

June 3rd, 2021 Jean-François BRIOIS

1.1.4.14.1.1

Nestlé's Vision for Sustainable Packaging Recycling: a key enabler for PET Packaging Circularity PET: A Polymer Designed for Recycling Comparison between Mechanical and Monomer Recycling for PET Conclusions

Nestlé's Vision for Sustainable Packaging

Recycling: a key enabler for PET Packaging Circularity PET: A Polymer Designed for Recycling Comparison between Mechanical and Monomer Recycling for PET Conclusions

Nestlé's Vision for Packaging Sustainability

Our long-term vision

• None of our packaging ends up in landfill or as litter

Our commitments for 2025

- 100% of our packaging will be recyclable or reusable
- We will reduce our use of virgin plastics by 33%

Our packaging sustainability journey

5

Our need: Fit-for-purpose food-grade packaging

Delivering safe and nutritious food

Safety & quality

Avoid food waste

Pre-portion

Information

Adapting to product and geography

Product sensitivity

Route-to-market

Climate

Legislation

J.F. BRIOIS - PETCore Conference - June 3rd, 2021

Our sustainable packaging 5 pillar strategy

Packaging Reduction
/ EliminationReusable / Refillable
Packaging SystemsMaterials innovation
for recycling and
compostingRecycling and waste
management
infrastructureRethinking
behaviors of Nestlé,
retail partners and
consumersImage: Image: Image

Remove & Reduce, Reuse, Recycle & Rethink the system

Nestlé Institute of Packaging Science

- **50 scientists** conducting cutting edge research for **safety and performance** of new materials
- Refillables, redesigning multi-material to mono-material, high-performance paper barriers and recycled content
- Part of a larger ecosystem of Nestlé global R&D network

Technology: Building a vibrant ecosystem for packaging innovation

Start-ups and entrepreneurs

Material suppliers and converters

Universities and research institutes

FUTURE FOOD

A SWISS RESEARCH INITIATIVE

J.F. BRIOIS - PETCore Conference - June 3rd, 2021

Nestlé's Vision for Sustainable Packaging Recycling: a key enabler for PET Packaging Circularity PET: A Polymer Designed for Recycling Comparison between Mechanical and Monomer Recycling for PET Conclusions

Recycling is a key enabler of the circularity of PET packaging

Nestlé's Vision for Sustainable Packaging Recycling: a key enabler for PET Packaging Circularity PET: A Polymer Designed for Recycling Comparison between Mechanical and Monomer Recycling for PET Conclusions

PET is a thermoplastic polymer which requires little additives to serve many functions:

- It is available at scale and can be recycled mechanically
- It must be sorted from other materials, washed, ground and then extruded & « devolatilized »

PET is derived from a reversible polycondensation reaction

- It can be depolymerised to intermediates and monomers, then purified, then repolymerised again to a virgin like Polymer
- Unlike polyolefins, the output of PET Monomer Recycling can only be used for making PET not energy....

PET is derived from a reversible polycondensation reaction

- It can be depolymerised to intermediates and monomers, then purified, then repolymerised again to a virgin like Polymer
- Unlike polyolefins, the output of PET Monomer Recycling can only be used for making PET not energy....

Development

Partial depolymerisation without intermediate purification step is also possible with PET: Semi chemical-recycling

Nestlé's Vision for Sustainable Packaging Recycling: a key enabler for PET Packaging Circularity PET: A Polymer Designed for Recycling **Comparison between Mechanical and Monomer Recycling for PET** Conclusions

Attributes	Mechanical Recycling	Monomer Recycling	
Process Simplicity & Robustness			Process
Energy & LCA Efficiency (GHG)			Principle
Feedstock Versatility (Color, D4R)			
Ability to produce Food Grade Resin with non Food Grade Feedstock			Quality of Recyclate
Multi loop recycling			
Ecology & Economy of scale			
CAPEX per metric ton			Costs
OPEX per metric ton			
Feedstock Collection (& Availability)			Externalities
Regulation			

Research and Development

Attributes	Mechanical Recycling	Monomer Recycling	
Process Simplicity & Robustness		🔶 ?	Process
Energy & LCA Efficiency (GHG)	***	÷+	Principle
Feedstock Versatility (Color, D4R)			
Ability to produce Food Grade Resin with non Food Grade Feedstock			Quality of Recyclate
Multi loop recycling			
Ecology & Economy of scale			
CAPEX per metric ton			Costs
OPEX per metric ton			
Feedstock Collection (& Availability)			Externalities
Regulation			LAGINAILLES

Attributes	Mechanical Recycling	Monomer Recycling	
Process Simplicity & Robustness		🔶 ?	Process
Energy & LCA Efficiency (GHG)	+++ +++	÷+	Principle
Feedstock Versatility (Color, D4R)	÷+	*+++	
Ability to produce Food Grade Resin with non Food Grade Feedstock	+	****	Quality of Recyclate
Multi loop recycling	+++	+++ ++	
Ecology & Economy of scale			
CAPEX per metric ton			Costs
OPEX per metric ton			
Feedstock Collection (& Availability)			Externalities
Regulation			LAtemainties

Attributes	Mechanical Recycling	Monomer Recycling	
Process Simplicity & Robustness	++++	↓ ?	Process
Energy & LCA Efficiency (GHG)	+++++	÷+	Principle
Feedstock Versatility (Color, D4R)	++	*+++	
Ability to produce Food Grade Resin with non Food Grade Feedstock	+	+++ +	Quality of Recyclate
Multi loop recycling	+ + +	+++ ++	
Ecology & Economy of scale	****	🔶 🛖 🧧	
CAPEX per metric ton	+++	?	Costs
OPEX per metric ton	++++	- ?	
Feedstock Collection (& Availability)			Externalities
Regulation			Externalities

Attributes	Mechanical Recycling	Monomer Recycling	
Process Simplicity & Robustness	+++++	🔶 ?	Process
Energy & LCA Efficiency (GHG)	****	44	Principle
Feedstock Versatility (Color, D4R)	++	+++ +	
Ability to produce Food Grade Resin with non Food Grade Feedstock	+	+++ +	Quality of Recyclate
Multi loop recycling	+++	++++	
Ecology & Economy of scale	****	🔶 🔶 ?	
CAPEX per metric ton	+++	— ?	Costs
OPEX per metric ton	+++	🔶 ?	
Feedstock Collection (& Availability)	+++	+	Externalities
Regulation	╋╋╋	- - ?	LAGINAIILIES

Nestlé's Vision for Sustainable Packaging Recycling: a key enabler for PET Packaging Circularity PET: A Polymer Designed for Recycling Comparison between Mechanical and Monomer Recycling for PET **Conclusions**

PET Mechanical and Monomer Recycling are complementary

Attributes	Mechanical Recycling	Monomer Recycling	
Process Simplicity & Robustness	+++ +++	🔶 ?	Process
Energy & LCA Efficiency (GHG)	****	÷+	Principle
Feedstock Versatility (Color, D4R)	++	****	
Ability to produce Food Grade Resin with non Food Grade Feedstock	+	++++	Quality of Recyclate
Multi loop recycling	+++	+++ ++	
Ecology & Economy of scale	****	🔶 🔶 🧍	
CAPEX per metric ton	4444	— ?	Costs
OPEX per metric ton	4444	🔶 ?	
Feedstock Collection (& Availability)	**	+	Extornalition
Regulation	+++	?	Externalities

- Mechanical recycling:
 - Is the most environmentally and economically efficient Recycling Process

But

Has limits

(Feedstock purity, Polymer degradation after multiple cycles.....)

- Monomer recycling
 - Can turn current PET wastes into new resources
 - Allow better purification and limit degradation reactions:
 - It can turn non food grade items into food grade
 - It maintains PET bottle feedstock quality

But

- Must be environmentally relevant vs Incineration with energy recovery
- Must be cost competitive with virgin material
- Is technologically more complex to develop and industrialize
- Lacks a clear and relevant regulatory framework

PET Monomer Recycling needs to be supported

- Collection of non mechanically recycled PET items needs to be structured and developed
- Monomer Recycling is more technologically complex and is mostly developed by start-ups. Today Monomer Recycling needs
 - Support at R&D stage
 - To qualify as many feedstocks as possible
 - To define relevant quality specifications
 - Support during scale-up:
 - To guide and fund industrial scale-up
 - To avoid unnecessary production costs through Mass Balance

Role of Mass Balance: « Unit In 🔿 Unit Out »

Accounting for material entering and leaving a system, mass flows which might have been unknown can be identified

Mass balance can accelerate the delivery of environmental benefits coming from monomer recycling

- 1) We expect Mass Balance to reduce :
 - CAPEX: No need for dedicated units likewise to « renewable » electricity
 - OPEX: no campaign production mode
- 2) Mass Balance needs aligned rules on claims (ISO 22095 project by ISO/PC 308)
- 3) Mass Balance needs to be understood and valued by all stakeholders

PET packaging has the potential to become truly circular: 2021-2025

PET packaging has the potential to become truly circular: 2030+

29 J.F. BRIOIS - PETCore Conference - June 3rd, 2021