ANAPCOR

National Association for PET Container Resources

Life Cycle Analysis Comparing U.S. Beverage Container Systems

Lauren Laibach, Director of Data Services National Association for PET Container Resources (NAPCOR)

BACKGROUND & SCOPE

- Authored by Franklin Associates (ERG)
- 2009 study compared PET, glass, and aluminum CSD container systems
- More recent LCIs on virgin and recycled PET resin supply chains
- New NAPCOR study considers multiple scenarios for each packaging format
- All modeling based on non-refillable beverage packaging

CONTAINER SYSTEMS STUDIED

	Size (oz)	Beverage	Average Sample Weight (g)	Recycled Content	Recycling Rate
PET Bottles	16.9	Water	11.2 (average); 8.2 (light) 10%		
	16.9	CSD	22.1	(baseline);	29.1%
	20			0%; 25%; 50%	
	67.6				
Aluminum Cans	12	CSD or water	12.7	73%;	50.4%
	16	CSD or water	15.1	62.5%*	
Glass Bottles (with + without paper label)	12	CSD	208	38%	39.6%

*Two scenarios modeled for 23% postindustrial (PI) scrap recycled content in aluminum:

- 73% treats PI content equivalent to postconsumer (PC)
- 62.5% models PI recycled content as a 50/50 mix of virgin and PC

METHODOLOGY CHOICES

- System expansion (baseline)
 - System credited with avoiding virgin material production if recycling rate exceeds use of recycled content
- Cut-off (sensitivity)
 - Containers that are recycled at end of life leave the system boundaries with no burdens or credits
 - Favors systems with high recycled content

REPORT STATUS

&

RESULTS

• Pending final approval from peer review panel

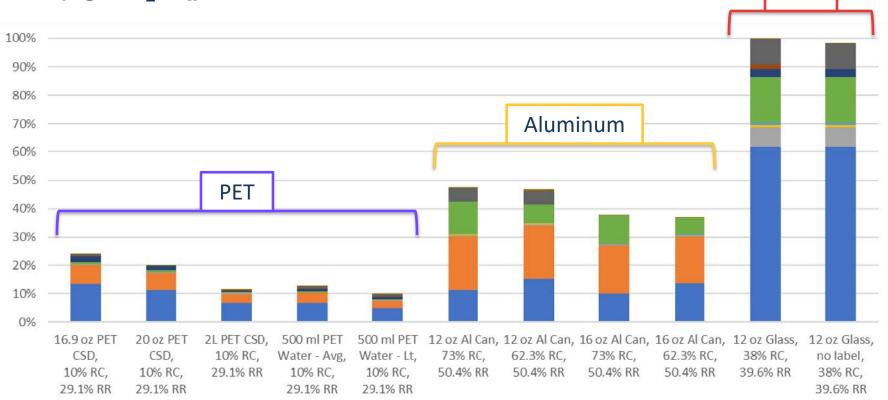
- Following slides show baseline (system expansion method) results
- Equivalent volume functional unit =1,000 gallons of delivered beverage

9% lighter weight

20oz

19% less greenhouse gas emissions

2022 VS. 2009


20 oz PET CSD bottle

31% less solid waste

ANAPCOR

25% less energy consumed

GLOBAL WARMING POTENTIAL (kg CO₂ eq)

ANAPCOR 7

Glass

MEANINGFUL DIFFERENCES

- PET bottle systems consistently less impactful than aluminum & glass alternatives in:
 - Cumulative energy demand
 - Solid waste generation
 - Global warming potential (CO₂ eq)
 - Acidification potential (SO₂ eq)
 - Smog formation potential (O₃ eq)
- PET also beats glass in:
 - Water consumption
 - Eutrophication potential (N eq)

Average Weight 16.9 oz PET Water Bottle vs.							
Aluminum Cans							

		12 oz Al	12 oz Al	16 oz Al	16 oz Al
		Can,	Can,	Can,	Can,
	% Diff	73% RC.	62.3% RC.	73% RC.	62.3% RC,
System Totals	Threshold	50.4% RR	50.4% RR	50.4% RR	50.4% RR
Cumulative Energy Demand	10%	-103%	-102%	-79%	-77%
Non-renewable Energy	10%	-82%	-88%	-62%	-69%
Solid Waste	25%	-132%	-131%	-113%	-111%
Water Consumption	25%	-73%	-72%	-55%	-55%
Global Warming Potential	25%	-116%	-115%	-101%	-99%
Acidification Potential	25%	-142%	-140%	-130%	-128%
Eutrophication Potential	25%	-105%	-104%	-79%	-78%
Ozone Depletion Potential	25%	117%	118%	138%	139%
Smog Formation Potential	25%	-112%	-111%	-93%	-91%

SENSITIVITY ANALYSES

Largely similar conclusions.

The most sensitive comparison is 16.9 oz PET CSD vs. 16 oz aluminum

- Cut-off methodology
- Equivalent # of containers basis
- Variations in PET recycled content (0%, 25%, 50%)
- Higher recycling rates (e.g. nationwide deposit return system)

ANAPCOR 9

THANK YOU

Full report will be accessible upon peer review approval <u>napcor.com/sustainability/life-</u> cycle-analysis/

Lauren Laibach Director of Data Services <u>llaibach@napcor.com</u>

