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Abstract. We consider geometric constructions related to the projec-
tion of the space of homogeneous polynomials of degree n on R3 onto
its subspace of harmonic polynomials.

1. Introduction

The spherical harmonics were introduced by Legendre in 1782. The name
“spherical harmonics”, that is common now, at first was used by Thomson
(Lord Kelvin) and Tait in the early (1867) edition of their Treatise on Natural
Philosophy (see [14]). The word “harmonic” relates to harmonic functions.
Recall that they are defined as the solutions to the equation ∆f = 0, where

∆ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is the Laplace operator.1 The spherical harmonics of

degree n are the harmonic homogeneous polynomials on R3 of this degree
as well as their traces on the unit sphere S2. We denote by Hn both spaces.
The traces on S2 are eigenfunctions for the eigenvalue −n(n + 1) of the
angular part ∆S2 of ∆, which is the Laplace–Beltrami operator on S2.

1.1. Brief hystory.

1.1.1. Celestial mechanics. The basic contribution to the theory of spherical
harmonic was made by Legendre and Laplace in the middle 1780th. They
were motivated by problems of the Celestial mechanics, in particular, by the
problem of the stability of the Solar system. Due to Newton’s gravitation
law, many problems of astronomy can be modeled by a perturbation of the
motion of a point mass in the central gravitational field. Its potential, up
to a shift, is proportional to 1

r , where

r =
√
x2 + y2 + z2.

Note that 1
r is SO(3)-invariant and harmonic. The perturbation is a sum of

spherical harmonics. Using approximation of this kind, Laplace solved many
problems of the Celestial mechanics. For example, he explained the acceler-
ation of the Moon motion by the long period oscillation of the eccentricity
of the Earth orbit. Thus, a time will come for the deceleration.

1Basic definitions have obvious extensions onto higher dimensions but we consider only
the dimension 3. It has a rich history and admits some special constructions.
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It is widely believed that the harmonics are the spherical analogue of a
Fourier series. Fourier attended École Royale Militaire of Auxerre at the age
14 when Laplace introduced the functions Yn,m that form an orthonormal
basis in Hn. They are eigenfunctions of the circle group of the rotations
about some axis. Thus the consruction of spherical harmonics includes the
idea of the Fourier series.

1.1.2. Electricity and Magnetism. In 19th century, the theory of electro-
magnetic fields had similar problems. Maxwell in his Treatise on electricity
and magnetism suggested a method for constructing the spherical harmonics
by differentiation of the function 1

r in suitable directions several times. He
treated them as a scaling limits of the fields of several points charges with
zero total charge as the distance between points tends to zero (see [10, Ch.
9]) for details). Maxwell did not give a rigorous mathematical proof.

The common points of S2 and the rays in the mentioned directions are
called poles. Sylvester noticed that a real harmonic uniquely defines the set
of poles up to their signs and gave a sketch of the proof at the end of his
note [13]. The book Methoden der Mathematischen Physik by Courant and
Hilbert contains the complete proof ([5, Ch. 7]). Vladimir Arnold clarified
the topological meaning of this construction (see [2, Appendix A]).

Maxwell applied his theory of poles to computation of the integrals of
the products of two harmonics from Hn by differentiation of one of them in
directions of the poles of the other (see [10, Ch. 9, (31)]). This contains
implicitly the ideas of the scalar product of subsection 2.2 as well as the
projection of subsection 3.1 that seems that this was not noticed yet. His
ideas in this area were rediscovered several times (for instance, [3, Ch. 5],
[4]).

1.1.3. Hydrogen atom. The 20th century clarified the significance of the no-
tion of symmetry in both the mathematics and the physics. An outstanding
example is the hydrogen atom. The Schrödinger equation for the wavefunc-
tion ψ of the electron in it may be written as(

∆ +
K

r

)
ψ = −LEψ,

where K,L are some constants depending on the mass, the charge of the
electron, and the Planck constant. It is evidently SO(3)-invariant. The
separation of variables leads to the solutions of the type f(r)h, where h
is a spherical harmonic. Together with rules of quantum mechanics this
makes it possible to build a very satisfactory model of the hydrogen atom,
in particular, to find all possible energy levels and the radii of the electron
orbits.

1.1.4. CMB. In 21th century we have a new challenge which necessarily
involves the spherical harmonics. As in 18th century, it comes from the sky.
This is the Cosmic Microwave Background (CMB) previously known as the
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relic radiation. It fills the universe since an early stage of its evolution and
contains the valuable records about it. The radiation is almost isotropic but
non-isotropic. The desired information is hidden in the perturbations, which
can be approximated by spherical harmonics. It is important to know if the
statistic of CMB is Gaussian or not because the predictions of cosmological
parameters depend of this property. There is the well known decomposition

Pn =
∑

j∈Jn
rn−jHj ,(1.1)

where Jn = {j ∈ Z : 0 ≤ j ≤ n, n− j even} and Pn is the space of the ho-
mogeneous polynomials of degree n. For any Gaussian SO(3)-invariant dis-
tribution its components are pairwise independent but their statistic shows
a strong correlation between the harmonics of some different degrees (see
[11], [4]). To explain this is one of the problems of the modern cosmology.

1.2. About this note. The spherical harmonics is a useful tool in math-
ematics and its applications. It is also a very interesting object in its own.
The aim of this note is to show links of spherical harmonics to some math-
ematical tools and objects. It contains no new result (maybe, except for
Theorem 3.4).

Unless the contrary is explicitly stated we assume that the scalar product
is that of L2(S2) and that the functions are real valued. Complex function
spaces are equipped with the upper index C. Everywhere “invariant” means
“SO(3)-invariant”.

1.3. Acknowledgements. I am grateful very much to the Mathematical
Department and personally to Professor Irina Markina for the hospitality
and the fine working conditions during my stay at the Bergen University.

2. The projection onto Hn
The summands of (1.1) are irreducuble and pairwise non-equivalent.

Hence every commuting with SO(3) linear operator in Pn preserves all spaces
Hj and is either trivial or invertible in each of them. Let

πn : Pn → Hn

be the projection that agrees with (1.1). It follows that πn is independent
of the choice of the invariant inner product in Pn. Also, the invariant inner
products in Hj may differ only by a scaling factor.

In this note we describe several geometric constructions related to the
following problem: given p ∈ Pn, find hn = πnp. If we know how to find hn,
then we may obtain the decomposition p = hn + r2hn−2 + . . . replacing p

with p−hn
r2

repeatedly.
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2.1. The reproducing kernel. For the completeness, we mention the stan-
dard integral representation

πnp(u) =

∫
S2

Φn(u, v)p(v) dσ(v),

where Φn(u, v) =
∑2n+1

k=1 fk(u)fk(v) for every orthonormal bases f1, . . . , f2n+1

in Hn. Also,
Φn(u, v) = 〈φu, φv〉 ,

where u→ φu is the evaluation mapping defined by 〈f, φu〉 = f(u) for all f in
Hn. The function φu(v) = Φn(u, v) is the zonal harmonic cnPn(〈u, v〉), where
Pn the nth Legendre polynomial, cn is a normalizing constant, 〈 , 〉 stands
for the scalar product of L2(S2, σ), where σ is the invariant probability
measure on S2, and u, v ∈ S2.

2.2. Another scalar product in Pn. The formula

〈p, q〉 = p

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
q.

defines the well known and a very useful inner product in Pn. It is invariant
and has the remarkable property

〈pq, f〉 =

〈
q, p

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
f

〉
which immediately follows from the definition. In particular, the above
equality implies that h ∈ Pn is orthogonal to r2Pn−2 if and only if ∆h = 0,
where ∆ is the Euclidean laplacian. Thus,

Pn = r2Pn−2 ⊕Hn,
where the sum is orthogonal. Notice that distinct monomials are orthogonal.
This property together with the equality

|xjykzl|2 = j!k!l!

provides another definition which shows that the inner product is positive
definite.

This scalar product must be proportional on Hn to that of L2(S2) since
Hn is irreducible and they are both invariant. Thus we can compute integrals
of a product of two harmonics by differentiation. Actually, this method is
due to Maxwell ([10, Ch. 9, (31)]). It had been rediscovered several times
([3],[12]).

2.3. A restatement of the problem. For any p ∈ Pn we have the unique
decomposition

p = r2q + h,(2.1)

where q ∈ Pn−2 and h ∈ Hn and the problem “given p, find πnp” may be
stated as follows:

given p ∈ Pn, find h ∈ Hn such that p− h is divisible by r2.
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2.4. Spherical harmonics on C3 and polynomials on C2. To avoid
awkward notation, we write PC

2n for complex homogeneous polynomials on
C2 and PC

n for that on C3 of degrees 2n and n, respectively (i.e., we drop
C2 and C3). We have

dimHC
n = dimPC

2n = 2n+ 1.

The representations of the groups SO(3) and SU(2) in these spaces are equiv-
alent.2 This can be verified by a simple geometric construction. Let Q0 be
the cone r2 = 0. The mapping

κ(ζ) =

(
ζ2

1 + ζ2
2

2
, i
ζ2

2 − ζ2
1

2
, iζ1ζ2

)
covers Q0 twice by C2 identifying ±ζ. We omit the computation which
shows that κ intertwines the actions of SO(3) on Q0 and SU(2) on C2. Set

Rp = p ◦ κ.
Since r2 ◦ κ = 0, Rp is independent of the first summand of the decompo-
sition (2.1). Also, R agrees with the actions of SU(2) in P2n and SO(3) in
Hn. The representations in these spaces are irreducible, hence either R = 0
or R is invertible on Hn. The first is obviously false whence the second is
true. Thus, the mapping R : Hn → P2n is a bijection which intertwines the
group actions.

2.5. How to find the harmonic component of p knowing Rp. It is
sufficient to find the harmonics in HC

n relating to the monomials in PC
2n. Put

ζ = x+ iy,

ζ̄ = x− iy,
ω = −iz.

The bar does not mean the complex conjugation: we consider ζ, ζ̄, ω as
functions on C3. Let c = (a, b) ∈ C2. An easy calculation shows that

(ζ, ζ̄, ω) ◦ κ(c) = (a2, b2, ab).

Hence

R(ζj ζ̄kωl) = a2j+lb2k+l.

Let us fix α = 2j + l and β = 2k + l. If Rp1 = Rp2 = aαbβ for some
p1, p2 ∈ Pn, then R(p1 − p2) = 0 and consequently r2 divides p1 − p2.
Therefore, there is at most one harmonic polynomial h in the linear span
of the products p = ζj ζ̄kωl such that Rp = aαbβ. Such a polynomial exists
since Rp 6= 0 for any p with this property. In fact,

h =

{
ζmpn,m, α ≥ β,
ζ̄mpn,m, α ≤ β,

2Actually, we have the action of SO(3) = SU(2)/Z2 in P2n since SU(2) has nontrivial
kernel ±I.
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where n = α+β
2 , m = |α−β|

2 , and the polynomial pn,m depends only on r2

and z. The common case α = β relates to the Legendre polynomial Pn.
Then h is the zonal harmonic. If m > 0, then ζmpn,m corresponds to the
classical Yn,m.

2.6. A determinant formula. Let 〈 , 〉 be the bilinear extension of the
standard inner product in R3 onto C3. Set

`u(v) = 〈v, u〉 .
If u ∈ Q0, then `nu is harmonic for all n ∈ N. An easy calculation verifies
this.

The mapping κ defines one-to-one correspondence between lines in C2

(i.e. CP 1) and lines in the cone Q0 ⊂ C3 since κ glues points which lies
in the same line. A polynomial q ∈ P2n of two complex variables a, b is a
product of 2n linear functions due to the fundamental theorem of algebra.
For a generic q the set of its zeros is the union of 2n lines. The same is true
for the restriction of p ∈ Pn to Q0 if

p ◦ κ = q.

Let h be the harmonic component of p and let c1, . . . , c2n ∈ Q0 be generating
vectors for these lines. Then the determinant

Hu(v) = det


〈c1, c1〉n . . . 〈c1, c2n〉n 〈c1, u〉n

...
. . .

...
...

〈c2n, c1〉n . . . 〈c2n, c2n〉n 〈c2n, u〉n
〈v, c1〉n . . . 〈v, c2n〉n 〈v, u〉n


vanishes on the same lines in Q0 as p. Hence Hu ◦ κ is proportional to q
and, consequently, the harmonic component of Hu is equal to th for some
t ∈ C. A computation with determinants shows that t 6= 0 for a generic
u ∈ Q0. Furthermore, the functions `nck are harmonic since ck ∈ Q0. Hence
Hu is harmonic if u ∈ Q0. Then it is proportional to h since Hu(ck) = 0.
Replacing 〈v, u〉n in the right lower corner with the holomorphic extension
of the zonal harmonic φu(v) on u, we get the equality

h(v)h(u) = τ(u)Hu(v),

where τ is a nontrivial function on Q0 and v runs over C3.
There is a real version of this representation for harmonics on S2 with

Φn(ck, cj) instead of 〈ck, cj〉n which makes it possible to construct harmonics
with prescribed zeros in S2. See [7] for details.

Thus we obtain a circuitous path to compute h = πnp. We’ll keep trying
to find others.

2.7. The Casimir operator. Let Dxy = y ∂
∂x − x ∂

∂y be the vector field

corresponding to the group of the rotations about the z-axis and let Dyz, Dzx

be defined similarly. Set

C = D2
xy +D2

yz +D2
zx.
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The operator C commutes with the group action and annihilates radial
functions. Hence it commutes with the multiplication on them. The spaces
Hn are its eigenspaces with the eigenvalues λn = −n(n + 1). Due to the
decomposition (1.1), for any p ∈ Pn we have p =

∑
j∈Jn r

n−jhj , where
hj ∈ Hj . Then

Cp =
∑
j∈Jn

λnr
n−jhj .

It follows that

πn =
∏

j∈Jn−2

(λn − λj)−1(C − λjI).

The operator C is the Casimir operator for the group SO(3) acting on R3

or C3. It can be defined in more general setting as follows. Let ρ denote
a representation of a Lie algebra g and its extension onto the universal
enveloping algebra Ug. If z is a central element of Ug, then ρ(z) is called the
Casimir operator. If E1, . . . , Em is an orthonormal basis in g for an Adg-
invariant scalar product, then ρ(E1)2 + · · ·+ ρ(Em)2 is a Casimir operator.

The definition of C allows to treat it as an operator acting in spaces
of smooth functions on S2. Then it coincides with the Laplace–Beltrami
operator on S2 defined by the standard Riemannian metric on it. Sometimes
it is more convenient to work with C than with ∆S2 in local coordinates.

3. Maxwell’s multipoles

3.1. Maxwell’s projection. The above mentioned Maxwell’s method for
constructing spherical harmonics in fact defines the projection onto HC

n.

Theorem 3.1. The operator µn : p → (−1)nr2n+1

(2n−1)!! p
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
1
r coincides

with the projection πn : PC
n → HC

n.

Proof. It is an easy calculation that µnPC
n ⊆ PC

n . It follows from the def-
inition that µn annihilates the polynomials r2q because 1

r is harmonic on

R3 \ {0}. Due to (2.1), it is sufficient to prove that µn is identical on HC
n.

If r2(a) = 0, then `na is harmonic for all n ∈ N and, moreover,

`a

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
1

rs
= − s`a

rs+2
,

`a

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
`ja = 0, j ∈ N.

Therefore, µn`
n
a = cn`

n
a , where cn depends only on n. A computation shows

that cn = 1. Hence µn is identical on the complex linear span of the family
of the functions {`na : a ∈ Q0} that equals HC

n since it is SO(3)-invariant
and HC

n is irreducible. This completes the proof of the theorem. �
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3.2. Multipoles of real harmonics. Set

Dvf(x) =
d

dt
f(x+ tv)|t=0 = `v

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
f

for v ∈ R3. Maxwell suggested to obtain spherical harmonics in Hn applying
Dv1 , . . . , Dv̄n to the function 1

r . Then we get µnp, where p = `v1 · · · `vn .
Let us call a polynomial decomposable if it is the product of linear func-

tions.

Theorem 3.2. For any h ∈ Hn there is the unique real decomposable poly-
nomial p ∈ Pn such that µnp = h.

It is assumed in the theorem that the factors are real linear functions. We
wait with the proof until it became evident (see subsection 3.5). Notice that
the product decompositions of p may differ by the ordering of the factors
and by their scalings. The common points of S2 and the lines Rv1, . . . ,Rvn
are called Maxwell’s poles or multipoles.

3.3. Real decomposable harmonic polynomials. The followings de-
scription of real harmonic polynomials which admit factorization to real
linear functions was obtained by Agranovsky and Quinto in [1] in connec-
tion with the problem of a characterization of stationary points for solutions
to the wave equation.

Theorem 3.3. A real decomposable polynomial is harmonic if and only if
its zero hyperplanes form a Coxeter system.

The latter means that the reflections in the zero hyperplanes generate a
finite linear group. The proof is based on two observations: first, a harmonic
function is odd with respect to the reflection in any hyperplane that is con-
tained in its nodal set and second, the euclidean Laplace operator commutes
with the reflections and decreases the degree of the polynomial.

3.4. Complex multipoles. We assume the polynomials complex in the
sequel. Since µn = πn, we have Rh = Rp for h = πnp. Suppose p decom-
posable and set q = Rp. Clearly,

p = `1 · · · `n =⇒ q = (`1 ◦ κ) · · · (`n ◦ κ).

Every factor `j ◦ κ is quadratic. Recall that any homogeneous polynomial
of two complex variables is decomposable. Hence `j ◦ κ is the product of
a couple of linear divisors of the decomposable polynomial q ∈ PC

2n. Any
partition by pairs (coupling for short) of its linear factors defines the product
decomposition of q by quadratic ones. The mapping κ relates to a quadratic
polynomial on C2 a linear function on C3. The correspondence is one-to-
one. Thus a coupling defines a decomposable polynomial p ∈ PC

n . Any
such p corresponds to 2n points of CP 1 (complex multipoles; every complex
hyperplane in C3 either intersects the cone Q0 in two lines or touchs it)
which in turn define it up to a constant factor.
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The varieties of the decomposable complex polynomials were investigated
in the paper [8] by G. Katz.

3.5. Decomposable and harmonic polynomials on C3. If the linear
factors of q ∈ P2n are pairwise non-proportional, then there are (2n − 1)!!
couplings and each of them defines a decomposable polynomial p ∈ PC

n such
that Rp = q.

If Rp = Rh, then r2 divides p− h. If additionally h ∈ HC
n, then πnp = h

(see subsection 2.3). Moreover, h is the unique harmonic polynomial in PC
n

such that Rh = q. Let

Dn denote the variety of decomposable polynomials in PC
n ,

Lq be the set of all linear factors of q,
Πq be the family of all partitions of Lq by pairs, and, for $ ∈ Πq,
q$ be the product of linear functions on C3 corresponding to pairs
in $.

Let h be harmonic and let q = Rh. The above arguments show that

(h+ r2Pn−2) ∩ Dn = {p ∈ Dn : πnp = h} = {q$ : $ ∈ Πq}.(3.1)

This in particular implies that the set on the left is finite and, moreover,
consists of (2n− 1)!! points counted with multiplicities. To prove this, it is
sufficient to note that this is true for the right-hand part. Also, this makes
Theorem 3.2 evident since the complex conjugate to a linear factor of a real
polynomial divides it. This uniquely defines for real h the coupling and the
decomposable real polynomial p such that πnp = h.

3.6. Example. If n = 2, then Dn coincides with the family of degenerate
quadratic forms on C3. Indeed, if a nonzero quadratic form q is degenerate,
then it can be reduced either to x2 or to x2+y2 which are both decomposable.
Conversely, the product of two linear functions is a degenerate quadratic
form. Therefore,

D2 ∩ (p+ Cr2) = {p− λr2 : λ ∈ C and rank(p− λr2) < 3}.
The set of the above λ is the spectrum of the quadratic form p. For any
nonzero p ∈ PC

2 we have three complex numbers λ1, λ2, λ3 and six linear
functions `1, . . . , `6 on C3 such that

p− `2j−1`2j = λjr
2, j = 1, 2, 3.

The products `2j−1`2j are independent of the choice of a non-degenerate
polynomial in the line p+ Cr2 and

Rp = R(`2j−1`2j), j = 1, 2, 3.

We may assume without loss of generality that p = λ1x
2 + λ2y

2 + λ3z
2.

Then p is harmonic if and only if λ1 + λ2 + λ3 = 0. An easy computation
shows that p = 1

3(`1`2 + `3`4 + `5`6) in this case. Therefore,

π2p =
1

3
(`1`2 + `3`4 + `5`6)
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for all p ∈ P2. In other words, the harmonic polynomial in p + r2Pn−2 is
the center of gravity of the set (p+ r2Pn−2)∩Dn for n = 2. This is true for
n > 2 as well.

3.7. Another construction for πn. Thus, we get a method to find πnp for
any p ∈ Pn. It probably will never be used on this purpose but the relation
itself may be useful. Set Λ(p) = Dn ∩

(
p+ r2PC

n−2

)
.

Theorem 3.4. Let p ∈ PC
n . Then

πnp =
1

(2n− 1)!!

∑
p̃∈Λ(p)

p̃.(3.2)

In other words, h = πnp is the center of gravity of the finite set Λ(p), where
points of Λ(p) are counted with the multiplicities defined by (3.1).

If n = 1, then D1 = P1 and the theorem is true if we set P−1 = 0. For
n = 2 it is proved above. We give a sketch of the proof in the general case.
Let us denote the mapping in the right-hand side of (3.2) by A and set
h = πnp. Since Λ(p) = Λ(h), it is sufficient to prove that Ah = h.

Clearly, A commutes with SO(3). Suppose A linear. Since the compo-
nents of the decomposition (1.1) are pairwise non-equivalent, this implies
AHn ⊆ Hn. Thus h and Ah are harmonic. For any p ∈ Λ(h) we have
Rp = Rh. Hence RAh = Rh and Ah = h according to subsection 2.5.

The mappings q → q$ is not linear. Hence it is not quite trivial that
A is linear. The proof of this fact needs some calculation but the idea is
clear. The coefficients of Ah are symmetric polynomials of linear factors of
q = h◦κ (i.e., all permutations of the set Lq preserve them). Moreover, they
have the same degree as the coefficients of q and are linear on the coefficients
of any linear factor. It follows that they depend on q linearly. The same is
true for h due to the construction of subsection 2.5.
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