

BOPET lidding positive impact on recyclability

PETCORE Annual meeting – 01st February, 2023

Mathias Mazurelle - mma@tpl.ch

PET tray recycling stream

Reducing the contamination level of the whole PET trays stream for improving the quality of recyclate

- Circa 1 million tons of PET trays in the market within 50% mono
- Only 3% are collected in separate stream

multi-polymeric liddings

- Multilayer structures containing PO are contaminant for PET trays stream
- Multilayer trays are less likely to be recycled and have a negative impacts on the PET recycling streams by increasing losses, reprocessing costs and reducing the quality of rPET.
- Multilayers are not collected for recycling
 - Likely to be mis-sorted by NIR
 - Other polymers than PET cannot be cost effectively separated
 - Other polymer can affect rPET quality and hinder reprocessing

BOPET circularity as a lidding

Mono PET lids and trays is advisable as they allow:

- Mono material lidding with high PCR content (up to 100%)
- Mono-material heat seal chemistry (Viewed as recyclable in polymer simplification strategies)
- High stiffness allowing thickness reduction of the lidding (up 40% weight reduction for the lidding compared to PET/PE structures)
- Lower GHG and energy consumption.
- Perfect substrate for recyclable barrier coatings
- Optimal runnability on tray sealers, high temperature selability
- High clarity, Mechanical strength, Stiffness and lay flat

About PET Sealant :

- New high-performance sealants for good sealing at low temperature even in contaminated areas
 - No additional sealant layer required on Mono PET trays

PET trays market segments

- Mono PET :
 - easy target / validation of recyclability
- Multilayer PET :
 - Sealability in harsh environment
- Multilayer barrier PET :
 - barrier need / shelf life

Application : Produce

- BOPET is the material of choice for clarity and machinability
- Participate to weight reduction
- Today taken for granted as the logical solution
- Sealing through contamination juice, mayonnaise, olive oil
- Becomes Pack format of choice across Europe

Application : Ready meals

- PET film is the only viable material that can withstand the extremes of cooking and be fully food contact compliant, covering temperatures up to 230°C (conventional oven)
- Retort options for shelf-life extension
- Sealing through sauce contamination

Application : proteins

- Most demanding lidding application for mono-PET films
- Seal through contamination (Bloods, fats and soluble proteins)
- Using pure APET trays raises issue of heat seal and puts more demands on lid heat seal chemistry (Hard to move mind set of PE to PET sealants).
- Flange cleanliness / contamination becomes more important but simple filling solutions exist where there is the willingness to change
- Consideration of barrier in conjunction with MAP
- Removal of PE layer improves chances of recycling as well as reducing cost. Market conversion well underway (Fish, Pork, Sausages, Mince, chicken). Vast majority can be transitioned today

Recyclability : Mono PET lidding reduce mis-sorting

- High proportion of lidding is not detached from the tray when disposed. Mono PET lidding reduces the risk of missorting at NIR detection.
- Unprinted sealable and Peelable BOPET can be mechanically recycled with the tray (TCEP evaluation to be made on various formulation)
- Printed PET lidding are efficiently separated by air elutriation. (confirmed by Test performed with Gaiker)

BOPET films sealing layer to match market needs

Essential conditions:

- Heat seal through contaminants in harsh environments.
- Melting point/adhesion must be significantly lower than the outer layer to ensure a good seal. Sealant layer must prevent "channel leakage".
- Be transparent for product visibility, have a suitable COF for machinability and be approved for direct food contact.

Process Technologies commonly used on BOPET films:

• Coextrusion, coating, Lamination, hot melt coatings.

Recyclability

- To maintain excellent tray recyclability, the impact on color, haze, clumping or process issues must be carefully evaluated through the TCEP protocol.
- The most commonly used sealants on PET, such as APET heat seal resins and saturated polyesters, have very little detrimental influence on recyclability.

BOPET positive impact on PET trays recyclability

Evaluation of the positive recyclability impact :

- Ongoing First evaluation through TCEP protocol and industrial scale trials to showcase the impact
- Validation with the value chain within the Working group
- Evaluation of the impact on the market needs in term of :
 - Barrier / shelf life
 - Sealability / peelability / resealability
 - Market segments where the switch to mono PET packaging is easier.

- Mono PET has existed for several decades
- Majority of applications can be converted immediately
- Does require whole value chain to buy into concept
- Many conflicting interests along the way

We as an industry are sitting on a unique polymer that enables mono-material tray and lid solutions with high percentages of recycled content in direct food contact applications. This is a leading position, and we must make greater emphasis of this value proposition.

Petcore Europe

Avenue de Broqueville 12, 1150 Brussels, Belgium

Tel.: +32 (0) 2 315 24 88

Email: management@petcore-europe.org

Website: www.petcore-europe.org

Dedicated Website - Annual Conference 2022: www.petcoreeuropeannualconference.eu

Communications Campaign Website: https://www.recycletheone.com/en

Follow us on social media to stay updated:

