
THD ⁷	-	1.474	-	1.344	23%	13%	
13	0.0313	0.144	0.0403	0.185	2%	2%	
12	0.0072	0.033	0.0075	0.035	1.33%	1.33%	
11	0.0470	0.216	0.0820	0.377	3.1%	3.1%	
10	0.0208	0.096	0.0408	0.188	1.6%	1.6%	
9	0.0062	0.029	0.0062	0.029	3.8%	Not stated	
8	0.0844	0.388	0.0828	0.381	2%	2%	
7	0.2068	0.951	0.3183	1.464	7.2%	7.2%	
6	0.0088	0.040	0.0088	0.040	2.67%	2.67%	
5	0.3367	1.549	0.4945	2.275	10.7%	10.7%	
4	0.2379	1.094	0.2417	1.112	4%	4%	
3	0.0154	0.071	0.0122	0.056	21.6%	Not stated	
2	0.2025	0.932	0.2209	1.016	8%	8%	

Harmonic	At 45-55% of Registered Capacity		100% of Registered Capacity		Limit in BS EN 61000-3-12	
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase
2	0.698	1.934	0.550	1.525	8%	8%
3	0.018	0.050	0.134	0.372	21.6%	Not stated
4	0.469	1.300	0.601	1.664	4%	4%
5	0.637	1.765	0.878	2.434	10.7%	10.7%
6	0.012	0.033	0.014	0.039	2.67%	2.67%

7 THD = Total Harmonic Distortion

⁸ PWHD = Partial Weighted Harmonic Distortion

7	0.381	1.056	0.662	1.833	7.2%	7.2%
8	0.205	0.568	0.221	0.614	2%	2%
9	0.031	0.086	0.054	0.149	3.8%	Not stated
10	0.051	0.141	0.041	0.112	1.6%	1.6%
11	0.204	0.565	0.300	0.832	3.1%	3.1%
12	0.022	0.061	0.026	0.072	1.33%	1.33%
13	0.127	0.352	0.154	0.428	2%	2%
THD	-	3.327	-	2.348	23%	13%
PWHD	-	3.624	-	2.514	23%	22%

	Average harmonic current results – Phase 2									
Harmonic	At 45-55% of R Capacity	egistered	100% of Regis Capacity	100% of Registered Capacity		EN 61000-3-12				
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase				
2	0.532	1.474	0.756	2.096	8%	8%				
3	0.184	0.510	0.121	0.334	21.6%	Not stated				
4	0.486	1.347	0.659	1.826	4%	4%				
5	0.662	1.834	0.984	2.728	10.7%	10.7%				
6	0.027	0.075	0.017	0.048	2.67%	2.67%				
7	0.347	0.962	0.588	1.629	7.2%	7.2%				
8	0.198	0.549	0.239	0.662	2%	2%				
9	0.03	0.083	0.059	0.164	3.8%	Not stated				
10	0.028	0.078	0.060	0.166	1.6%	1.6%				
11	0.209	0.579	0.279	0.772	3.1%	3.1%				
12	0.025	0.069	0.020	0.054	1.33%	1.33%				
13	0.113	0.313	0.176	0.488	2%	2%				

Type A Power Generating Modules

THD	-	3.399	-	2.135	23%	13%
PWHD	-	3.736	-	2.390	23%	22%

		Average h	armonic current	results – Pha	se 3	
Harmonic	At 45-55% of R Capacity	egistered	100% of Regis Capacity	tered	Limit in BS	EN 61000-3-12
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase
2	0.699	1.937	0.771	2.135	8%	8%
3	0.18	0.499	0.094	0.259	21.6%	Not stated
4	0.494	1.369	0.620	1.719	4%	4%
5	0.711	1.970	0.914	2.533	10.7%	10.7%
6	0.002	0.006	0.038	0.105	2.67%	2.67%
7	0.362	1.003	0.634	1.757	7.2%	7.2%
8	0.215	0.596	0.221	0.614	2%	2%
9	0.041	0.114	0.009	0.026	3.8%	Not stated
10	0.032	0.089	0.073	0.201	1.6%	1.6%
11	0.23	0.637	0.274	0.760	3.1%	3.1%
12	0.006	0.017	0.033	0.090	1.33%	1.33%
13	0.128	0.355	0.202	0.561	2%	2%
THD ⁹	-	3.475	-	2.183	23%	13%
PWHD ¹⁰	-	3.832	-	2.452	23%	22%
Power Generating Module rating per phase (rpp)23.3kVAHarmonic % = Measured Val (A) x 23/rating per phase (kV						
		Average h	armonic current	results – Pha	se 1	
Harmonic	At 45-55% of R	egistered	100% of Regis	stered	Limit in BS	EN 61000-3-12

⁹ THD = Total Harmonic Distortion

¹⁰ PWHD = Partial Weighted Harmonic Distortion

	Capacity	Capacity						
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase		
2	0.774	1.780	0.725	1.668	8%	8%		
3	0.13	0.299	0.111	0.255	21.6%	Not stated		
4	0.626	1.440	0.651	1.497	4%	4%		
5	0.829	1.907	0.83	1.909	10.7%	10.7%		
6	0.052	0.120	0.005	0.012	2.67%	2.67%		
7	0.67	1.541	0.618	1.421	7.2%	7.2%		
8	0.181	0.416	0.216	0.497	2%	2%		
9	0.016	0.037	0.005	0.012	3.8%	Not stated		
10	0.048	0.110	0.068	0.156	1.6%	1.6%		
11	0.262	0.603	0.246	0.566	3.1%	3.1%		
12	0.016	0.037	0.01	0.023	1.33%	1.33%		
13	0.187	0.430	0.172	0.396	2%	2%		
THD	-	3.389	-	2.129	23%	13%		
PWHD	-	3.562	-	2.279	23%	22%		

	Average harmonic current results – Phase 2							
Harmonic	At 45-55% of Registered Capacity		100% of Regist Capacity	ered	Limit in BS EN 61000-3-12			
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase		
2	0.702	1.615	0.792	1.822	8%	8%		
3	0.123	0.283	0.148	0.340	21.6%	Not stated		
4	0.632	1.454	0.607	1.396	4%	4%		
5	0.859	1.976	0.833	1.916	10.7%	10.7%		
6	0.032	0.074	0.023	0.053	2.67%	2.67%		

7	0.595	1.369	0.612	1.408	7.2%	7.2%
8	0.217	0.499	0.22	0.506	2%	2%
9	0.038	0.087	0.036	0.083	3.8%	Not stated
10	0.033	0.076	0.027	0.062	1.6%	1.6%
11	0.256	0.589	0.275	0.633	3.1%	3.1%
12	0.014	0.032	0.007	0.016	1.33%	1.33%
13	0.145	0.334	0.152	0.350	2%	2%
THD	-	3.082	-	1.936	23%	13%
PWHD	-	3.387	-	2.167	23%	22%

	Average harmonic current results – Phase 3								
Harmonic	At 45-55% of R Capacity	egistered	100% of Regis Capacity	100% of Registered Capacity		EN 61000-3-12			
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase			
2	0.645	1.484	0.625	1.438	8%	8%			
3	0.104	0.239	0.105	0.242	21.6%	Not stated			
4	0.644	1.481	0.643	1.479	4%	4%			
5	0.965	2.220	0.947	2.178	10.7%	10.7%			
6	0.013	0.030	0.039	0.090	2.67%	2.67%			
7	0.58	1.334	0.574	1.320	7.2%	7.2%			
8	0.216	0.497	0.229	0.527	2%	2%			
9	0.058	0.133	0.034	0.078	3.8%	Not stated			
10	0.055	0.127	0.05	0.115	1.6%	1.6%			
11	0.248	0.570	0.245	0.564	3.1%	3.1%			
12	0.01	0.023	0.016	0.037	1.33%	1.33%			
13	0.155	0.357	0.167	0.384	2%	2%			

Type A Power Generating Modules

THD ¹¹	-	3.087	-	1.979	23%	13%
PWHD ¹²	-	3.430	-	2.223	23%	22%
Power Generating Module rating per phase (rpp)		26.6	kVA		6 = Measured Value ing per phase (kVA)	
		Average h	armonic current	results – Phas	e 1	
Harmonic	nonic At 45-55% of Registered Capacity		100% of Regist Capacity	tered	Limit in BS	EN 61000-3-12
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase
2	0.678	1.418	0.711	1.487	8%	8%
3	0.023	0.048	0.110	0.229	21.6%	Not stated
4	0.455	0.951	0.639	1.335	4%	4%
5	0.621	1.298	0.815	1.704	10.7%	10.7%
6	0.035	0.073	0.005	0.010	2.67%	2.67%
7	0.353	0.738	0.611	1.278	7.2%	7.2%
8	0.177	0.370	0.213	0.446	2%	2%
9	0.061	0.128	0.005	0.010	3.8%	Not stated
10	0.048	0.101	0.067	0.139	1.6%	1.6%
11	0.211	0.441	0.242	0.507	3.1%	3.1%
12	0.043	0.090	0.010	0.021	1.33%	1.33%
13	0.157	0.328	0.168	0.351	2%	2%
THD	-	3.256	-	2.087	23%	13%
PWHD	-	3.449	-	2.235	23%	22%

	Average harmonic current results – Phase 2							
Harmonic	At 45-55% of Registered	100% of Registered	Limit in BS EN 61000-3-12					

¹¹ THD = Total Harmonic Distortion

¹² PWHD = Partial Weighted Harmonic Distortion

	Capacity	Capacity					
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase	
2	0.532	1.112	0.748	1.563	8%	8%	
3	0.184	0.385	0.141	0.294	21.6%	Not stated	
4	0.446	0.933	0.583	1.218	4%	4%	
5	0.662	1.384	0.790	1.651	10.7%	10.7%	
6	0.034	0.071	0.022	0.046	2.67%	2.67%	
7	0.358	0.749	0.581	1.214	7.2%	7.2%	
8	0.232	0.485	0.207	0.434	2%	2%	
9	0.056	0.117	0.035	0.072	3.8%	Not stated	
10	0.066	0.138	0.026	0.054	1.6%	1.6%	
11	0.189	0.395	0.259	0.541	3.1%	3.1%	
12	0.017	0.036	0.007	0.014	1.33%	1.33%	
13	0.106	0.222	0.147	0.308	2%	2%	
THD	-	3.075	-	1.898	23%	13%	
PWHD	-	3.432	-	2.125	23%	22%	

	Average harmonic current results – Phase 3								
Harmonic	At 45-55% of Registered Capacity		100% of Regist Capacity	ered	Limit in BS EN 61000-3-12				
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase			
2	0.724	1.514	0.601	1.257	8%	8%			
3	0.169	0.353	0.100	0.210	21.6%	Not stated			
4	0.494	1.033	0.631	1.320	4%	4%			
5	0.711	1.487	0.913	1.909	10.7%	10.7%			
6	0.062	0.130	0.038	0.079	2.67%	2.67%			

7	0.332	0.694	0.546	1.143	7.2%	7.2%	
8	0.219	0.458	0.216	0.452	2%	2%	
9	0.031	0.065	0.033	0.069	3.8%	Not stated	
10	0.082	0.171	0.048	0.101	1.6%	1.6%	
11	0.256	0.535	0.238	0.498	3.1%	3.1%	
12	0.012	0.025	0.016	0.033	1.33%	1.33%	
13	0.099	0.207	0.164	0.342	2%	2%	
THD ¹³	-	3.144	-	1.941	23%	13%	
PWHD ¹⁴	-	3.521	-	2.180	23%	22%	
Power Generating Module rating per phase (rpp)			30	kVA		= Measured Value g per phase (kVA)	
		Average ha	armonic current	results – Phas	e 1		
Harmonic	At 45-55% of Re Capacity	egistered	100% of Regis Capacity	tered	Limit in BS EN 61000-3-12		
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase	
2	0.641	2.599	0.507	2.058	8%	8%	
3	0.040	0.160	0.130	0.528	21.6%	Not stated	
4	0.532	2.158	0.465	1.887	4%	4%	
5	0.707	2.867	0.725	2.942	10.7%	10.7%	
6							
	0.015	0.061	0.019	0.078	2.67%	2.67%	
7	0.015	0.061 1.587	0.019 0.335	0.078	2.67% 7.2%	2.67% 7.2%	
7 8							
	0.391	1.587	0.335	1.358	7.2%	7.2%	
8	0.391	1.587 0.699	0.335	1.358 0.821	7.2% 2%	7.2%	

¹³ THD = Total Harmonic Distortion

14 PWHD = Partial Weighted Harmonic Distortion

12	0.023	0.095	0.011	0.045	1.33%	1.33%
13	0.147	0.597	0.118	0.478	2%	2%
THD	-	3.822	-	3.193	23%	13%
PWHD	-	4.138	-	3.419	23%	22%

	Average harmonic current results – Phase 2								
Harmonic	At 45-55% of Re Capacity	egistered	100% of Regis Capacity	tered	Limit in BS	N 61000-3-12 3 phase 8% Not stated 4% 10.7% 2.67% 7.2% 2% Not stated 1.6% 3.1%			
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase			
2	0.553	2.242	0.617	2.505	8%	8%			
3	0.151	0.612	0.039	0.156	21.6%	Not stated			
4	0.528	2.141	0.484	1.962	4%	4%			
5	0.659	2.673	0.693	2.809	10.7%	10.7%			
6	0.035	0.143	0.014	0.056	2.67%	2.67%			
7	3.772	1.527	0.372	1.510	7.2%	7.2%			
8	0.231	0.938	0.167	0.678	2%	2%			
9	0.032	0.129	0.055	0.225	3.8%	Not stated			
10	0.033	0.132	0.036	0.145	1.6%	1.6%			
11	0.211	0.857	0.171	0.693	3.1%	3.1%			
12	0.013	0.054	0.021	0.087	1.33%	1.33%			
13	0.127	0.516	0.141	0.571	2%	2%			
THD	-	3.689	-	2.904	23%	13%			
PWHD	-	3.842	-	3.251	23%	22%			

Average harmonic current results – Phase 3						
Harmonic	At 45-55% of Registered Capacity	100% of Registered Capacity	Limit in BS EN 61000-3-12			

	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase
2	0.641	2.599	0.507	2.058	8%	8%
3	0.040	0.160	0.130	0.528	21.6%	Not stated
4	0.532	2.158	0.465	1.887	4%	4%
5	0.707	2.867	0.725	2.942	10.7%	10.7%
6	0.015	0.061	0.019	0.078	2.67%	2.67%
7	0.391	1.587	0.335	1.358	7.2%	7.2%
8	0.172	0.699	0.202	0.821	2%	2%
9	0.058	0.237	0.046	0.187	3.8%	Not stated
10	0.038	0.153	0.035	0.140	1.6%	1.6%
11	0.183	0.742	0.215	0.874	3.1%	3.1%
12	0.023	0.095	0.011	0.045	1.33%	1.33%
13	0.147	0.597	0.118	0.478	2%	2%
THD ¹⁵	-	3.822	-	3.193	23%	13%
PWHD ¹⁶	-	4.138	-	3.419	23%	22%
Power Generating Module rating per phase (rpp)			33.3	kVA	Harmonic % = Measured Value (A) x 23/rating per phase (kVA)	

Average harmonic current results – Phase 1

Harmonic	At 45-55% of Registered Capacity		100% of Registe Capacity	ered	Limit in BS EN 61000-3-12		
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase	
2	0.524	1.807	0.543	1.873	8%	8%	
3	0.145	0.500	0.139	0.481	21.6%	Not stated	
4	0.513	1.769	0.466	1.608	4%	4%	

¹⁵ THD = Total Harmonic Distortion

¹⁶ PWHD = Partial Weighted Harmonic Distortion

5	0.646	2.228	0.633	2.184	10.7%	10.7%
6	0.033	0.114	0.031	0.105	2.67%	2.67%
7	0.361	1.245	0.344	1.186	7.2%	7.2%
8	0.224	0.772	0.217	0.750	2%	2%
9	0.031	0.107	0.029	0.101	3.8%	Not stated
10	0.032	0.110	0.030	0.103	1.6%	1.6%
11	0.209	0.721	0.195	0.672	3.1%	3.1%
12	0.013	0.045	0.012	0.041	1.33%	1.33%
13	0.122	0.421	0.117	0.403	2%	2%
THD	-	3.553	-	2.893	23%	13%
PWHD	-	3.828	-	3.068	23%	22%

	Average harmonic current results – Phase 2										
Harmonic	At 45-55% of R Capacity	egistered	100% of Regis Capacity	tered	Limit in BS	Limit in BS EN 61000-3-12					
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase					
2	0.505	1.314	0.481	1.658	8%	8%					
3	0.129	0.335	0.125	0.431	21.6%	Not stated					
4	0.546	1.422	0.452	1.558	4%	4%					
5	0.861	2.240	0.711	2.451	10.7%	10.7%					
6	0.013	0.033	0.018	0.061	2.67%	2.67%					
7	0.630	1.639	0.321	1.107	7.2%	7.2%					
8	0.215	0.558	0.196	0.676	2%	2%					
9	0.051	0.134	0.045	0.157	3.8%	Not stated					
10	0.038	0.099	0.034	0.116	1.6%	1.6%					
11	0.280	0.728	0.213	0.733	3.1%	3.1%					

12	0.024	0.063	0.011	0.038	1.33%	1.33%
13	0.148	0.386	0.113	0.390	2%	2%
THD	-	3.691	-	2.704	23%	13%
PWHD	-	4.001	-	3.047	23%	22%

Average harmonic current results – Phase 3										
Harmonic	At 45-55% of Re Capacity	egistered	100% of Regis Capacity	tered	Limit in BS	Limit in BS EN 61000-3-12				
	Measured Value MV in Amps	%	Measured Value MV in Amps	%	1 phase	3 phase				
2	0.694	1.816	0.644	2.221	8%	8%				
3	0.116	0.304	0.037	0.126	21.6%	Not stated				
4	0.599	1.567	0.470	1.621	4%	4%				
5	0.965	2.526	0.679	2.343	10.7%	10.7%				
6	0.016	0.042	0.013	0.045	2.67%	2.67%				
7	0.560	1.465	0.357	1.232	7.2%	7.2%				
8	0.232	0.606	0.162	0.559	2%	2%				
9	0.056	0.146	0.054	0.186	3.8%	Not stated				
10	0.056	0.146	0.035	0.119	1.6%	1.6%				
11	0.260	0.680	0.169	0.582	3.1%	3.1%				
12	0.018	0.048	0.021	0.073	1.33%	1.33%				
13	0.169	0.443	0.135	0.466	2%	2%				
THD ¹⁷	-	3.775	-	2.669	23%	13%				
PWHD ¹⁸	-	4.096	-	3.005	23%	22%				

3. Power Quality – Voltage fluctuations and Flicker:

¹⁷ THD = Total Harmonic Distortion

¹⁸ PWHD = Partial Weighted Harmonic Distortion

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation must be designed in accordance with EREC P28.

	Starting	Starting			Stopping			Running	
	d max	d c	d(t)	d max	d c	d(t)		P st	P It 2 hours
Measured Values at test impedance	3.59	0.46	0	0.09	0.05	0		0.26	0.24
Normalised to standard impedance	3.59	0.46	0	0.09	0.05	0		0.26	0.24
Normalised to required maximum impedance	-	-	-	-	-	-		-	-
Limits set under BS EN 61000-3-11	4%	3.3%	3.3%	4%	3.3%	3.39	%	1.0	0.65
	1		1		•	1			
Test	R	0 24	0		a (0 15			0

Test Impedance	R	0.24	Ω	XI	0.15	Ω
Standard Impedance	R	0.24 *	Ω	XI	0.15 *	Ω
Maximum Impedance	R	-	Ω	XI	-	Ω

* Applies to three phase and split single phase **Power Generating Modules**.

^ Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the **Power Factor** of the generation output is 0.98 or above.

Normalised value = Measured value x reference source resistance/measured source resistance at test point

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4 Ω

Two phase units in a split phase system reference source resistance is 0.24 $\boldsymbol{\Omega}$

Three phase units reference source resistance is 0.24 Ω

Where the **Power Factor** of the output is under 0.98 then the XI to R ratio of the test impedance should be

close to that of the Standar	d Impedance.							
The stopping test should be	e a trip from full load operation.							
	s need to comply with the part es and location of the test need		in the testing notes for the					
Test start date 0	Test start date01.DEC.2019Test end date							
Test location G	rowatt R&D Test Lab							
4. Power quality – DC injection: The tests should be carried out on a single Generating Unit . Tests are to be carried out at three defined power levels ±5%. At 230 V a 80 kW three phase Inverter has a current output of 115.7 A so DC limit is 289mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.								
Test power level (50K)	10%	55%	100%					
Recorded value in Amps	100mA/98mA/101mA	110mA/95mA/108mA	115mA/101mA/106mA					
as % of rated AC current	0.16%/0.16%/0.16%	0.18%/0.15%/0.17%	0.19%/0.16%/0.16%					
Limit	0.25%	0.25%	0.25%					
Test power level (60K)	10%	55%	100%					
Recorded value in Amps	98mA/102mA/101mA	100mA/105mA/109mA	104mA/106mA/108mA					
as % of rated AC current	0.13%/0.13%/0.13%	0.13%/0.13%/0.14%	0.13%/0.13%/0.13%					
Limit	0.25%	0.25%	0.25%					
Test power level (70K)	10%	55%	100%					
Recorded value in Amps	112mA/112mA/111mA	113mA/112mA/101mA	113mA/112mA/111mA					
as % of rated AC current	0.11%/0.11%/0.11%	0.11%/0.11%/0.11%	0.11%/0.11%/0.11%					
Limit	0.25%	0.25%	0.25%					
Test power level (80K)	10%	55%	100%					
Recorded value in Amps	128mA/125mA/126mA	128mA/125mA/126mA	128mA/125mA/126mA					
as % of rated AC current	0.11%/0.11%/0.11%	0.11%/0.11%/0.11%	0.11%/0.11%/0.11%					
Limit	0.25%	0.25%	0.25%					
Test power level (60K)	10%	55%	100%					
Recorded value in Amps	101mA/102mA/101mA	100mA/103mA/105mA	104mA/106mA/104mA					
as % of rated AC current	0.14%/0.14%/0.14%	0.14%/0.14%/0.15%	0.15%/0.15%/0.14%					
Limit	0.25%	0.25%	0.25%					

	-			1				
evel (70K)	10)%		55%			100%	
llue in Amps	11	5mA/112	mA/113mA	116mA	/11	4mA/112mA	111mA/112mA/111mA	
d AC current	0.	13%/0.13	%/0.13%	0.13%/0.13%/0.13%			0.13%/0.13%/0.193%	
	0.	25%		0.25%			0.25%	
evel (80K)	10	10%		55%			100%	
llue in Amps	11	2mA/109	mA/110mA	124mA	/11	8mA/127mA	123mA/12	5mA/123mA
d AC current	0.	11%/0.10	%/0.11%	0.15%/	0.1	4%/0.16%	0.15%/0.1	5%/0.15%
	0.:	25%		0.25%			0.25%	
evel (90K)	10)%		55%			100%	
llue in Amps	12	25mA/119	mA/120mA	124mA	/12	8mA/127mA	123mA/12	5mA/123mA
d AC current	0.	13%/0.15	0.15%/	0.15%/0.14%/0.16%			0.15%/0.15%/0.15%	
Limit			0.25%				0.25%	
evel (100K)	10)%	%				100%	
llue in Amps	13	32mA/139	mA/130mA	124mA	/13	8mA/127mA	133mA/12	5mA/133mA
d AC current	0.	16%/0.16	%/0.16%	0.15%/0.17%/0.16%			0.16%/0.1	5%/0.16%
	0.:	25%	% 0		0.25%		0.25%	
at three voltage	leve	ls and at	Registered Ca	pacity. \	Volt	tage to be mainta	ained withi	n ±1.5% of the
		0.94 pu	(270.2 V)		1	pu (277 V)	1.1 pu (3	316.8 V)
alue		0.998/0.	997/0.998		0.	998/0.998/0.999	0.998/0.998/0.998	
or Limit		>0.95			>().95	>0.95	
n – Frequency	test	s: These	tests should be	carried o	out i	n accordance wit	h the Anne	ex A.7.1.2.3.
Setting			Trip test			"No trip tests"		
Frequency	Tim	e delay	Frequency	Time delay		Frequency /time)	Confirm no trip
47.5 Hz	20 క	3	47.51Hz	20.03s	;	47.7 Hz 30 s		No trip
	llue in Amps d AC current evel (80K) llue in Amps d AC current evel (90K) llue in Amps d AC current evel (100K) llue in Amps d AC current d AC current d AC current d AC current lue in Amps d AC current evel (100K) llue in Amps d AC current sevel (100K) llue in Amps d AC current fut three voltage during the test.	Ilue in Amps 11 Ilue in Amps 0. evel (80K) 10 Ilue in Amps 11 Ilue in Amps 12 Ilue in Amps 12 Ilue in Amps 12 Ilue in Amps 12 Ilue in Amps 13 Ilue in Amps 14 Ilue in Amps 15 Ilue in Amps 16 Ilue in Amps 17 Ilue in Amps 18 In	Ilue in Amps 115mA/112 d AC current 0.13%/0.13 0.25% evel (80K) 10% Ilue in Amps 112mA/109 d AC current 0.11%/0.10 d AC current 0.11%/0.10 d AC current 0.11%/0.10 d AC current 0.13%/0.15 evel (90K) 10% ilue in Amps 125mA/119 d AC current 0.13%/0.15 ilue in Amps 132mA/139 d AC current 0.16%/0.16 ilue in Amps 132mA/139 d AC current 0.94 pu ilue in Amps 10.90 pu ilue in Amps 0.916%/0.16 ilue in Amps 0.938/0. in three voltage levels and at during the test. These tests should be c in	Ide in Amps115mA/112mA/113mAIde in Amps115mA/112mA/113mA0.25%0.25%evel (80K)10%Idue in Amps112mA/109mA/110mA1d AC current0.11%/0.10%/0.11%0.25%0.25%evel (90K)10%Idue in Amps125mA/119mA/120mA1AC current0.13%/0.15%/0.15%0.25%0.25%evel (100K)10%Idue in Amps132mA/139mA/130mA1AC current0.16%/0.16%/0.16%0.25%0.25%evel (100K)10%Idue in Amps132mA/139mA/130mA1AC current0.16%/0.16%/0.16%0.25%0.25%actor: The tests should be carried out on a tr three voltage levels and at Registered Caduring the test. These tests should be underta0.94 pu (270.2 V)alue0.998/0.997/0.998or Limit>0.95n - Frequency tests: These tests should beSettingTrip testFrequencyTime delayFrequencyFrequency	Ilue in Amps 115mA/112mA/113mA 116mA d AC current 0.13%/0.13%/0.13% 0.13%/0 0.25% 0.25% evel (80K) 10% 55% ilue in Amps 112mA/109mA/110mA 124mA d AC current 0.11%/0.10%/0.11% 0.15%/0 d AC current 0.11%/0.10%/0.11% 0.15%/0 evel (90K) 10% 55% lue in Amps 125mA/119mA/120mA 124mA d AC current 0.13%/0.15%/0.15% 0.15%/0 d AC current 0.13%/0.15%/0.15% 0.15%/0 d AC current 0.13%/0.15%/0.15% 0.15%/0 d AC current 0.16%/0.16%/0.16% 0.15%/0 ilue in Amps 132mA/139mA/130mA 124mA d AC current 0.16%/0.16%/0.16% 0.15%/0 ilue in Amps 132mA/139mA/130mA 124mA d AC current 0.16%/0.16%/0.16% 0.15%/0 d AC current 0.16%/0.16%/0.16% 0.15%/0 d AC current 0.94 pu (270.2 V) 0.25% actor: The tests should be carried out on a single F 0.94 pu (270.2 V) alue 0.998/0.997	IntervalImage: second sec	International lue in Amps115mA/112mA/113mA116mA/114mA/112mAI AC current0.13%/0.13%/0.13%0.13%/0.13%/0.13%00.25%0.25%0.25%evel (80K)10%55%lue in Amps112mA/109mA/110mA124mA/118mA/127mAd AC current0.11%/0.10%/0.11%0.15%/0.14%/0.16%0.25%0.25%0.25%evel (90K)10%55%lue in Amps125mA/119mA/120mA124mA/128mA/127mAd AC current0.13%/0.15%/0.15%0.15%/0.14%/0.16%0.25%0.25%0.25%evel (100K)10%55%lue in Amps132mA/139mA/130mA124mA/138mA/127mAd AC current0.16%/0.16%/0.16%0.15%/0.17%/0.16%0.25%0.25%0.25%lue in Amps132mA/139mA/130mA124mA/138mA/127mAd AC current0.16%/0.16%/0.16%0.15%/0.17%/0.16%0.25%0.25%0.25%actor: The tests should be carried out on a single Power Generating I there voltage levels and at Registered Capacity. Voltage to be mainte during the test. These tests should be undertaken in accordance with Anne during the test. These tests should be undertaken in accordance with Anne during the test. These tests should be carried out on a single Power Generating I there voltage levels and at Registered Capacity. Voltage to be mainte during the test. These tests should be undertaken in accordance with Anne during the test. These tests should be carried out in accordance with Anne during the test. These tests should be carried out in accordance with Settingm - Frequency tests: These tests should be carried out	Interm115mA/112mA/113mA116mA/114mA/112mA111mA/11IA C current0.13%/0.13%/0.13%0.13%/0.13%/0.13%0.13%/0.13%IA C current0.25%0.25%0.25%Iavel (80K)10%55%100%Iue in Amps112mA/109mA/110mA124mA/118mA/127mA123mA/12IA C current0.11%/0.10%/0.11%0.15%/0.14%/0.16%0.15%/0.1Iue in Amps112mA/109mA/110mA124mA/128mA/127mA123mA/12IA C current0.11%/0.10%/0.11%0.15%/0.14%/0.16%0.15%/0.1Iue in Amps125mA/119mA/120mA124mA/128mA/127mA123mA/12IA C current0.13%/0.15%/0.15%0.15%/0.14%/0.16%0.15%/0.1Iue in Amps125mA/119mA/120mA124mA/128mA/127mA123mA/12IA C current0.13%/0.15%/0.15%0.15%/0.14%/0.16%0.15%/0.14%/0.16%Iue in Amps132mA/139mA/130mA124mA/138mA/127mA133mA/12IA C current0.16%/0.16%/0.16%0.15%/0.17%/0.16%0.16%/0.16Iue in Amps132mA/139mA/130mA124mA/138mA/127mA133mA/12IA C current0.16%/0.16%/0.16%0.15%/0.17%/0.16%0.16%/0.16Iue in Amps132mA/139mA/130mA124mA/138mA/127mA133mA/12IA C current0.16%/0.16%/0.16%0.15%/0.17%/0.16%0.16%/0.16Iue in Amps132mA/139mA/130mA124mA/138mA/127mA133mA/12Iu three voltage levels and at Registered Capacity. Voltage to be maintained with Annex A.7.1.4.11 pu (277 V)1.1 pu (271 V)Iulue0.998/0.997/0.9980

U/F stage 2	47 Hz	0.5 s	47.01Hz	0.52s	47.2 Hz 19.5 s	No trip
					46.8 Hz 0.45 s	No trip
O/F	52 Hz	0.5 s	52.01Hz	0.57s	51.8 Hz 120 s	No trip
					52.2 Hz 0.45 s	No trip

Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests: These tests should be carried out in accordance with Annex A.7.1.2.2.

Function	Setting		Trip test		"No trip tests"	
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	0.8 pu (184 V)	2.5 s	184	2.56s	188 V 5.0 s	No trip
					180 V 2.45 s	No trip
O/V stage 1	1.14 pu (262.2V)	1.0 s	263V	1.01s	258.2 V 5.0 s	No trip
O/V stage 2	1.19 pu (273.7V)	0.5 s	274V	0.524s	269.7 V 0.95s	No trip
					277.7 V 0.45 s	No trip

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8.Protection – Loss of Mains test: These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

The following sub set of tests should be recorded in the following table.

Trip time. 0.370s 0.385s 0.402s 0.355s 0.362s 0.390s
--

Loss of Mains Protection, Vector Shift Stability test. This test should be carried out in accordance with Annex A.7.1.2.6.							
	Start Frequency	Change		Confirm no trip			
Positive Vector Shift	49.5 Hz +50 degrees			No trip			
Negative Vector Shift	50.5 Hz	- 50 degrees		No trip			
Loss of Mains P A.7.1.2.6.	rotection, RoC	oF Stability test: ⊺	his test sł	hould be carried out in a	accord	ance with Annex	
Ramp range	Test frequency ramp:			Test Duration		Confirm no trip	
49.0 Hz to 51.0 Hz	+0.95 Hzs ⁻¹			2.1 s		No trip	
51.0 Hz to 49.0 Hz	-0.95 Hzs ⁻¹			2.1 s		No trip	
specific threshold frequency of 50.4 Hz and Droop of 10%. This test should be carried out in accordance with Annex A.7.1.3. Active Power response to rising frequency/time plots are attached if frequency injection tests are undertaken in accordance with Annex A.7.2.4. Alternatively, simulation results should be noted below:							
Test sequence at Registered Capacity >80%	Measured Act i Power Output	ve Frequency		Primary Power Source		Active Power Gradient	
Step a) 50.00Hz ±0.01Hz	100075.1W	50.003Hz		100971.8W		-	
Step b) 50.45Hz ±0.05Hz	99012.5W	50.451Hz				-	
Step c) 50.70Hz ±0.10Hz	94210.3W	50.695Hz				-	
Step d) 51.15Hz ±0.05Hz	85000.9W	51.152Hz				-	
Step e) 50.70Hz ±0.10Hz	94221.5W	50.701Hz				-	
Step f) 50.45Hz ±0.05Hz	99003.2W	50.451Hz				-	

Step g) 50.00Hz 100077.9W ±0.01Hz			49.996Hz						
Test sequence at Registered Capacity 40% - 60%		Measured Active Power Output		Frequency		Primary	Power Source	Active Power Gradient	
Step a) 50.00 ±0.01Hz	Step a) 50.00Hz 50012.7W ±0.01Hz			50.003Hz		50028.3	N	-	
Step b) 50.45Hz ±0.05Hz		49512.9W		50.451Hz				-	
Step c) 50.70Hz ±0.10Hz		47025.9W		50.703Hz				-	
Step d) 51.15Hz ±0.05Hz		42508.5W	:508.5W		51.151Hz			-	
Step e) 50.70 ±0.10Hz	0Hz	47018.5W		50.696Hz				-	
10. Protectio	on –	Re-connection ti	mer.					1	
		e that the reconn ency to within the					um delay of 20 s	for restoration of	
Time delay setting	Mea	asured delay	Checks on no reconnection when voltage or frequency is brought to jus outside stage 1 limits of Table 10.1.						
20s	20s		At 1	At 1.16 pu (334.1 V)		At 0.85 pu (244.8 V)	At 47.4 Hz	At 52.1 Hz	
Confirmation that the Power Generating Module does not re- connect.		Yes	Yes		Yes	Yes	Yes		
11. Fault lev	el co	ontribution: These	e test	s shall be carrie	d ou	it in accordance	e with EREC G99	Annex A.7.1.5.	
For Inverter	outp	ut							
Time after fault			Volts		Amps				
20ms			25.9	25.9V 1.0		1.02A			
100ms			25.	7V 0.99A		9A			
250ms			25.	5V	0.96A				
500ms			25.3	3V	0.94A				
Time to trip			0.1	ōs	In seconds				

12. Self-Monitoring solid state switching: No specified test requirements. Refer to Annex A.7.1.7.					
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.	NA				
13. Wiring functional tests: If required by para 15.2.1.					
Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)	NA				
14. Logic interface (input port).					
Confirm that an input port is provided and can be used to shut down the module.	Yes				
Additional comments.					
This equipment is equipped with RJ45 terminal for logic interface that being received the signal from the DNO, the connection should be installed per installation manual, and the signal should be a simple binary output that captured by RJ45 terminal(PIN 5 and 1 for detecting the signal). Once the signal actived, the inverter will reduce its active power to					

zero within 5s.