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Summary

According to predictive coding theory, the human brain is constantly gener-
ating and updating a mental model of the environment. It uses this model
to generate actions and predictions of sensory input that are compared to
the actual sensory input. Arguably, using a predictive coding approach to
design robot controllers can help them make sense of the various sensory sig-
nals available, while dealing with their inherent limitations in performance,
delay etc. This is the approach we are using in PH-CODING, in which the
development of a framework for haptic sensing and exploration is rooted in
behavioural studies with humans. We focus on the mechanical interaction
aspects often neglected in previous haptic research.

Deliverable D4.2 is part of workpackage 4 in which predictive coding models
are developed and implemented into the haptic explorative platform that was
demonstrated in D4.1. The proposed predictive coding framework for haptic
exploration in this deliverable and the sensorised soft tactile s-skin from
WP3 will be integrated and implemented into the robotic haptic exploration
interface with distributed tactile sensing. It will support the development
of active haptic interfaces and remote human haptic interaction interfaces
in WP5. There is a 6-months delay relative to the proposal plan, due to
the slow administrative process to hire suitable manpower initially and the
limited lab access granted during the covid period.

Adaptive haptic sensing

This deliverable reports two advances in haptics research. First, Chapter
2 presents basic aspects of haptic sensing and the adaptation of the body’s
properties to improve environment perception. While it is known that the
nervous system can modify the body’s stiffness by selective cocontraction
in order to shape the mechanical interaction with the environment, little
is known of how this influences haptic perception. For instance, when we
attempt helping our child learn to ride a bicycle, how do we control our
muscles to better sense their movement so that we can best guide them?
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In Section 2.1, by carrying out a behavioural study with human subjects
interacting with a robotic interface and a visual environment, we show that
the central nervous system can voluntarily adapt muscle cocontraction to
increase haptic sensitivity. Participants tracked a randomly moving noisy
visual target while being physically guided by a virtual elastic band whose
strength was controlled by the participant’s cocontraction. They learned to
increase cocontraction under visual noise and decreased it when the guidance
was incongruent.

Section 2.2 then studies if and how two subjects connected by a virtual elastic
band modulate their muscle cocontraction when they track the same visual
target. By varying the visual noise around the target, we can analyse how the
subjects changes their muscle activation in function of their own skill and the
partner’s skill. The results first show how the noise in both partners affect the
tracking performance. Second, they reveal that the subjects decrease muscle
cocontraction with their own visual noise, and tend to increase cocontraction
with increasing visual noise in the partner’s target.

Section 2.3 develops a computational model to understand how humans adapt
the motor commands in presence of visual and haptic noise. We demonstrate
that a model where humans modulate muscle cocontraction to minimise the
prediction error and energy, can predict all the experimental observations
and explain the results better than alternative models based on error min-
imisation. This optimal information and energy (OIE) model is expressed
as an algorithm that can be implemented on a robotic system, promising
robots that can extract maximal information from the interaction with their
environment and robotic interfaces that adapt to best support the human
operator.

Framework for robotic haptic exploration

Second, Chapter 3 develops a predictive coding framework for robotic haptic
exploration, which is composed of a sensory system, a motion planner, an
adaptive controller and a dynamic memory of the objects’ model. Simula-
tions and initial tests with our robotic testbed were carried out to validate
the developed algorithm. These techniques will now be integrated and sys-
tematically tested in future experiments.

We developed a sensory system in Section 3.2 that can recognise objects with
tactile sensory information acquired during tapping experiments. The anal-
ysis of the interaction force and vibration data indicates that the peak force
and vibration magnitude can be used to distinguish hard and soft objects. A
Naive Bayes classifier is used and trained with data from tapping at different
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speeds. The initial results show that prediction accuracy increases with the
tapping speed. Furthermore, considering additionally the peak values in six
frequency ranges between 0 to 500 Hz from the FFT of the vibration signal
yield a high objects’ recognition accuracy rate of over 94%.

A motion planner was developed in Section 3.3 to select the optimal explo-
ration action in order to identify the object that the robot is interacting with.
We have collected sensory data from the actions of tapping, sliding and press-
ing with different conditions of 10 objects to form a database. Simulations
showed that by selecting the action that maximises the mutual information
gain between an action and observations, the robot could select the most
suitable action and improve the recognition rate.

An adaptive controller was developed in Section 3.4 to accurately estimate
the object viscoelasticity through indentation of its surface. A Kalman filter
was used to filter the sensory and motor noise, while the viscoelastic param-
eters are computed by gradient descent minimisation of the interaction force
prediction error. Simulations yielded accurate identification performance,
which could help identify objects more precisely.

We present in Section 3.5 a memory to handle the storing of haptic informa-
tion on different objects, so that they can be recognised, new objects can be
added, and objects with similar features are automatically grouped. This is
done by considering the initial rough objects’ properties estimation from the
sensory system and actions selected by the motion planner. Furthermore,
the fine estimation of the object’s viscoelasticity enables us to test an object
selection, and add that new object to the memory if it cannot be attributed
to any existing one. This method has been tested in simulations with 10
objects that became automatically part of the memory.

This conceptual framework for predictive coding haptic exploration will be
further developed and used from the following perspectives: 1) Extend the
motion planner to work with multiple sensors in order to increase the predic-
tion rate; 2) Implement the adaptive controller and relate it more closely with
predictive coding, for example use gain scheduling control for the predicted
object; 3) complete the dynamic objects’ memory with e.g. adaptation to
sensory properties and data reduction; 4) Implement, integrate and system-
atically test this framework on the robotic testbed.
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Chapter 1

Predictive coding framework
for haptic interaction in
humans and robots

1.1 Predictive coding concept

Humans use haptic exploration to interact with their environment, where tac-
tile information is used to recognise object’s shapes and mechanical proper-
ties. However, it is still challenging for robots to carry out haptic exploration
smoothly and recognise objects efficiently, especially in an unstructured en-
vironment with soft materials and different textures, due to inherent sensor
and motor noise, and delay in sensory signal processing. Using a predictive
coding framework to carry out haptic exploration could enhance robot’s ca-
pability in making it robust and versatile, by learning to prepare an action
based on the expectation of sensory information. This means that the robot
will be able to use sensory information in real time in order to check whether
the expectations are correct and react quickly.

PH-CODING is developing a predictive coding framework combining a sen-
sory system for object recognition and a motor control system for adaptive
haptic exploration. This will enable to integrate multiple sensory modalities,
optimise sensing, and identify various objects’ properties. A robotic explo-
rative system equipped with multiple tactile sensors is being developed to
gather necessary tactile information from objects with different interactions
and establish a database.
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In general, predictive coding attempts to make sense of the interaction with
the environment by minimising prediction error. A forward model uses the
motor commands to generate related predictions of sensory inputs, which
are compared to actual sensory inputs, and used to update this model of
the sensorimotor system and environment. Importantly, both motor and
sensing can be adapted. Furthermore, while most existing haptics in robotics
concern geometry, but not mechanics critical to soft interactions, the effect
of mechanical interactions is at the core of PH-CODING.

In contrast to traditional “bottom-up” approaches to sensing from specific
features to building up perception, predictive coding promotes a “top-down”
approach relying on prediction error computation. Heterogeneous sensor sig-
nals are considered and integrated. In humans this includes vision, muscle
spindles, Golgi tendon organs, various skin sensors with different e.g. fre-
quency sensitivity, temperature sensors. For robots, this includes cameras,
joint encoders, joint and endpoint force sensors, accelerometers measuring
structural vibrations, electronic skin sensors with different sensitivity, tem-
perature sensors, magnetic sensors, etc.

1.2 Adaptive haptic sensing

Humans are endowed with various sensors to interpret the environment and
predict the interaction with the environment in a predictive coding inter-
pretation. Of the sensing modalities, haptics, the synthesis of touch and
proprioception [1], plays an important role during physicals interaction. In
walking down a dimly lit flight of curved steps we instinctively reach out
the handrail, that will guide our movement by providing haptic information
about the steps direction. The guidance provided by the handrail becomes
stronger when the arm is stiffened through muscle cocontraction [2], but how
the body’s stiffness influences the haptic percept is unclear.

Could the NS adapt the limbs’ viscoelasticity by cocontracting muscles in
order to improve haptic perception? Examples of such adaptive sensing in-
clude the pupil’s dilation to improve visual sensitivity, and the adaptation of
γ-motorneuron’s influence on muscle spindle sensitivity to optimise proprio-
ception [3]. In both of these most basic cases of predictive coding, sensing can
be studied independently from motor actions. In contrast, haptic sensing,
synthesizing information from sensors in the skin, muscles and tendons dur-
ing contact with the environment, cannot be separated from the mechanical
interaction. This makes it challenging to investigate the haptic percept and
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dissociate it from the mechanical effect of adapting the limb’s viscoelasticity.
Furthermore, it is not known how the NS adapts the limb’s viscoelasticity
to plan motion when information from other sensory modalities like vision is
available.

To investigate whether the NS can actively control the viscoelasticity of a
limb to improve the haptic percept, we first observed how subjects used wrist
flexion and extension to track a moving target to which they were physically
coupled by an elastic band. Second, we investigated if and how mechani-
cally connected individuals carrying out a common tasks modulate muscle
cocontraction. Third we developed a computational model of the result-
ing adaptation of mechanical impedance, which can be used to predict the
human muscle adaptation and to develop adaptive haptic sensing in robots.
This experiments and computational modeling of this basic predictive coding
mechanism are described in Chapter 2.

1.3 Haptic exploration in humans

In the predictive coding framework [4, 5], sensory systems and motor con-
trol processes are both required to deal with unknown environments during
haptic exploration. They are tightly related and interacted together to op-
timise haptic information as shown in figure 1. An agent interacts with the
environments through its body to gain information [6]. For instance, humans
use their fingers to squeeze objects, scan and tap on their surfaces to extract
their properties such as geometry and stiffness, by analyzing information
from many sensory receptors located beneath the skin [7]. The so obtained
haptic information is used to compare with predictions of haptic inputs from
a forward model in the brain. Prediction errors are computed and used to
update the forward model. Meanwhile, motor control signals, which are also
influenced by the prediction errors, are used to execute actions or adjust
body properties to compensate misleading haptic information, resulting in
behaviour adaptations [8]. These adaptions will continue until the prediction
errors are minimised.

According to the predictive coding framework, the adaption of behaviours is
essential to minimise the prediction errors, i.e. carry out expected actions.
For example, when humans need to identify the stiffness of an unknown’s
object during palpation with blindfold, they would not palpate on the ob-
ject’s surface with fixed postures. They constantly change the pose, scanning
speed and direction to gather necessary haptic information to estimate the
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Figure 1: Diagram of haptic exploration in predictive coding framework. Humans
interact with an environment through their embodiment. Actual haptic inputs
comprising tactile information from interaction with the environment and propri-
oceptive information are passed to the brain to compare with predictive sensory
information generated by the forward models. Consequently, prediction errors are
formed. The prediction errors can be minimised by iteratively updating forward
model with the past prediction errors, and changing actions to reduce the differ-
ence between predicted sensory inputs and the measure ones. When the prediction
errors are minimised, the most likely causes of sensory inputs are generated.

object’s property, e.g. stiffness. Besides, the adaption of behaviour, espe-
cially in stiffness, also helps humans to maintain stability when interacting
with unstable environments, by preparing and shaping the interaction with
environments, as in turn information gain could be improved [9]. For these
benefits, the ability of humans to control viscoelasticity has caught a lot of
attention from the robotics research community to apply this approach in
robots [10]. However, the role of adaptive behaviours in the robotics commu-
nity seems to mainly focus on the control aspects, not on the haptic sensing
and exploration aspects, in particular for tactile perception.
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1.4 Haptic exploration in robots

Features such as shape, material properties and position of objects are crit-
ical for robots to properly interact with the surrounding. Vision has been
a popular approach to guess object’s material properties [11, 12, 13]. How-
ever, methods based on vision can only identify objects using previously
known environment features, and cannot estimate the environment’s me-
chanical properties. Besides, the computational cost of image processing is
relatively high. Therefore, haptic exploration has gained attentions from re-
searchers in the past few decades for robots to gather essential environment
features. In addition, because of tremendous progresses in the development
of sensors, haptics may help improve the capabilities of robot to identify the
environments at a level comparable to humans [14].

Methods that are normally applied for haptic exploration in robots can be dis-
tinguished into passive and active exploration. In passive exploration, robots
equipped with multiple sensory modalities interact with objects intentionally
to obtain haptic information. Many studies have shown that obtained infor-
mation such as interaction forces and vibrations can help estimate object’s
properties such as textures, roughness and compliance [15, 16, 17]. Janine et
al. investigated statistical methods, robot motions and classification meth-
ods to determine the best approach to recognise objects, that could achieve
maximally 97.6 % of accurate resolution [18]. However, the robot’s actions in
passive exploration are not influenced by the haptic information gained dur-
ing movement. Previous studies have shown that passive exploration gives
poor results in object’s classifications compared to active exploration when
a robot contacts an object that leads to an unstable interaction [19, 20].

In active exploration, haptic information is used to influence robot’s action
commands in order to enhance haptic sensing. A series of developments of
active exploration algorithms have shown that using haptic information as a
feedback modality for robots to re-position themselves could improve robust-
ness and accuracy rates in classifications compared to passive exploration,
even if the robot moves randomly [19, 20, 21, 22]. However, many previous
works in active exploration have been carried out by exploring only rigid
objects with constant surface’s texture where the forces were used to locate
the contacts in shape estimations [23, 24, 25]. To perform haptic exploration
like humans do, especially in environments with various characteristics e.g.
soft objects, the consideration of object’s features apart from shapes such
as mechanical properties as well as spontaneous adaptive capabilities are re-
quired to maintain stability during the exploration. The lack of both abilities
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will lead to exploration failures in objects with varying geometry and tex-
tures because of unstable interaction caused by an improper controllers and
insufficient information.

Impedance control has been extensively developed for contact interaction in
robotics [10], and is widely used in many applications such as adaptive pros-
thetic limbs [26] and adaptive exoskeletons [27, 28]. However, there have
been few studies on haptic exploration. Recently, Li et al.[29] have devel-
oped a controller that can adapt feedforward force, impedance and reference
trajectory based on robot’s position information. Demonstration examples
showed that the robot can maintain stability during haptic exploration in
various kinds of environment, including rigid and soft surfaces. Sornkran et
al. investigated the role of impedance control in robotic embodied perception
[30] and used the obtained knowledge to develop a nodule’s depth estimation
robot [31]. Their results suggested that nodule’s depth estimation accuracy
can be enhanced by tuning robot’s impedance. Therefore, it appears that
impedance control can be used as a basic control strategy for haptic explo-
ration in robots. However, the above previous works did not integrate local
haptic information from objects which is also critical for haptic exploration.

A further investigation and development of tactile modality integration is
required to improve its capabilities and harness it to widen the range of
unknown environments with various characteristics that can be interacted
with. To our knowledge, a method that combines multiple tactile sensory
information and adaptive impedance control in predictive coding framework
enhancing haptic sensing and enabling robots to explore wide ranges of envi-
ronment is lacking. The framework to develop such haptic exploration with
robot is described in Chapter 3.
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Chapter 2

Adaptation of haptic sensing

2.1 Humans can adapt haptic sensing to vi-

sual and haptic perturbations

While the nervous system can modify the body’s stiffness by selective co-
contraction to shape the mechanical interaction with the environment [32],
little is known of how this influences haptic perception. There is evidence
suggesting that the central nervous system (CNS) can alter the sensitivity of
its sensors, but the possibility to regulate haptic sensitivity have yet to be
addressed. Haptics is challenging to investigate as the percept (the interac-
tion force) is entwined with the mechanical guidance. Here, we disentangle
the mechanical guidance from the haptic percept to study the brain’s capac-
ity to regulate its haptic sensitivity, and uncover the mechanism behind its
regulation.

To this end, we developed a new paradigm wherein participants used the
cocontraction of a flexor-extensor pair of wrist muscle to control the strength
of the elastic guidance while following a randomly moving target trajectory
(Fig.1A). A control experiment was devised to isolate the mechanical effect
of the elastic guidance, enabling us to study how the haptic percept changed
with the wrist’s stiffness. Using this paradigm, we could systematically in-
vestigate whether and how the CNS adapts the body’s stiffness in response
to visual and haptic noise.
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Methods

Experimental apparatus The experiments described below were approved
by the Joint Research Compliance Office at Imperial College London. 59
participants without known sensorimotor impairments, aged 21–36 years,
including 22 females, were recruited to take part in one of the three main ex-
periments and the two control experiments. Each participant gave written in-
formed consent prior to participation. 56/59 participants were right-handed
and 3/59 left-handed, as was assessed using the Edinburgh Handedness In-
ventory [33].

Each participant was seated comfortably on a height-adjustable chair next to
the Hi5 robotic interface [34], and held a handle with their dominant wrist. A
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Figure 1: Schematic of the experimental task and protocol. (A) Subjects tracked
a randomly moving target with their wrist flexion-extension movement while being
guided by a virtual elastic band. The strength of the guidance increased with the
cocontraction of a flexor-extensor muscle pair estimated from their myoelectrical
activity. (B) Protocol of the experiment to study the effect of visual noise on the
cocontraction. (C) Protocol to examine the effect of bias in the guidance trajectory
with respect to the target on the cocontraction.
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screen placed in front of the participant provided visual feedback of the task
with a cursor indicating the current wrist position (Fig.1A). The Hi5 handle
is connected to a current-controlled DC motor (MSS8, Mavilor) that can
exert torques of up to 15 Nm, and was equipped with a differential encoder
(RI 58-O, Hengstler) to measure the wrist angle and a force sensor (TRT-
100, Transducer Technologies) to measure the exerted torque in the range
[0,11.29] Nm. The Hi5 system is controlled at 1kHz using Labview Real-Time
v14.0 (National Instruments) and a data acquisition board (DAQ-PCI-6221,
National Instruments), while data was recorded at 100 Hz.

The activation of two antagonist wrist muscles, the flexor carpi radialis
(FCR) and extensor carpi radialis longus (ECRL), were recorded with surface
electrodes using a medically certified non-invasive electromyography system
(g.LADYBird + g.GAMMABox + g.BSamp, g.Tec). The raw muscle activ-
ity was high-pass filtered at 20 Hz, rectified, then low-pass filtered at 5 Hz.
The filtering process yielding the filtered muscle activity was in both cases a
second-order Butterworth filter.

Cocontraction computation Every experiment started with an EMG
normalization to map the raw muscle activity (in mV) to a corresponding
torque value (in Nm). The subject placed their wrist in the most comfortable
middle posture, which was set to 0◦. Constrained at that posture, they were
then instructed to sequentially (i) flex, or extend the wrist to exert a torque,
or (ii) maximally co-contract in order to keep the wrist position stable during
a 3 Hz sinusoidal positional disturbance of 10◦ amplitude. Each phase was 4 s
long with a 5 s rest period between consecutive contraction phases to avoid
fatigue, which was used as a reference activity in the relaxed condition. This
was repeated four times at flexion/extension torque levels {1,2,3,4}Nm and
{-1,-2,-3,-4}Nm, respectively. For each subject, the recorded muscle activity
was linearly regressed against the torque values to estimate the relationship
between them. The torque of the flexor muscle was modelled from the filtered
EMG signal uf as

τf (t) = α0 uf (t) + α1 , α0, α1 > 0 , (2.1)

and similarly for the torque of the extensor muscle τe. Muscle cocontraction
was then computed as

u(t) ≡ min{τf (t), τe(t)} . (2.2)

The average cocontraction over all participants (as shown in Figs.2B,D) was
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computed from each participant’s normalised cocontraction, calculated as

un ≡
u− umin

umax − umin
, u ≡ 1

T

∫ T

0

u(t) dt , T = 20 s (2.3)

with umin and umax the minimum and maximum of the means of all trials of
the specific participant.

Tracking with visual and haptic feedback In the three main exper-
iments of sections D-F, subjects were required to track a visual target (in
degrees) moving with

q∗(t) ≡ 18.5 sin

(
πt

1.547

)
sin

(
πt

2.875

)
, 0 ≤ t ≤ 20 s (2.4)

using flexion-extension movements (Fig.1A). After each 20 s long trial, the
target disappeared and the participant was required to place the hand on
the starting position at the center of the screen. The next trial then started
after a 5 s rest period and a 3 s countdown. Each subject was instructed to
take small breaks when feeling (mental or physical) fatigue during the course
of the experiment. The tracking error

e ≡
(

1

T

∫ T

0

[q∗(t)− q(t)]2 dt
) 1

2

, T ≡ 20 s (2.5)

was displayed at the end of each trial, where q(t) is the angle of the wrist.

The tracking task consisted of a free phase (in which no interaction torque was
exerted on the wrist) to get the subject accustomed with the Hi5 interface,
followed by an interaction phase in which the subject’s wrist position was
connected to a haptic reference trajectory qh(t) with an elastic force

τ(t) = κ(t) [qh(t)− q(t)] , κ(t) ≡ u(t)

8
(2.6)

where the connection stiffness κ < 0.25 Nm / ◦ linearly increased with the
cocontraction u(t).

Subjects were informed of the possibility to regulate the coupling stiffness by
co-contracting or relaxing wrist’s muscles, and of the transition of free trials
to interaction a phase of interaction trials. They were instructed not to resist
large torques provided by the motor.
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Visual noise experiment In this experiment qh ≡ q∗ thus there was no
haptic noise. 15 right-handed subjects (7 females, aged 23.46±2.39 years old)
carried out a visual noise experiment. The target trajectory was displayed on
the screen either as a 8 mm diameter circle or as a “cloud” of eight normally
distributed dots around the target (Fig.1A), depending on the experimental
condition. The cloud of dots were defined by three parameters, randomly
picked from independent Gaussian distributions: the vertical distance to the
target position η ∈ N(0, 15 mm), the angular distance to the target position
ηq ∈ N(0, 0<σv<8.00◦), and the angular velocity ηq̇ ∈ N(0, 4◦/s). The ampli-
tude of visual noise was controlled by the angular distance deviation, while
both the vertical and the angular velocity deviations were kept constant. The
dots were updated sequentially so that each dot was replaced every 100 ms.
The experimental protocol consisted of 10 free trials followed by 32 interac-
tion trials split into 8 blocks. The 4 trials of each block used a different value
of σv ∈ {1.01◦, 3.34◦, 5.67◦, 8.00◦} presented in a random order in each block
(Fig.1B). We assume that the ordering of the blocks has no effect.

Haptic guidance experiment In this experiment the target was a 8 cm
diameter disk, and the elastic guidance trajectory was biased by δ relative
to the target trajectory:

qh(t) = q∗(t) + δ . (2.7)

Another 13 participants (4 females, 12 right-handed, aged 23.53±3.03 years
old), carried out a haptic noise experiment. The experiment consisted of 52
trials with 10 free trials followed by 42 interaction trials subdivided into 6
blocks. The 7 trials of each block had a different δ ∈ {0◦, 2◦,−5◦, 8◦,−11◦, 14◦,−17◦},
where these bias conditions were presented in a random order in each block
(Fig.1C).

Visual and haptic bias experiment A third experiment with both visual
and haptic noise was carried out with 15 subjects (aged 25.06±2.12 years old,
with 5 females, 14 right-handed). The protocol consisted of 40 trials with 8
free trials, followed by a 32 interaction trials in 8 blocks of 4 trials. In these
4 trials, the participant experienced different combinations of the guidance
bias and visual noise (δ, σv) ∈ {(1.5◦, 0◦), (1.5◦, 6.7◦), (8.5◦, 0◦), (8.5◦, 6.7◦)},
presented in a random order in each block.
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Experimental results

We first examined the results from the visual noise tracking experiment
wherein increasing amounts of visual noise were imposed on the target to
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Figure 2: Tracking error and muscle cocontraction adapted with training. The
figures shows the mean values with standard error bar over all trials of each subject
in the corresponding block. (A) The population mean tracking error and the
associated variability decreased with trials for every level of visual noise. (B) The
normalised cocontraction was initially large in the first block of trials for all visual
noise conditions and decreased with practise. The level to which the cocontraction
converged was dependent on the visual noise imposed on the target. (C) In the
haptic bias experiment the tracking error magnitude over one trial decreased with
training, with higher error when the haptic bias was greater. (D) The initial
cocontraction was comparable for all haptic bias levels, but participants gradually
learned to increase the elastic stiffness with smaller haptic bias and decrease it
with large haptic bias.
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which the participants were elastically guided (Fig. 1B). The strength of the
elastic guidance was controlled by the participants themselves through the
cocontraction of their wrist. Figs. 2A and 2B show the square root of square
error over a trial or tracking error and the mean cocontraction as a function
of the block number, separately for each level of visual noise.

The tracking error magnitude was large but gradually decreased over blocks
(Fig. 2A). The effect of training was measured by comparing the error in the
first and last blocks. A two-way repeated measures ANOVA showed that
both the visual noise (p<0.001, F(3,40)=8.67) and the training (p=0.002,
F(1,12)=14.34) had a significant influence on the error. Post-hoc comparisons
using Tukey’s HSD confirmed a decrease of tracking error with training for
the two higher levels of visual noise (p=0.027 and p<0.001 respectively).

We then looked at how the mean cocontraction measured over a whole trial
depended on the visual noise and the block number. The cocontraction
was normalized for comparisons between participants. A two-way repeated
measures ANOVA revealed a significant effect of both the visual noise level
(p<0.001, F(3,40)=8.3) and training (p=0.01, F(1,12)=8.9) on the normal-
ized cocontraction. Post-hoc comparisons confirmed that the normalized
cocontraction in the first block was comparable across all visual noise lev-
els, but different between the lowest and highest visual noise levels in the
last block (p=0.02). The normalized cocontraction tended to decrease over
blocks by a larger amount when the visual noise was lower. This yielded a
normalized cocontraction in the final three blocks that increased monoton-
ically with the level of visual noise (slope=0.019>0, p<0.001, t-test on the
last three blocks). This suggests that the CNS adapts the body’s stiffness to
modify the haptic guidance in response to visual noise on the target.

Next, we examined the results from a second tracking experiment where
the target was displayed without visual noise but the guidance trajectory
was shifted from the target by increasing amounts (Fig. 1A,C). The track-
ing error tended to increase with the size of the guidance bias as shown
in Fig. 2C. A two-way repeated measures ANOVA revealed a significant
influence of the guidance bias (p<0.001, F(6,71)=28.44) and the training
(p<0.001, F(1,12)=18.96) on the tracking error. Post-hoc comparisons re-
vealed a significant decline in the error between the first and the last blocks
across all bias levels. The error was also higher with greater bias (p<0.001
comparing highest and lowest bias).

The improvement in the tracking error with guidance bias was also accom-
panied by an adaptation of the wrist’s cocontraction (Fig. 2D). We first
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Figure 3: How cocontraction changes with visual noise and haptic bias, for each
of 15 subjects. In most subjects, cocontraction increased with visual noise while
the larger haptic bias led to decreasing it.

analyzed how the participants react to the different levels of bias by measur-
ing the mean normalized cocontraction in the first 200 ms (see Supplemen-
tary Figure 4). Participants initially reacted to the guidance by cocontract-
ing greatly regardless of the bias (p=0.78, F(6,71)=0.44, repeated measures
ANOVA on the different bias level conditions with Greenhouse-Geisser cor-
rection). However, the normalized cocontraction tended to decrease there-
after on trials with a large bias, and increased on select trials wherein the
bias was small, as if the CNS was modulating the cocontraction in response
to the congruency between the target and the guidance (Fig. 2D). A one-
way repeated measures ANOVA confirmed that larger bias was associated
with smaller cocontraction in the last block (p<0.001, F(1,12)=153.09). It
appears that the CNS also modulated the body’s stiffness in response to the
quality of the haptic guidance.

The participants in both the visual noise and the guidance experiments im-
proved their tracking performance with training, and modified the body’s
stiffness depending on the level of the visual noise and the amount of bias
on the guidance trajectory. Increasing visual noise induced participants to
increase their concontraction, in line with previous studies on learning in
unpredictable dynamic environments [32, 35]. However, large haptic noise
caused a reduction in the cocontraction, in contrast to the effect observed in
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unpredictable dynamic environments [32, 35]. The subjects were also able to
modulate cocontraction in presence of both visual and haptic noise as can be
seen in Fig.3. The CNS had seemingly learned to modify the body’s stiffness
in accordance with its effect on the tracking performance.

Discussion

Human motor control has revealed how the CNS controls the body’s stiffness
to shape the mechanical interaction with the environment [36, 37, 32], and
morphological computation has analysed how the biomechanical design in
animals facilitates their functions [38, 39]. Different from these motor and
morphological adaptations, our results provide the first evidence that the
CNS can actively control the body’s stiffness to regulate its haptic sensitiv-
ity. The association of sensory modalities and their stochastically optimal
integration has been reported in numerous studies [40, 41], whereby the relia-
bility of each sensory input was manipulated externally by the experimenter.
In contrast, the haptic sensitivity in our experiment was actively controlled
by the participants themselves through the strength of the guidance.

While previous studies have provided qualitative evidence of adaptive sens-
ing in humans [3, 42, 43], we could quantify the performance improvement
resulting from the reduction in haptic noise as a consequence of greater body
stiffness or cocontraction. Importantly, to obtain these results, it was nec-
essary to subtract the mechanical guidance from the haptic percept. The
haptic tracking control experiment enabled us to isolate the mechanical ef-
fect of the haptic guidance on the tracking performance, and then deduct it
to determine how the haptic percept was influenced by the limb’s cocontrac-
tion. The increase of visuo-haptic accuracy observed in our experiment may
also explain why increasing the body’s stiffness can speed up the acquisition
of internal models of novel dynamics [44].

18



A

0 2 4 6 8 10 12 14 16 18 20
time [s]

0

0.1

0.2

St
iff

ne
ss

 [N
m

/°]

0 2 4 6 8 10 12 14 16 18 20
time [s]

0

0.1

0.2

St
iff

ne
ss

 [N
m

/°]

B B

no
rm

al
is

ed
 c

oc
on

tra
ct

io
n

0

0.1

0.2

time 12 20164 80 time [s]
0

0.1

0.2

time [s]
Figure 4: Supplementary Figure: Evolution of normalised cocontraction in the
biased guidance experiment. Cocontraction waveforms with different trajectory
bias in the first (A) and last (B) blocks. The data exhibits quicker settlement to
discite at stable levels of cocontraction for different trajectory biases in last block
(2 s vs. 4 s).

2.2 Interacting humans regulate muscle co-

contraction to improve visuo-haptic per-

ception

During tango dancing, the arms can be relaxed or kept stiff, but it is un-
clear how these changes influence the perception of the partner’s movements
through haptics. While the CNS is known to increase the limb’s stiffness
through muscle cocontraction to reject force perturbations from unstable
environments [2, 32], how this regulation influences haptic sensing is not
known. Recent studies have shown that physically connected individuals
exchange haptic information to improve their performance [45]. While this
haptic communication is influenced by the stiffness of the haptic connection
[46], we do not know if humans actively regulate their limb stiffness to better
sense the partner’s actions.

To address this question, we observed how rigidly connected pairs of subjects
or dyads tracked a common, randomly moving target using wrist flexion and
extension (Fig.5A). While each partner’s visual feedback was manipulated
to be either sharp or fuzzy, we monitored how each individual adapted the
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cocontraction of their wrist. We hypothesized that the cocontraction should
be large with a worse partner who disturbs your movement. Accordingly, the
cocontraction should be large when one’s own visual feedback is sharp and
the partner’s is fuzzy (sharp-fuzzy condition, shortened to SF), and it should
be low when the partner’s vision is sharp (sharp-sharp or SS and fuzzy-sharp
or FS). We also expected cocontraction to be low in the fuzzy-fuzzy condition
(FF) as your own performance is likely to be as bad as the partner’s. If a
partner’s inferior performance induces greater cocontraction, we expected the
cocontraction to follow the approximate relationship SF > SS ≈ FS ≈ FF.

Methods

Participants The experiment was approved by the Joint Research Com-
pliance Office at Imperial College London. 44 participants without known
sensorimotor impairments, aged 18–37 years, including 16 females, were re-
cruited. Each participant gave written informed consent prior to partici-
pation. 37/44 participants were right-handed and 5/44 left-handed, as was
assessed using the Edinburgh Handedness Inventory [33]. The participants
carried out the experiment in pairs or dyads, with 14 male-male dyads and
8 female-female dyads.

Experimental setup The two participants of a dyad were seated comfort-
ably on height-adjustable chairs, next to the Hi5 dual robotic interface [34],
and each partner held one of the handles with their right wrist. A personal
screen placed in front of each participant provided them visual feedback of
the task with a cursor indicating their own wrist position (Fig.5A). No visual
feedback of the partner’s position was available as the two participants were
separated by a curtain, and they were instructed not to speak to each other
during the experiment.

Each Hi5 handle is connected to a current-controlled DC motor (MSS8, Mav-
ilor) that can exert torques of up to 15 Nm, and is equipped with a differential
encoder (RI 58-O, Hengstler) to measure the wrist angle and a (TRT-100,
Transducer Technologies) sensor to measure the exerted torque in the range
[0,11.29] Nm. The two handles are controlled at 1 kHz using Labview Real-
Time v14.0 (National Instruments) and a data acquisition board (DAQ-PCI-
6221, National Instruments), while the data was recorded at 100 Hz.

By each participant, the activation of two antagonist wrist muscles, the flexor
carpi radialis (FCR) and extensor carpi radialis longus (ECRL) were recorded
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during the movement. Electromyographic (EMG) signals were measured with
surface electrodes using the medically certified g.Tec’s g.LADYBird&g.GAMMABox&g.BSamp
system. The EMG data was recorded at 100 Hz.
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Figure 5: Schematic of the experimental task and modeling. (A) The two part-
ners tracked the same randomly moving target with their wrist flexion-extension
movement while being connected with a rigid virtual elastic band. The wrist flex-
ion/extension movement was recorded, as well as the myoelectrical activity of a
flexor-extensor muscle pair. (B) Protocol of the experiment to study the effect of
visual noise on either partner on performance and cocontraction. (C) Mechanical
modeling of the interaction with the partner and with own movement plan. Own
and the partner movement plans are affected by their respective visual noise. The
interaction with the partner’s hand is influenced by the viscoelastic connection to
their motion plan modulated by their cocontraction.
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Tracking task The two partners were required to track the same visual
target (in degrees) moving with

q∗(t) ≡ 18.5 sin

(
π (t+ to)

1.547

)
sin

(
π (t+ to)

2.875

)
, 0 ≤ t ≤ 20 s (2.8)

as accurately as possible using flexion-extension movements (Fig.5A). To
prevent the participants from learning the target movements, t∗ started in
each trial from a randomly selected zero {t0 ∈ [0, 20] s | q∗(t0) ≡ 0} of the
multi-sine function. The respective tracking error

e ≡
(

1

T

∫ T

0

[q∗(t)− q(t)]2 dt
) 1

2

, T ≡ 20 s (2.9)

was displayed at the end of each 20 s long trial.

After each trial, the target disappeared and the participants were required
to place their respective cursor on the starting position at the center of the
screen. The next trial then started after a 5 s rest period and a 3 s countdown.
The initialization of next trial started when both participants placed their
wrist on the starting position, so that each participant could take a break
at will in between trials, by keeping the cursor away from the center of the
screen.

Experimental conditions and protocol

Two kinds of trials were carried out. In solo trials, the two partners moved
the wrist independently to each other. In interactive trials, the partners’
wrists were connected by a rigid virtual elastic band producing a torque (in
Nm)

τ(t) = 17.2 [qp(t)− qo(t)] , (2.10)

where qo and qp (in radian) denote own and the partner’s wrist angles. As
the tracking errors of the two partners of a dyad were strongly correlated
(r(20)=0.95, p<0.0005), the average tracking error between them was used
in the data analysis.

The interaction trials were carried out under two different visual feedback
conditions. In the sharp condition the target was displayed as a 8 mm di-
ameter disk. In the fuzzy condition the target trajectory was displayed as
a “cloud” of eight normally distributed dots around the target. The cloud
of dots were defined by three parameters, randomly picked from indepen-
dent Gaussian distributions: the vertical distance to the target position η ∈
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N(0, 15 mm), the angular distance to the target position ηq ∈ N(0, 4.58◦),
and the angular velocity ηq̇ ∈ N(0, 4.01◦/s). Each of the eight dots was
sequentially replaced every 100 ms.

An EMG calibration (Sec. 2.2) was first carried out to map the raw EMG
signal (in mV) to a corresponding torque value (in Nm), so that the activity
of each participant’s flexor and extensor’s can be compared and combined
in the data analysis. After this calibration, the participants carried out
5 initial solo trials to learn the tracking task and the interface dynamics.
This was followed by 4 blocks of 10 interaction trials, each with one of the
different noise conditions {fuzzy(self)-sharp(partner), SF, SS, FF} presented
in a random order, followed by 5 control solo trials (Fig.5B). The participants
were informed when an experimental condition would be changed but not
which condition would be encountered in the next trials.

Muscle activation calibration and cocontraction calculation The
participants placed their wrist in the most comfortable middle posture which
was set to 0◦. Constrained at that posture, they were then instructed to
sequentially (i) flex, or extend the wrist to exert a torque, or (ii) maximally
co-contract in order to keep the wrist position stable during a 3 Hz sinusoidal
positional disturbance of 10◦ amplitude. Each phase consisted of 4 s long
followed by a 5 s rest period to avoid fatigue. The latter period was used as
a reference activity in the relaxed condition. This procedure was repeated
four times at flexion/extension torque levels of {1,2,3,4}Nm and {-1,-2,-3,-
4}Nm, respectively. For each participant, the recorded muscle activity was
then linearly regressed against the torque values to estimate the relationship
between them. The raw EMG signal was first high-pass filtered at 20 Hz using
a second-order Butterworth filter to remove drifts in the EMG signal. This
was then rectified and passed through a low-pass second-order Butterworth
filter with a 5 Hz cut-off frequency to obtain the envelope of the EMG activity.

The torque of the flexor muscle could then be modelled from the envelope of
the EMG activity uf as

τf (t) = α0 uf (t) + α1 , α0, α1 > 0 , (2.11)

and similarly for the torque of the extensor muscle τe. Muscle cocontraction
was then computed as

u(t) ≡ min{τf (t), τe(t)} . (2.12)

The average cocontraction over all participants (as shown in Fig.6B) was
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computed from each participant’s normalised cocontraction, calculated as

un ≡
u− umin

umax − umin
, u ≡ 1

T

∫ T

0

u(t) dt , T ≡ 20 s (2.13)

with umin and umax the minimum and maximum of the means of all trials of
the specific participant.

Results

To test our hypothesis, 11 dyads carried out a dyadic tracking task wherein
the visual performance feedback to each participant in the dyad were inde-
pendently manipulated to be sharp or fuzzy (see section 2.2), and we studied
how the tracking error and the muscle contraction level were affected by each
of the noise conditions {FS, FF, FS, SS}. The experiment was carried out
as a within-subject design with these four experimental conditions randomly
presented in a block of ten trials each. These interaction trials were preceded
by five solo trials without interaction with the partner to learn the task, and
followed with five solo trials as control.

In order to evaluate the short-term adaptation within each condition, the
measurements from the first half and the second half of trials were averaged
into two epochs for statistical analyses. The tracking error was analysed per
dyad (as the two partners of a dyad were rigidly connected) using a two-
way repeated-measures ANOVA with noise conditions {SS, FF, SF ≡ FS}
and epoch as the factors. Statistical significance was detected at 5% with
Bonferroni correction for all post-hoc comparisons. As muscle cocontraction
was modulated by each partner, it was analysed on a participant level wherein
the partner’s visual noise was perceived as “haptic noise”. Thus, a three-way
repeated-measures ANOVA with visual noise, haptic noise and Epoch as the
factors was used to analyse the cocontraction level.

The tracking error decreased in the initial solo trials (Fig. 6A), and this
learning had saturated by the last of the initial solo trials to the same de-
gree as the average of the last solo trials (paired-sample t-test, t(21)=0.354,
p=0.73). The analysis of error in the different noise conditions indicated the
magnitude of the tracking error depended on the noise level (F(1,21) = 91.95,
p<0.001, η2p = 0.81). The post-hoc comparisons showed that the tracking
error in the mixed noise condition (SF and FS) was greater than in the SS
condition (p<0.001) and smaller as in the FF condition (p<0.001). The
tracking error remained at a similar level between the first and the second
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epochs (p=0.64), and there was no interaction effect between the noise level
and epoch (p=0.17).

As is generally observed during learning [47, 48], the cocontraction level
decreased with the epoch (F(1,43)=53.58, p<0.0005, η2p = 0.56) (Fig.6B).
This is consistent with the observations during the adaptation to a force field
[49], where the movement error is reduced quickly while the cocontraction
adapts at a slower rate. Furthermore, the cocontraction level decreased with
the level of own visual noise (F(1,43)=85.91, p<0.0005, η2p = 0.67), while it
increased with haptic noise resulting from the interaction with the partner
(F(1,43) = 5.53, p<0.03, η2p = 0.11).

The visual noise had a large effect on cocontraction but not haptic noise.
Augmenting visual noise decreased the cocontraction by 0.194 when the hap-
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Figure 6: Evolution of performance and cocontraction in different noise conditions.
Error bars represent one standard error. A: Group mean tracking error charted
as a function of trials. The error saturated in the initial solo trials, and increased
with visual and haptic noise. B: The normalized cocontraction as a function of
trials. The cocontraction decreased across all noise conditions, while visual noise
tended to increase the cocontraction by a larger margin than the haptic noise.
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tic noise was low (i.e. FS-SS) and 0.293 when the haptic noise was high
(FF-SF), while the cocontraction increased by only 0.100 when haptic noise
increased with high visual noise (SS-SF) and 0.001 with low visual noise
(FS-FF). The post-hoc comparisons confirmed that all differences between
the combinations of the visual and haptic noises were significant with the
exception of FS vs. FF (p = 0.99). There was an interaction effect be-
tween visual noise and epoch (F(1,43) = 15.65, p<0.001, η2p = 0.27), and no
significant interaction was found between haptic noise and epoch (p=0.21).
Hence, the decline in the cocontraction occurred at similar rates in all noise
conditions.

These results demonstrate that the CNS spontaneously modulates muscle
cocontraction with the level of the visual noise on one’s own and the part-
ner’s target, in agreement with our first hypothesis. However, the observed
cocontraction patterns contradict the second hypothesis as it decreased with
own visual noise and increased with the haptic noise stemming from the vi-
sual noise at the partner. How to explain this discrepancy in reaction to the
noise in either vision or haptics will be examined in section 2.3.

Discussion

Physically interacting individuals tracking the same target can improve their
own performance by estimating the partner’s movement goal and using it to
complement one’s own sensory information [45]. The present study extends
this observation to demonstrate that individuals adapt their muscle contrac-
tion to maximize task information while concurrently minimizing energy.
The CNS inconspicuously adapts muscles activation to best combine visual
information with the haptic information from the partner’s movement. The
results from this study as well as from Section 2.1 revealed the surprising
ability to adapt the body’s viscoelasticity to extracting maximal informa-
tion during interaction with a partner or with a dynamic environment while
concurrently minimizing effort.

2.3 Computational modeling

This section develops an algorithm to understand the adaptation mecha-
nism of humans interacting with various environments (section 2.1) and with
other humans (section 2.2). The respective modeling and simulation results
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are described in sections 2.3 and 2.3 while the related algorithms and their
implementation are detailed in section 2.3. The computational mechanism of
adaptation to various environments and human partners yields a predictive
coding algorithm to adapt the body viscoelasticity and improve the visual
and haptic sensing.

Modeling the adaptive interaction mechanism with var-
ious environments

The improvements in the tracking performance observed during interaction
with visual and haptic environments described in section 2.1 could be purely
due to the mechanical effect of the guidance. To test this possibility, we
simulated a computational model according to which cocontraction is mod-
ulated to minimize the tracking error, which explains its adaptation when
interacting with various dynamic environments [48]. In this model, the co-
contraction increases with the tracking error e and decreases with each new
trial according to

unew ≡ α e+ (1− γ)u , α, γ > 0 . (2.14)

Simulation of the visual noise experiment with this tracking error minimiza-
tion (TEM) model predicted an increase in cocontraction with the visual
noise, corresponding to the trend observed in the experimental data, albeit
not capturing its variability (Fig.7A). We then simulated its predictions for
the guidance bias experiment. The model predicted an increase in the co-
contraction with the bias, opposite to what was observed in the experiment
(Fig.7B). While the TEM model could capture the change in the cocontrac-
tion as a function of visual noise, it cannot explain the results of the guidance
bias experiment.

Alternatively, the CNS may be actively modifying the body’s stiffness to
regulate its haptic sensitivity and use this information to improve motor
performance. Since the cocontraction adapted to both visual noise and the
guidance bias, it may be determined by the statistical information from vision
and haptics, characterized by their respective standard deviations σh and
σv. Specifically, cocontraction could be adapted to minimize the Bayesian
prediction error

E(u) ≡ σ2
h(u) σ2

v

σ2
h(u) + σ2

v

(2.15)

that depends on the cocontraction through σh(u). Simulations with this
Bayesian error minimization (BEM) model predict an increase in the cocon-
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Figure 7: Computational modeling of adaptation to visual and haptic perturba-
tions. (A) The cocontraction in the last block of the visual noise experiment is
compared with the prediction of the tracking error minimization (TEM), Bayesian
error minimization (BEM) and optimal information and effort (OIE) models. (B)
Cocontraction in the last block of the guidance bias experiment with the predic-
tions from these models. TEM showed the opposite trend to the data, the BEM
exhibited a correct trend but with diverging values, while the results predicted by
OIE resembled the data. (C) The OIE model predicts an increase in cocontraction
both as a function of the visual noise and the bias. A third experiment with con-
current changes in visual noise and guidance bias was carried out. The protocol
involved 8 blocks of 4 trials with bias and visual noise conditions corresponding
to the red dots presented in random order. The corresponding mean values and
standard error are shown in black. (D) Corresponding difference of cocontraction
with a larger visual noise standard deviation and smaller haptic guidance bias.

traction with greater visual noise (Fig.7A) as well as smaller cocontraction
with larger bias (Fig.7B), corresponding to the tendencies observed in the
experimental data. However, the cocontraction in the BEM model increases
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to values outside of the range observed in the experiments.

These results suggest that while the prediction error is considered by the
CNS, the BEM model misses a fundamental mechanism to regulate the over-
all cocontraction level. Considering the natural tendency to minimize cocon-
traction during learning [47, 48], we propose that the function consisting of
the prediction error and the metabolic cost

V (u) ≡ E(u) +
γ

2
u2 , γ > 0 (2.16)

is minimized. Simulations with this optimal information and effort (OIE)
model exhibit an increase in the cocontraction with greater visual noise
(Fig.7A), as well as a decrease in the cocontraction with increasing bias
(Fig.7B), leading to values close to the experimental data in both cases.

The OIE model further predicts how cocontraction will be modulated in the
presence of both visual noise and guidance bias, illustrated as the blue surface
of Fig.7C. A third experiment was carried out to test the efficacy of the OIE
model in explaining concurrent changes to visual noise and guidance bias. An
aligned ranks transformation ANOVA (ART ANOVA) with repeated mea-
surements revealed that the normalized cocontraction was significantly in-
fluenced by the guidance bias (p<0.001, F(1,98)=61.91), weakly influenced
by the visual noise level (p=0.14, F(1,98)=2.16), and not affected by the
training (p=0.56, F(1,98)=0.35) (Fig. 7D and Figure 3). Post-hoc compar-
isons revealed how the normalized cocontraction increased with larger visual
noise (p=0.025) and decreased with a larger haptic bias (p<0.001). The co-
contraction in this visuo-haptic experiment was indeed modulated by both
visual noise and bias as predicted by the OIE model (Fig. 7C).

Recent models [50, 51] clarified how major characteristics of motor memory
correspond to the minimisation of motor error and its history. These models
however do not possess a mechanism to deal with muscle stiffness so cannot
explain above results nor the results from [32]. On the other hand, a range
of experimental evidence from arm movements carried out in various spatial,
temporal and dynamic conditions suggest that planned actions minimise task
error and metabolic cost in the presence of motor noise [48, 52, 53, 54]. How-
ever, these studies did not consider sensory noise and its influence on the cost
function. Our study provides evidence that the CNS also considers noise in
the sensory signals and voluntarily controls the muscle activation to minimise
task error and metabolic cost. The CNS adapts the motor commands to im-
prove visuo-haptic perception through an optimal tradeoff of information and
energy.
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Modeling cocontraction adaptation during interactive
performance

To understand the principle behind the cocontraction adaptation observed
during human-human interaction in section 2.2, we first tested the computa-
tional model of [48] that explains the motor learning taking place in arbitrary
novel force fields. Simulation of the learning during the ten trials of each con-
dition with the TEM model of eq.(2.14) predicted cocontraction at a level
increasing with the corresponding tracking error (Fig.8A). These predicted
results are qualitatively different from the data, such as larger cocontrac-
tion in fuzzy relative to the sharp conditions (e.g. compare the fuzzy-fuzzy
and sharp-shapr conditions in Fig.8A). Therefore the TEM model cannot ex-
plain the cocontraction learned by the dyads during the interactive tracking
experiment.

What adaptation factor is missing in the TEM model? The statistical anal-
ysis revealed that own visual noise with deviation σo was a major factor of
the cocontraction level adaptation. A larger cocontraction level will increase
the connection’s stiffness to the planed movement, thus improve its guidance.
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Figure 8: Results of computational modeling the cocontraction adaptation
to own and partner noise. (A) Comparison of cocontraction predicted by
the three models described in the text. The TEM model predicts a different
modulation of cocontraction with varying noise conditions as in the data,
the NA model only the modulation with own visual noise. (B) The OIE
model prediction (red ovales) exhibits a similar decrease of cocontraction
with own noise and increase with partner noise as in the data (black disks
with standard error bars).
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However, if the planned movement is disturbed by visual noise, a stiffer con-
nection will bring larger noise in the hand control, in which case it would be
better to relax the arm. Therefore, cocontraction u should tend to increase,
and decrease with visual noise deviation σo(u):

unew ≡ β − ασo + (1− γ)u , α, β, γ > 0 . (2.17)

Simulation with this noise attenuation (NA) model yields results with a trend
similar to the data, with cocontraction decreasing in the FS and FF condi-
tions (Fig.8A). However the NA model is not able to differentiate between
these two conditions, nor between the sharp-sharp and sharp-fuzzy condi-
tions. This suggests that cocontraction adaptation depends not only on own
visual noise but also on haptic noise from the partner.

Cocontraction appears to adapt according to the effect it has on the tracking
performance. It may depend on the statistical information from own mo-
tion plan (guiding my arm movement but affected by own visual noise) or
on the partner’s interaction (contributing to guide my arm movement and
injecting perturbation due to their visual noise). Therefore, we propose that
the cocontraction is modulated to maximise information from own visual
information and haptic information from the interaction with the partner.

This corresponds to the optimal information and effort (OIE) model that
could successfully model the interaction with various levels of visual and hap-
tic noise in section 2.3. Here the OIE addresses the tradeoff between haptic
guidance and noise attenuation by selecting cocontraction u to minimize the
prediction error

E(u) ≡
σ2
o(u)σ2

p

σ2
o(u) + σ2

p

(2.18)

and metabolic costu2, where σo(u) results from the effect of own visual noise
on the arm movement and σp from the interaction with the partner. As can
be seen in Fig.8A, the OIE results in less error to the data as the TEM and
NA models. More importantly, the OIE model can predict the modulation of
cocontraction with both own visual noise and haptic noise from the partner
as observed in the data, in contrast to the TEM and NA models (Fig.8B).

Discussion

The experiments of sections 2.1 and 2.2 have shown that CNS inconspicuously
adapts muscles activation to best combine visual information with the haptic
information from the interaction with the environment or with a partner. The
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experimental results and the computational modeling of this section revealed
the surprising ability to adapt the body’s viscoelasticity, in order to extract
maximal information during interaction with a partner or with a dynamic
environment while concurrently minimizing effort.

What is the principle of the skilled muscle adaptation mechanism? Above
computational modelling suggests that muscle coactivation is adapted to op-
timise the sensory information from the exchange with the partner and the
effort required during the interaction. The picture that emerges from this
optimal information and effort (OIE) model is of the CNS adapting mus-
cles’ activation to optimise information and energy. This new model extends
motor memory models [50, 51] as it includes neuromechanics, thus enabling
prediction of interaction forces and muscle activity in interactions. The OIE
also extends optimal and nonlinear adaptive control models [55, 52, 53, 48, 54]
by considering the sensory exchange during actions.

Previous learning algorithms inspired by the observation of human learn-
ing adapt muscles’ viscoelasticity to compensate for the interaction with an
unknown mechanical environment [48, 56, 57]. While these algorithms are
based on the error to the motion plan, the OIE also considers the information
that can be gained from the interaction as well as the reliability of these two
information sources. An important aspect of the OIE is that it considers
how sensor noise will influence motion planning, while traditional stochastic
optimal control only considered noise depending on the motor command [53].
This opens up a range of new possibilities to interact with dynamic environ-
ments and humans as well as applications for collaborative robots physically
interacting with the human operator in surgery or manufacturing [58] and
robot assistants for physical training [59]. The OIE is an implementation of
predictive coding to adapt the body viscoelasticity in order to minimise the
error with multisensory information including haptics, which will be used in
PH-CODING.

Algorithms and simulation

Interaction with visual and haptic environments (Results in 2.3)

Haptic noise relative to the target movement is due to the biased reference
trajectory relative to the target (resulting in the movement standard devia-
tion σb relative to the target trajectory) and to the elasticity of the virtual
band [46]. Assuming that these effects are independent and that the band
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Figure 9: Two control experiments were carried out to isolate the effect of visual
feedback and haptic guidance on the tracking performance. (A) In the control
experiment with visual noise, the tracking error linearly grew with visual noise,
and decreased across all noise levels after learning. (B) In the experiment with
haptic feedback only, the tracking error decreased with the log of the elasticity.
This relationship did not change with practice.

elasticity results in zero mean noise with deviation σκ(u), the haptic noise
deviation can be calculated as

σ2
h(u) = σ2

b + σ2
κ(u) . (2.19)

The effect of the reference trajectory bias is described through

σb = αb + δθ (2.20)

with subject specific αb, θ > 0. Two control experiments were carried out to
observe the tracking performance as either a function of the visual noise or
as a function of the virtual band’s elasticity in order to specify the haptic
noise.

A visual control experiment was carried out to evaluate the influence of the
visual noise on the tracking performance. No elastic force was present in this
control experiment. Eight right-handed participants not involved in the main
experiments (25.01±0.53 years old, including 2 females) participated in this
study. The results show that the tracking error is linearly correlated with
the visual noise imposed on the target (Fig.9A, [60]). This was modelled as

e(σv) = αv + βv σv , (2.21)
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where αv, βv were identified from a least-squares linear regression with data
from late trials.

Next, a haptic control experiment was performed to measure how the track-
ing error depended on the elasticity of the virtual band. In this control
experiment, no visual feedback was provided while the wrist was connected
to the target reference trajectory with 7 selected levels of elasticity. Another
eight participants (7/8 right-handed, 26.75±1.28 years old, including 4 fe-
males) participated in this experiment. The experiment was structured in 5
blocks of 7 elasticity κ ∈ {0.011, 0.016, 0.025, 0.037, 0.055, 0.081, 0.120}Nm/◦

presented in random order. In the interaction phase totalling 35 trials, the
subjects experienced an elastic force to the target. As expected, the tracking
error decreased with increasing elasticity (Fig.9B), which was modelled as an
exponential function

e(κ) = αh e
−βhκ + γh , (2.22)

where αh, βh, γh were identified from a least-square fit.

To compare the deviations of tracking error due to visual and haptic noise,
the error due to haptic noise was transformed to its equivalent value in visual
noise. This was carried out by setting e(κ) ≡ e(σv), yielding

σκ(u) = ξ0 + ξ1 e
−βκu , (2.23)

ξ0≡ (γh − αv)/βv , ξ1 ≡ αh/βv , βκ ≡ βh/8 .

Tracking error minimization (TEM) For each of the 7 bias levels {i},
the initial cocontraction level {ûi(1)} was first set as the initial experimental
value {ui(1)}. Then, by using the respective trial-by-trial tracking error
{ei(k)}, k = 1, ..., 5 from the experiment, the adaptation parameters α, γ in
the computational model of eq.(2.14) were computed to minimize the error
between the learned values after 5 iterations {ûi(6)} and the corresponding
data {ui(6)} in last experiment’s trial:

(α∗, γ∗) ≡ arg min
α,γ>0

{ 7∑
i=1

[ûi(6)− ui(6)]2
}
. (2.24)

The parameters α∗ ≡ 0.01, γ∗ ≡ 0.14 were found by using a grid search with
a step 0.01 in the range [0, 2]× [0, 2].

Optimal information and effort (OIE) A gradient descent optimisa-
tion is used to minimize the prediction error and effort in eq.(2.16). Muscle
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cocontraction is updated trial after trial using:

unew = u− dV (u)

du
= −dE(u)

du
+ (1− γ)u ,

−dE(u)

du
=

[
σ2
v

σ2
h + σ2

v

]2 [
−dσ

2
h(u)

du

]
> 0 . (2.25)

γ and αb, θ [in the haptic noise model of eqs.(2.19,2.20)] were computed by
minimizing the variation of the cost derivative:

(γ∗, θ∗, α∗b) ≡ arg min
γ,θ,αb>0

{ 7∑
i=1

[
dV

du
[ûi(6), σh,i(αb, θ), σv,i]

]2}
(2.26)

Assuming σv ≡ 2 for the minimal visual noise standard deviation and using
the learned cocontraction data {ui(6)}, γ∗ = 0.106, θ∗ = 2.5, α∗b = 30 were
determined by using a grid search for (θ, αb) in [0, 3]× [0, 40] with steps 0.5
and 1 respectively, where for each gridpoint γ was the solution to

0 ≡ d

dγ

[
7∑
i=1

(
dVi
du

)2
]
. (2.27)

Bayesian error minimization (BEM) BEM was considered as a special
case of OIE model with γ ≈ 0. θ∗ = 3, α∗b = 40 were determined by using
the same grid search as above with γ ≡ 10−5.

Human-human interaction (Results in section 2.3)

Simulation of tracking error minimization (TEM) For each of the 4
noise conditions c∈{sharp-sharp, sharp-fuzzy, fuzzy-sharp, fuzzy-fuzzy}, the
initial cocontraction level {ûc(1)} was first set as the initial experimental
value {uc(1)}. Then, by using the respective trial-by-trial tracking error
{ec(k)}, k = 1, ..., 10 from the experiment, the adaptation parameters α, γ in
the computational model of eq.(2.14) were computed to minimize the error
between the learned values after 9 iterations {ûc(10)} and the corresponding
data {uc(10)} in last experiment’s trial:

(α∗, γ∗) ≡ arg min
α,γ

{∑
{c}

[ûc(10)− uc(10)]2
}
. (2.28)

The parameters α∗ ≡ 0.5, γ∗ ≡ 0.06 were found by using a grid search with
a step 0.01 in the range [0, 2]× [0, 1.5].
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Simulation of noise attenuation model (NA) Using the standard de-
viation of own visual noise σo ∈ {0, 4.58◦} in each noise conditions, the
adaptation parameters α, β, γ in the computational model of eq. (2.17) were
identified that minimize the error between the learned values {ûc(10)} and
the last trial’s data {uc(10)}:

(α∗, β∗, γ∗) ≡ arg min
α,β,γ

{∑
{c}

[ûc(10)− uc(10)]2
}
. (2.29)

The parameters α∗ ≡ 0.01 , β∗ ≡ 0.1 , γ∗ ≡ 0.2 , were determined by using
a grid search with a step 0.01 in the range [0, 2]× [0, 2]× [0, 1.5].

Simulation of optimal information and effort (OIE) A gradient de-
scent optimisation was used to minimize the prediction error and effort in
Eq. (2.15). Muscle cocontraction was updated trial after trial using:

unew = u− dV (u)

du
= −dE(u)

du
+ (1− γ)u ,

−dE(u)

du
=

[
σ2
p

σ2
o + σ2

p

]2 [
−dσ

2
o(u)

du

]
> 0 . (2.30)

The target tracking arises from the mechanical connections to own planned
movement and to the partner, while both are subjected to visual noise
(Fig. 5C). How to model σo? Let σvo describe the tracking deviation of own
wrist movement due to the target cloud. The arm compliance also affects
the tracking performance and adds to this noise in the planned movement
[46]. Assuming that these two effects are independent and that the arm’s
viscoelasticity results in zero mean noise with deviation σκo(u), own arm
deviation can be calculated as

σ2
o(u) = σ2

vo + σ2
κo(u) . (2.31)

The effect of the connection noise was identified in [61] from a control tracking
experiment in which participants were guided only from haptic feedback (thus
without visual feedback), as

σκo(u) = ξ0 + ξ1 e
−βκu ξ0, ξ1, βκ > 0 (2.32)

with ξ0 = 5.18, ξ1 = 49.65, βκ = 6.11.

In the experiment, the effect of both own visual noise and the partner noise on
the wrist movement take two values, resulting in four parameters to identify
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for each model: {σ(0)
vo , σ

(n)
vo , σ

(0)
p , σ

(n)
p }, where (n) corresponds to the cloud

target. These parameters, used in the noise models of eqs.(2.15, 2.31, 2.32),
were computed by minimizing the variation of the cost derivative:(

σ
(0)∗
vo , σ

(n)∗
vo , σ

(0)∗
p , σ

(n)∗
p

)
≡ (2.33)

arg min
σ
(0)
vo ,σ

(n)
vo ,σ

(0)
p ,σ

(n)
p

{∑
{c}
(
dV
du

[ûc(10), σo,c, σp,c]
)2}

Using the learned co-contraction data {uc(10)}, a grid search for (σ
(0)
vo , σ

(n)
vo , σ

(0)
p , σ

(n)
p )

in [0, 10]× [0, 20]× [0, 10]× [0, 10] with step 0.2 yields σ
(0)∗
vo = 10, σ

(n)∗
vo = 18.8,

σ
(0)∗
p = 5.2, σ

(n)∗
p = 6, where for each gridpoint γ∗ = 0.65 was the solution of

0 ≡ d

dγ

∑
{c}

(
dVc
du

)2
 . (2.34)
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Chapter 3

Robotic haptic exploration

3.1 Predictive coding framework for haptic

exploration

In PH-CODING, we want to develop a predictive coding framework for haptic
interaction in robots, that can integrate the information from multiple tac-
tile and proprioceptive sensors and explore the environment while extracting
essential haptics features and maintaining stability.

To develop a suitable robotic algorithm, let us examine human haptic ex-
ploration strategies. Generally, humans use haptic information from the
environments to adjust their movement and identify what objects they are
dealing with. For example, if I want to find a light switch in a dark room,
I will use my hand to gather information by scanning the wall’s surface.
My CNS will then use the acquired information to understand what I am
touching and check how it corresponds to the sensory information I expect
from my planned action. During such haptic exploration, I may adapt my
motion or finger’s impedance to avoid injuries or dangers. With sufficient
information I will interpret what I have touched and locate where the light
switch is. Inspired by this interpretation, we propose to develop an algorithm
composed of two main functions, perception and planning, as is illustrated
in Figure 1.

In Figure 1, a robot equipped with multiple tactile and proprioceptive sensors
is used to perform haptic exploration in unknown environments. Haptic
exploration starts by interacting with an object to gather initial sensory
information which is used to yield the prior belief of the object class. The
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Figure 1: Diagram of haptic exploration in predictive coding framework. The
tactile and proprioceptive informations obtained during exploration are used to
predict what object the robot is interacting with based on prior knowledge stored
in a database. The robot then uses this information to plan motor commands
in order to interact effectively with the object. Further information about this
object can be obtained by comparing actual with expected sensory information
generated from forward models. The prediction error then drives adaptation of
the robot control to improve haptic sensing and update forward models, so that
the robot can identify the interacted objects more accurately.

motion planning algorithm then selects an appropriate interaction from a
set of actions that maximizes the information gain. For example, if the
system observes that high speed tapping is useful to distinguish hard objects
compared to other actions such as sliding or pressing, this action will be
selected. In general, an action with higher mutual information is thus used
to interact with the identified object in each iteration until the posterior belief
of the object class is sufficiently confident, which provides higher perception
accuracy.

Mechanical properties (e.g. stiffness, and viscosity) is important information
to collect and identify an object. Suitable interactions with the object need
to be designed for the robot to extract these mechanical properties. Some on-
line estimation techniques based on the minimization of prediction error are
applied to identify them. The planned motion and properties are passed to:
i) a forward model to update the expectation of sensory information, and ii)

39



to the robot’s controller to generate motor commands enabling the actuators
to produce meaningful interaction with the environments. Prediction errors
are formed by comparing the expected sensory information with measured
sensory information. These errors are used to update the forward model and
adjust the robot’s control to reduce the difference between experience and
expectation. Moreover, an adaptive control algorithm will be designed to
maintain the robot’s stability during the interaction.

These adaptations of the robot will continue until the prediction errors are
minimised. As a result, suitable sensory information would provide more
accurate identification of the objects. On the other hand, if the prediction
errors cannot be minimised, the whole process will (re)identify an object
using the previously obtained sensory information and update the database
with identified object features. According to this framework, the robot will
spontaneously explore, sense, adapt and, finally, identify what it is interact-
ing.

The predictive coding haptic exploration framework is composed of:

• A sensory system that recognises objects using sensory information and
actively adjusts the sensing parameters to improve perception (as was
developed in Chapter 2).

• A motion planner that designs exploration strategies including schedul-
ing, motion and parameters optimisation, corresponding to the ex-
pected object.

• An adaptive controller integrating a forward model, that maintains the
interaction stability, controls the force, impedance and trajectory while
improving performance.

• An objects’ memory which is a database of objects’ properties collected
during previous interactions and constantly updated with experience.

Each of these components will be presented in the next sections. The frame-
work is implemented on an experimental testbed that shown in Fig. 2, con-
sisting of HRG-Hman that is a desktop planar H-shaped robot, a robotic
finger equipped with a force sensor (model F/T:Nano17-E, ATI Industrial
Automation) and an accelerometer (model ADXL335, Analog Devices). The
objects to be recognised are attached on the surface of a wooden frame. This
robotic system has been described in the report to deliverable D4.1. Initial
tests carried out with this testbed are described in next sections.
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The rest of the chapter is organized as follows. In Section 3.2, the object
recognition algorithm used for the sensory system will be introduced. The
exploration action selection algorithm used for the motion planning are pre-
sented in Section 3.3. The adaptive controller described in Section 3.4 inte-
grates a forward model to estimate the object impedance, maintain the inter-
action stability and ensures quality performance during movement. Based on
the obtained results above, the algorithm of object confirmation and database
update is described in Section 3.5.

Figure 2: Experimental testbed. (A) A 3D printed robot’s finger. The force
sensor is attached on the front of finger, while the accelerometer is attached on the
back of the finger. (B) H-man with its finger and an obstacle. A wooden frame is
used to attach the object (blue area) for the robot to explore. The finger is driven
by two motors located on the top right and top left corner of the robot. The
finger moves in 2D planar (x and y axis) while the force sensor is facing toward
the object’s surface.

3.2 Sensory system

Object recognition with initial contact

The sensory system uses tactile and proprioceptive information to quickly
and roughly infer the objects with which the robot will interact. The robot
can interact with the objects using interaction actions such as tapping, press-
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ing and sliding along them. The robot will use different parameters for each
of these actions. For example, it can tap a piece of wood at varied speed or
scan a piece of sandpaper with different contact forces. The haptic signals
such as interaction force, vibrations, pressure and proprioceptive information
from the robot will be used to: 1) investigate the characteristics of sensory
information for objects obtained with different action conditions, 2) compare
methods to extract object’s features from the obtained sensory information,
3) apply classification methods to identify objects. Through the initial in-
teraction, the robot will obtain prior belief, i.e. basic information about the
objects to be identified.

The robot (equipped with a one-axis force sensor and a three-axis accelerom-
eter on its finger) was programmed to tap the finger on the object with
speed 0.02, 0.04, 0.08 m/s on six objects with different mechanical properties:
{foam, one-layer sponge, two-layer sponge, plastic, wood, steel}. Figures 3
and 4 show the resulting interaction force and vibration magnitude. The
analysis of the sensory information suggests that we can use the peak of an
interaction force and a vibration magnitude to separate hard from soft ob-
jects. Furthermore, as expected the peak of interaction force and vibration
magnitude increased with the tapping speed, also making tactile information
for each object more distinguishable. Therefore we may able to identify ob-
jects in each group using this tactile information that depends on tapping
speeds. A method using this tactile information to classify the six objects
was thus developed and investigated.

Figure 3: Interaction force and vibration magnitude resulted from tapping of
three soft objects. (A) At tapping speed 0.02 m/s, the interaction force and vi-
bration magnitude are are barely distinct. (B) At 0.04 m/s, the interaction force
obtained from a steel caps lower than the others while a vibration peak can be
observed. (C) Similar interaction force patterns are observed at 0.08 m/s, with
two different peaks of vibration magnitude for each object.
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Figure 4: Interaction force and vibration magnitude from tapping on three hard
objects. (A) At tapping speed 0.02 m/s, the interaction force and vibration mag-
nitude are barely different in the three objects. (B) At 0.04 m/s, the peaks of
interaction force and vibrations are similar for plastic and wood but different for
steel. (C) At 0.08 m/s, the interaction force shows similar patterns as at 0.04 m/s,
while the ftwo peaks of vibration magnitude is different in the three objects.

Using the Naive Bayes probabilistic classifier, we investigated first the clas-
sification of six objects based on the maximum interaction force, maximum
vibration magnitude at all tapping speeds. The resulting confusion matrix
(Figure 5) exhibits poor classification with 66.27% accuracy rate in average.
Second, we separated the tactile information based on the tapping speeds.
Figure 6 shows that the classifier still misclassified objects and had 52.9%
accuracy rate when it was trained using tactile information at tapping speed
0.02 m/s. However the classification improved at tapping speed 0.04 m/s and

Figure 5: Confusion matrix showing classification results for {f: foam, p: plastic,
s: one-layer sponge, s2: two-layer sponge, st: steel, w: wood}. The classifier was
trained and tested using data from all tapping speeds. There is confusion for some
objects such as between wood and plastic, or between two-layers sponge, one-layer
sponge and foam.
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Figure 6: Confusion matrix for {f: foam, p: plastic, s: one-layer sponge, s2:
two-layer sponge, st: steel, w: wood} when the classifier was trained and tested
with data from tapping at different speeds. (A) At 0.02 m/s, most objects are
misclassified except plastics and one-layer sponge. (B) Classification results are
better at 0.08 m/s but for some confusion between one-layer and two-layers sponge
as well as between wood and plastic. (C) At 0.08 m/s the classification is good but
for some confusion between one-layer and two-layers sponge and between wood
and plastic.

0.08 m/s, exhibiting an accuracy rate of 82.73% and 81.79% respectively. In-
creasing speed from 0.04 to 0.08 m/s did not show much improvement with
still confusion between plastic and wood.

These results show that the developed classifier can identify six objects based
on simple haptic patterns with accuracy rate of 85.83% when the classifier
was trained and tested with data at 0.08 m/s tapping speed. However, us-
ing only two time domain features confuses between wood and plastic. To
attempt tackle this issue the vibration data was analysed using additional fac-
tors from frequency domain techniques: continuous wavelet transformation
(CWT), discrete wavelet transformation (DWT), and Fast Fourier transfor-
mation (FFT).

• First, a CWT with symlet 10 as a mother wavelet was used to trans-
form z-axis vibration in time domain into wavelet coefficients. Figure 7
shows contour plots of the transformed wavelet coefficients at tapping
speed 0.04 m/s for the six different objects. It appears that the wavelet
coefficients exhibit different patterns in a range of approximately 50-
100 Hz. This result suggests using these values of wavelet coefficients
as a new feature for the classifier.
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Figure 7: Example of contour plots showing wavelet coefficients obtained using
CWT to transform vibration data at tapping speed 0.04 m/s into time-frequency
domain. Each object exhibits individual patterns in particular for frequencies in
the range 50-100 Hz (white circle).

• Second, a CWT with symlet 10 as a mother wavelet was used to trans-
form z-axis vibration in time domain into wavelet coefficients in fre-
quency domain. In this case, the root mean square of wavelet coeffi-
cients for each frequency range was calculated and used as features for
the classifier.

• Third, a four-level DWT with symlet 10 as a mother wavelet was used
to decompose z-axis vibration in time domain into four levels of wavelet
composition. The peak of amplitude for each level of wavelet composi-
tion was used as features for the classifier.

• Fourth, a FFT technique was used to transform a z-axis vibration from
time into frequency domain. In this case, we divided the frequencies
into 6 ranges: {0-50, 50-100, 100-150, 150-250, 250-350, 350-500}Hz.
The peak of vibration amplitude for each of these frequency ranges was
used as a feature for the classifier.

Figure 8 shows the accuracy rate for all cases using features extracted from
time domain combined with above frequency domain features. Figure 8 (A)
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Figure 8: Comparison of accuracy rate with the developed classifier using different
sets of features (A) at all tapping speeds, (B) at 0.02 m/s, (C) at 0.04 m/s, (D) at
0.08 m/s. X-axis labels describe the classification factors used: {1: peak interaction
force and vibration, 2: as in 1 and peak wavelet coefficients of vibration in 50-
100 Hz (CWT), 3: adding to 1 the rms wavelet coefficients of vibration in all
frequency ranges (CWT), 4: adding to 1 the peak of vibration amplitude found
in four-level of wavelet composition (DWT), 5: adding to 1 the peak vibration
amplitude for 6 ranges of frequency (FFT)}.

shows the accuracy rate when the classifier was trained using features from
all tapping speeds. The results showed that classifier using peak values of
interaction force, vibration magnitude, and vibration amplitude extracted
using FFT provided the highest accuracy rate at 94.82%. Figures 8B,C,D,
show the accuracy rate with data from tapping speeds at 0.02, 0.04 and
0.08 m/s, respectively. The accuracy rate still increased with the tapping
speed but for the FFT classifier that provides high accuracy rate with values
over 90% in all cases.

Overall, these results show that adding frequency domain features improves
the object classification. A high accuracy rate can be achieved by using
features with peak values of interaction force, vibration magnitude, and the
frequency spectrum extracted using FFT. Increasing the speed of tapping
can improve the accuracy rate although too large impact may damage the
material. These results suggest that tactile information obtained from the
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initial contact (tapping with high speed) can be used to quickly infer the
object a robot is interacting with. However, the prediction accuracy is not
sufficient when interacting with objects of similar stiffness, such as wood and
steel. Other interaction actions such as sliding may be more appropriate to
distinguish them. In the next section, we expand the action set by considering
sliding and pressing and develop a motion planning algorithm to select the
optimal action for a specific object.

3.3 Motion planner

to select the optimal exploration action

The motion planner determines the optimal interaction to improve the per-
ception accuracy and plan robot’s movements based on the detected object
to manipulate. As an example, the database of sensory information in three
actions {tapping, sliding, pressing} with different conditions would be ac-
quired and used to determine the optimal actions. According to predictive
coding principles, we used conditional mutual information to measure how
much uncertainty is reduced in predicting object class X, if observation O is
made by an action A, where X,O,A are random variables. The conditional
mutual information is defined as

I(X;O|A) = H(X|A)−H(X|O,A) (3.1)

where H(X|A) is the entropy of predicting object class X with knowledge
from action A, and H(X|O,A) is the entropy of predicting object class X
with knowledge of observation O and action A. The optimal action will
reduce uncertainty of prediction thus correspond to the highest value condi-
tional mutual information:

A∗ = arg max
A

I(X;O|A) (3.2)

If we assume that object class X and action A are independent, and as our
object class X is a discrete variable since we are in a classification problem,
the conditional mutual information can be rewritten as:

I(X;O|a) = H(X)−H(X|O, a) =
∑
x

∫
O

P (x)P (o|x, a) log
P (o|x, a)

P (o|a)
do

(3.3)
where x ∈ X, o ∈ O, and a ∈ A. P (o|x, a) is a probability of observation o
given that object class x and action a can be estimated the same as P (o|a)
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which is probability of observation o given that action a during training phase
of the classifier. In the discrete variable case, those two probabilities can be
estimated from a look-up table of parameters stored by experience. P (x) is
a prior belief of being object class x which could be obtained from the Naive
Bayes classifier in section 3.2.

The Naive Bayes classifier calculates the posterior probability of object class
x given that observation O and action a using Bayes’s Theorem:

P (x|O, a) =
P (O|x, a)P (x)

P (O|a)
(3.4)

where P (O|x, a) is a likelihood of observation O given that object class x
and action a, P (x) is a prior belief of being object class x, and P (O|a) the
prior belief of observation O given action a. This posterior can be used as
a prior belief for next iteration i + 1, i.e. P (x)i+1 = P (x|O, a)i, allowing us
to use the prediction from previous iteration to select the action in order to
gain more useful information.

Validation of action selection algorithm

The overall structure of action selection algorithm is shown in Figure 9. The
algorithm starts with the initial guess of prior for all objects which, e.g. the
belief obtained form the initial contact or 1/(number of objects) if there is no
such knowledge. This prior is used to find the conditional mutual information
using eq.(3.3). The optimal action is then selected based on the calculated
conditional mutual information using eq.(3.2). This selected action is used
by the robot to interact with the object and retrieve the observation. This
observation is then fed to the classifier in order to calculate the posterior
using eq.(3.4). If the values of posterior for at least one object class is higher
than 0.95 or there are already more than five iterations, the highest posterior
of object class x is selected and the classifier concludes that the object belong
in object class x:

X∗ = arg max
x

P (X;O|A∗) (3.5)

otherwise the current posterior will be used as the prior for next iteration.

To illustrate how the algorithm works, the robot of Figure 2 was used to
interact with ten different objects: {hard silicon, soft silicon, solid box of
paper, wobbling box of paper, styrofoam, sponge, sponge with polyethylene
foam surface, wood, wood with polyethylene foam surface, steel}. The robot
was programmed to use three actions: {pressing, sliding, tapping} in order
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Figure 9: Structure of the action selection algorithm. There are three main parts
shown in red. First, training uses a database to train the Naive Bayes classifier
and acquire parameters. Second, to select an action, it uses the parameters and
prior belief from the previous iteration to determine the action with the maximal
value of conditional mutual information. Third, together with parameters acquired
during training, observations from the interaction with the object are used to
calculate posteriors thereby inferring which object the robot interacts with. The
algorithm will continue until the posterior belief about an object reaches 0.95 or
after five iterations. The object class yielding highest posterior will be selected as
the predicted object.

to form a database of tactile information in the form of interaction force and
vibration. More precisely, the average normal force was used as observation
for action pressing, a standard deviation of vibration values during sliding as
the observation for this action, and the maximum values of normal force for
action tapping. This data was used to train the developed classifier as well
as to test the action selection algorithm. For simplicity, the action-selection
algorithm simulation is performed off-line based on the collected data.

Figure 10 shows the confusion matrix obtained after simulating the testing
of 10 objects presented randomly for 3000 trials with above action selection
algorithm. The classifier can distinguish all objects but confuses wood and
steel. The average detection rate was 84.83%.

Figure 11 shows how the prior belief changes after each iteration when the
robot adapts its action to gain most information during interaction with the
objects. The true object is class four which is a hard silicon. The prior belief
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Figure 10: The confusion matrix showing accuracy rate of classification in per-
centage when classifier using action-selection algorithm. The numbers 1-10 on axis
presents objects class as a soft silicon, a sponge, a sponge with polyethylene foam
surface, a hard silicon, a wobbling box of paper, a styrofoam, a solid box of paper,
a wood with polyethylene foam surface, a wood, and a steel respectively.

of all objects was initialised at 1/10. Based on this information, the algorithm
selected sliding as the first action for the robot to maximally increase tactile
information. The tactile information obtained from the sliding was then used
to calculate the posterior. Since, the values of posterior ≤ 0.95 the current
posterior is used in next iteration to determine the most useful action to
gain information. The process is repeated until the posterior > 0.95 as in
the bottom graph. The classifier then concluded that it interacted with
object number four. We can see that the algorithm adapts the action to gain
useful tactile information for the classifier, changing the action from sliding
to pressing in the second iteration. This is because it intends to determine
whether the object is soft (object classes 1-5) or hard (classes 5-10) by using
pressing to check the object’s stiffness.

We then compared the performance of our action selection algorithm with
a classifier without action selection, the classifier with a fixed action, and
the classifier with random actions. In the classifier without action selection
algorithm and the classifier with a fixed action, sliding was selected as the
action providing highest conditional mutual information with the uniform
1/10 prior. For the random action and action selection algorithms, actions
that do not provide necessary tactile information were added in order to
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Figure 11: Evolution of prior and actions at each iteration when the robot
interacts with the object class 4. The objects are: {soft silicon, sponge, sponge
with polyethylene foam surface, hard silicon, wobbling box of paper, styrofoam,
solid box of paper, wood with polyethylene foam surface, wood, steel}.

verify that the action selection algorithm is able to choose the right action.

Figure 12 compares the accuracy rate obtained with these algorithms. The
results showed the classifier with action selection had the highest accuracy
rate (84.83%) while other algorithms had approximately 40-60%. Note that
this slightly improves the accuracy rate of 82.73% from the initial tapping
with a single feature (maximal interaction force or vibration amplitude) but
not as high as the previous results with multi-features after adding the fre-
quency components of vibrations (94.82%). This is because only one sensory
information was used in this study. This could cause some confusions between
the object classes 9 and 10 as shown in Figure 10. We will therefore expand
the algorithm to work with multiple observation features, which should help
increasing the prediction accuracy.
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Figure 12: Comparison of accuracy rate among classifiers algorithms: {1: classi-
fier without action selection algorithm, 2: with fixed action, 3: with random action,
4: classifier with action-selection algorithm}. The classifier with action-selection
algorithm yields the highest accuracy rate of 84.83%, random action yields the
lowest accuracy of 45%.

3.4 Adaptive controller with the estimation

of the surface impedance

Mechanical properties like stiffness and viscosity are important features char-
acterising objects to be manipulated with the robot. An adaptive controller
is designed to estimate the object’s viscoelasticity, which indents the object’s
surface based on suitable feedforward motor commands (that may be known
from a forward model of the robot’s dynamics). By measuring the result-
ing displacement and the interaction force, and using the forward force, the
object’s impedance around the interaction point can be identified.

The overall structure of the adaptive indentation movement control is shown
in Figure 13. Sensory noise in the measurement and process noise in the
dynamics of the robot are considered. Dual states and impedance estimators
are designed, which are inter-connected. The proprioceptive information
(position, velocity) is estimated through Kalman filtering techniques, while
the mechanical properties are updated by comparing the sensory prediction
and measurement.

The robot is modelled as a pointmass with zero mean normal distributed
motor noise with covariance Q i.e. nw ∼ N (0, Q):

mẍ = u+N + nw. (3.6)
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Figure 13: Control diagram of the object’s viscoelasticity estimation with dual
states and parameters estimation. Sensory noise is considered in measurement
of the interaction force and position, as well as process noise in the dynamics
of the robot. A recursive estimator is designed to predict interaction force and
mechanical properties of the surface, and a Kalman filter is used to estimate the
position and velocity of the robot by integrating the model prediction and sensory
information.

The position measurement is affected by sensor noise nv ∼ N (0, R):

y = x+ nv . (3.7)

Linearisation of the object’s mechanics in interaction with the robot yields

N = F ∗0 + κ∗x+D∗ẋ+ nr . (3.8)

where F ∗0 is a feedforward force term due to the object’s movement, κ∗ its
stiffness, andD∗ its viscosity. nr ∼ N (0, G) is the sensory noise of interaction
force measurement.

The system (3.6) represented in state space and discretised yields

xk+1 = Axk +B(uk +Nk + nw,k)

yk = Cxk + nv,k (3.9)

where A ≡

δ 1

0 1

, B ≡

0.5 δ2/m

δ/m

, C ≡ [1 0] and δ is the time step.

53



Figure 14: Parameter list for the simulation of a mechanical interaction with a
sponge.

Position and velocity estimation We use a dual state and parameter
estimation scheme, including a state observer and a parameter estimator,
which are inherently inter-connected and updated recursively. The position
and velocity of the robot are estimated by a standard Kalman filter, and the
force and impedance used in the model are identified from model reference
adaptive control.

Force and impedance estimation Now that we have the estimated po-
sition and velocity, the linear second order system

N̂ = F0 + κx̂+D ˙̂x (3.10)

is used to estimate the force F0, stiffness κ and damping ratio D with model
reference methods in adaptive control. The prediction error of the interaction
force

J =
1

2

[
N − N̂(F0, κ,D)

]2
. (3.11)

is minimised through a gradient descent method:

ṗ = − γ dJ
dp

, p = [F0, κ,D]T , γ > 0 (3.12)
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where γ is the learning rate. The discrete iteration equations for each of the
parameters are then

F0,k = F0,k−1 − γ
∂J

∂F0

∆ = F0,k−1 + γ(Nk − N̂k)∆

κk = κk−1 − γ
∂J

∂κ
∆ = κk−1 + γ(Nk − N̂k)x̂k∆ (3.13)

Dk = Dk−1 − γ
∂J

∂D
∆ = Dk−1 + γ(Nk − N̂k) ˙̂xk∆

There is redundancy in these parameters as the interaction force is the single
input, so a persistently exciting signal (PE) is required for the interaction
force to guarantee the convergence of the estimation to the physical value.

Simulations

This simulation example will test the functionality of the adaptive controller
and illustrate how it can estimate the position from noisy sensory infor-
mation and identify a sponge’s viscoelasticity through indentation. The
parameters used for the simulations are listed in Figure 14. A persistent
excitation is provided by a sinusoidal movement with reference trajectory
xr(t) = 0.015 sin(15t) m applied on the object’s surface. The driving motor

Figure 15: The comparison between the measured position, estimated position,
internal true position and the target position. Although there is large noise in the
measurement, the designed estimator could predict the position. The controller,
based on the estimated states, drives the robot to follow the reference trajectory.
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commands are composed of a feedforward term vk = −N̂k to compensate the
predicted interaction force, where N̂k is the estimated interaction force, and a
feedback term wk = −KP (êk+ξ ˙̂ek) to maintain stability, where êk = x̂k−xr,k
is the estimated tracking error, xr,k the planned trajectory, KP the propor-
tional gain and ξ the derivative gain ratio. The indentation signal is thus
uk = wk + vk.

The measured and estimated robot positions are shown in Figure 15. It can
be seen that the sensory information (yellow dashed lines) contains large
noise compared to the true positions (blue lines). Using a Kalman filter, the
estimated positions (cyan lines) could follow closely with the true positions.
The controller could basically track the fast-varying reference trajectory (red
lines), although there are overshoots (around 2 cm) at the turning points. The
estimated interaction force and mechanical properties are presented in Figure
16. Fig.16a shows that the estimator could predict the interaction force
accurately even before convergence of the stiffness, viscosity and feedforward
force terms, as shown in panels b-d. This is due to the redundancy between
the interaction force and the mechanical properties, so that the parameters

Figure 16: Prediction of interaction force and mechanical properties of a sponge
through indentation. Panel a shows that the prediction of the interaction force
through the model is consistent with the measurement. Panels b,c,d show the
estimation of stiffness, viscosity and feedforward force, respectively. When the
object identification is accurate and the initial values for estimation is close to the
true values, the estimation converges faster and is more accurate.
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converge more slowly to the true values. The blue lines is the estimation
with random initial values while the purple lines is the estimation by using
the initial guess values from the object recognition. The results reveal that
when the object identification is accurate and the initial values for estimation
are close to the true values, the estimation process becomes faster and yields
more accurate results.

Figure 17 compares the control force and tracking error between the designed
controller and the controller with only feedback term. Our controller pre-
dicts the interaction force from the forward model and produces a real-time
feedforward force that opposing the interaction force. This avoids the sudden
perturbation from the unexpected interaction force, and reduces the tracking
error. Accordingly, the required control force is largely reduced in the begin-
ning, when there was large tracking error and significant force was needed to
drive the robot back to the reference trajectory. As a result, the controller
enhances the stability of the robot during exploration, making it more robust
to different surface materials. This simple example of indentation movement
shows the functionality of the proposed adaptive controller. It will be imple-
mented within the haptic explorative system to validate its effectiveness in
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Figure 17: The comparison of the control force and tracking error between de-
signed controller and the controller with only feedback term. It shows that without
the feed-forward term to compensate of the interaction force through prediction,
there is larger tracking error and the control force is significantly large in the
beginning to enable the robot to follow the reference trajectory.
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experiments. Furthermore, we will extend it to the haptic exploration with
exploratory movements along the object’s surface and estimate surface prop-
erties such as friction. These surface properties will be used together with
the information obtained from the sensory system to confirm the prediction
of the object and update the database of objects properties as described in
the next section.

3.5 Dynamic objects’ memory

The developed sensory system, motion planner and adaptive controller are
integrated into a predictive coding algorithm for haptic exploration. The
mechanical properties from the adaptive controller can be used to confirm the
class of the object that the sensory system and motion planner predict (Figure
18). The structure consists of these parts: an object classifier, a motion
planner, an impedance estimator, a motion controller, object confirmation

Figure 18: Scheme of robotic haptic exploration algorithm. The classifier uses
tactile information from an initial contact to predict an object class, which is
used to select a suitable action and controller’s viscoelastic parameters. While
interacting with an object, the controller can refine these mechanical parameters,
which are used to check whether the correct object was selected. If the estimated
stiffness differs by more than a threshold (here 0.001), the prediction is replaced
with the object that has the most similar stiffness in the database. In case no
suitable object is found the new object’s parameters are stored in the memory.
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and database update.

The algorithm begins with data from a limited set of objects. The classifier
described in Section 3.2 will predict an object’s rough properties using the
tactile information obtained from an initial contact. This predicted object
is fed to the motion planner and controller which is described in Sections
3.3 and 3.4 to choose the proper parameters for an object’s interaction. In
this case, the parameter is the initial guess of object’s stiffness values for the
controller, which will be refined during interaction. This fine estimation can
be used to confirm the predicted object by measuring the estimation error

error =

∣∣∣∣∣ κ− K̂
(κ+ K̂)/2

∣∣∣∣∣ (3.14)

where κ is the estimated stiffness from the controller and K̂ the initial guess of
stiffness from the classifier. If the difference is not higher than the threshold
θ, the predicted object is already correct. If the difference is higher than the
threshold θ, the estimated stiffness is used to check in the database whether
the corresponding object already exists or not. If the estimated stiffness is
not in an acceptable range of stiffness in the database, this new object will
be added to the memory.

A simulation was carried out to test the proposed framework, using the same
set of objects with as in section 3.3. However, the classifier was only trained
using maximum interaction force and vibration obtained when the robot
tapped on a soft silicon, a sponge, and a foam at the start. The real stiffness
for all objects was assumed to be in the range of 50-1050 N/m as shown in
figure 19. The threshold θ was set to be 0.001. The acceptable range of
stiffness is 60 N/m. The simulation was done for 1000 trials. In one trial,
the algorithm interacts with one random object picked from 10 objects and

Figure 19: Table of stiffness range for the ten objects used in the simulation.

59



classifies the object. Afterwards, the algorithm will collect the information
of the object in the database and use it for the next trial.

The evolution of the number of recognised objects in the memory is shown in
Figure 20. At the beginning, the database has only first three objects that it
have learned in the training phase. After the algorithm finished learning all
objects data during the exploration, the memory has information of eleven
objects in total in the end. However, the correct number of object class is
ten. This incorrect number of the object class in the database might be
caused by the value of acceptable range of stiffness. If the value is too low,
the algorithm will determine that the estimated stiffness does not belong to
any range of stiffness in the database, then it creates a new label for it. If the
value is too high, the algorithm will put the estimated stiffness to some object
class randomly and can lead to the wrong one. To improve this, the value of
acceptable range of stiffness needs to be optimized in further experiments.

The top panel of Figure 21 shows the confusion matrix from the results
obtained with the proposed algorithm, which exhibited an average accuracy
rate of 77.3%. The misclassified objects seem to have similar stiffness, which
may be due that the acceptance range selected in object confirmation may
not be able to divide object classes appropriately for the stiffness in between.
For example, the wood could be clustered with the steel. The bottom panel of
Figure 21 shows the confusion matrix obtained without object confirmation
procedure. It exhibits an average accuracy rate of 11.3%, as it only classified
the objects based on the initial object classes used for the initial learning.

Figure 20: Evolution of memory size. There are initially 3 object classes which
are used to train the database. New object classes are added when the algorithm
encounters an unknown object. The memory keeps adding new object classes until
trial 20, after which it remains at 11 as no unknown object is encountered.
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Figure 21: Top penal: confusion matrix obtained with the algorithms of Sec-
tions 3.2-3.4 and dynamic memory. Bottom penal: without object confirmation
based on the estimated stiffness. Objects are: {soft silicon, sponge, sponge with
polyethylene foam surface, hard silicon, wobbling box of paper, styrofoam, solid
box of paper, wood with polyethylene foam surface, wood, steel}.

This shows the importance of the objects’ memory adaptation process.

In conclusion, the simulation results have shown that the proposed algorithm
is able to integrate new objects while it does not grow indefinitely. The
dynamic objects’ memory enables the classifier to feed useful information,
which is initial guess of stiffness value, to the controller for estimating more
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accurate parameters. However, some points need to be further developed
such as designing a more flexible algorithm for guessing the stiffness value as
well as for learning new information from unknown objects, and expand the
actions executed by the motion planner.

62



Bibliography

[1] S. J. Lederman and R. L. Klatzky. Haptic perception : a tutorial.
Attention, Perception, & Psychophysics, 71(7):1439–1459, 2009.

[2] N. Hogan. Impedance control: An approach to manipulation. In 1984
IEEE American control conference, pages 304–313, 1984.

[3] A. Prochazka. Proprioceptive Feedback and Movement Regulation. In
Comprehensive Physiology, chapter 3. John Wiley & Sons, Inc., Hobo-
ken, NJ, USA, 1 2011.

[4] K. J. Friston, Jean Daunizeau, James Kilner, and Stefan J. Kiebel.
Action and behavior: a free-energy formulation. Biological Cybernetics,
102:227–260, 2010.

[5] K. J. Friston, J. Mattout, and J. Kilner. Action understanding and
active inference. Biological cybernetics, 104:137–60, 02 2011.

[6] T. J. Prescott, Mathew M. E. Diamond, and A. M. Wing. Active touch
sensing. Philosophical transactions of the Royal Society of London. Se-
ries B, Biological sciences, 366:2989–95, 11 2011.

[7] V. Hayward. A Brief Overview of the Human Somatosensory System,
pages 29–48. Springer International Publishing, Cham, 2018.

[8] K. Friston. Prediction, perception and agency. International Journal of
Psychophysiology, 83(2):248–252, 2012.

[9] A. Takagi, F. Usai, G. Ganesh, V. Sanguineti, and E. Burdet. Haptic
communication between humans is tuned by the hard or soft mechanics
of interaction. PLOS Computational Biology, 14(3):1–17, 03 2018.

[10] P. Song, Y. Yu, and X. Zhang. Impedance control of robots: An
overview. In 2017 2nd International Conference on Cybernetics,
Robotics and Control (CRC), pages 51–55, 2017.

63



[11] C. Liu, L. Sharan, E. H. Adelson, and R. Rosenholtz. Exploring features
in a bayesian framework for material recognition. In 2010 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
pages 239–246, 2010.

[12] D. Kobayashi, N. Yata, and Y. Manabe. Acquisition of image features
for material perception from fine-tuned convolutional neural networks.
In 2016 International Joint Conference on Neural Networks (IJCNN),
pages 545–550, 2016.

[13] R. W. Fleming. Visual perception of materials and their properties.
Vision Research, 94:62 – 75, 2014.

[14] R. Dahiya, N. Yogeswaran, F. Liu, L. Manjakkal, E. Burdet, V. Hay-
ward, and H. Jörntell. Large-area soft e-skin: The challenges beyond
sensor designs. Proceedings of the IEEE, 107(10):2016–2033, 2019.

[15] P. Dallaire, Philippe Giguère, Daniel Émond, and Brahim Chaib-draa.
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