
Kubernetes Intro

Docker limitation

 Docker run single instance on the single host.

 Scaling, load balancing and clustering is not available

 Container across cluster limitation

Multiple solution available such as Mesosphere,Docker Swarn and

Kubernetes.

Need of Container Orchestration

Engine

 Why we need Orchestration Engine

 What is kubernetes

 Comparison with similar product

Why we need??

 Docker is limited to one single host.

 When we need to deploy on large scale

 When we think about high availability, replication

 Docker as a production ready solution

 When we talk about application stack, micro services docker compose is

the solution, but this is also limited to one single host

Only solution: Container orchestration, what are the solution

Kubernetes

 We have pool of servers, where we need to run dockers.

 If we don’t have orchestration engine, it would be difficult, where to

schedule?

 How to do load balancing. Manually tracking everything 

 Without any kind of solution, if we plan to use docker we need to perform

scheduling ,management manually…

..

 Rather then sending the request to each node, we are submitting our

request to container orchestrator engine.

 This engine will take care scheduling the resource, will take care of

resource utilization..

 Take a pool of server, create an logical entity, container orchestrator

engine take care of logical entity.

Comparison of COEs

 Kubernetes: Robust, most features, its by google.

 Docker swarm :Provided by Docker. Easy to deploy. Seamless with docker

cli.

 Mesos: Apace project, Mesos is not purely COEs, this is orchestrator. It has

concept of datacenter os, so it again create a pool server.

 Hadoop job

 Batch job

 Docker job

Everything require a framework. For docker this require marathon

Key features of COE

 Clustering

 Scheduling

 Container as service such as cloud providers gives IAAS

 Dynamic provision, horizontal scaling

 Load balancing option

 Fault tolerance

 Release statergy, rolling update..

Why kubernetes

 Created by google, based on their leaning

 Its based on Borg

 Google now given to Open source ,community based.

 Lot of learning from Google.

 Amount of features

 It can use for Runc ,rocket

 Redhat OSE completely based on kubernetes.

Kubernetes history

 This is developed by Google

 Borg was the product name, developed by Google internally

 Used across multiple product solution.

 Borg which was developed at Google to manage both long running

processes and batch jobs, which was earlier handled by separate systems.

 Google opensource kubernetes for community. Now this is maintain by

opensource communities.

What is Kubernetes??

 Kubernetes is opensource container management tool.

 Kubernetes has the capability of automating deployment, scaling of the
application and operations of application containers across cluster

 Capable of creating container centric infrastructure

 Kubernetes can run application on clusters of physical and virtual
machine.

 It helps in moving from host-centric infrastructure to container centric
infrastructure.

 Kubernetes is an orchestration framework, which deploy container in unit
call pods

Kubernetes architecture

 Kubernetes has a cluster architecture

 It has client-server [master-node] architecture

 Master would be on one linux vm with following components

 Etcd

 Api Server

 Scheduler

 Controller Manager

…

 Node would be running on another linux vm

 Kubernetes can have multiple node

 Following are the node components:

 Kubelet service

 Docker/Container run time

 Kubernetes proxy

Kubernetes Architecture

What next?

Lets understand each component in details

Master components

Kube api-server

 The Kubernetes API server validates and configures data for the api

objects which include pods, services, replicationcontrollers, and others.

 The API Server services REST operations and provides the frontend to the

cluster's shared state through which all other components interact.

 The API server is a component of the Kubernetes control plane that exposes
the Kubernetes API. The API server is the front end for the Kubernetes control
plane.

 It can scale horizontally

https://kubernetes.io/docs/reference/glossary/?all=true#term-control-plane

Master Component: etcd

 Etcd originated from two ideas Etcd= etc+d

 etc directory in linux stores the configuration file

 D stands for distributed system.

 Hence a “d”stributed “etc” is “etcd”

 Stores metadata in a consistent and fault-tolerant way.

…

 Kubernetes stores configuration data into etcd

 This used for service discovery and cluster management

 Kubernetes persist cluster state into etcd.

 Master always keep monitoring the etcd and roll out critical configuration

changes.

Other solution

 Zookeeper

➢ Zookeeper solves the same problem as etcd distributed system coordination

and metadata storage.

➢ Zookeeper has its own custom jute RPC protocol.

 Consul

 Consul bills itself an end-to-end service discovery framework.

 For compete service discovery Consul is the best solution with kubernetes.

kube-scheduler

 Control plane component that watches for newly created Pods with no

assigned node, and selects a node for them to run on.

 Factors taken into account for scheduling decisions include: individual and

collective resource requirements, hardware/software/policy constraints,

affinity and anti-affinity specifications, data locality, inter-workload

interference, and deadlines

kube-controller-manager

 Control plane component that runs controller processes.

 Logically, each controller is a separate process, but to reduce complexity,
they are all compiled into a single binary and run in a single process.

 Some types of these controllers are:

 Node controller: Responsible for noticing and responding when nodes go down.

 Job controller: Watches for Job objects that represent one-off tasks, then
creates Pods to run those tasks to completion.

 Endpoints controller: Populates the Endpoints object (that is, joins Services &
Pods).

 Service Account & Token controllers: Create default accounts and API access
tokens for new namespaces

kubelet

 An agent that runs on each node in the cluster. It makes sure that

containers are running in a Pod.

 The kubelet takes a set of PodSpecs that are provided through various

mechanisms and ensures that the containers described in those PodSpecs

are running and healthy. The kubelet doesn't manage containers which

were not created by Kubernetes

Kube-proxy

 kube-proxy is a network proxy that runs on each node in your cluster,

implementing part of the Kubernetes Service concept.

 kube-proxy maintains network rules on nodes. These network rules allow

network communication to your Pods from network sessions inside or

outside of your cluster.

…

Kubernetes we use kubectl as cli

Kubernetes bit complex, lot of features.

- Lot of objects

- API format

➢ Understand the api stack

➢ Understand object stack

➢ AKMS format

Key features of k8s

Setting up Kubernetes using kubeadm

 kubeadm: the command to bootstrap the cluster.

 kubelet: the component that runs on all of the machines in your cluster

and does things like starting pods and containers.

 kubectl: the command line util to talk to your cluster.

Setting up k8s cluster using kubeadm

 Kubeadm init <args>

 kubeadm init first runs a series of prechecks to ensure that the machine is

ready to run Kubernetes. These prechecks expose warnings and exit on

errors. kubeadm init then downloads and installs the cluster control plane

components

 Choose a Pod network add-on, and verify whether it requires any

arguments to be passed to kubeadm init. Depending on which third-party

provider you choose, you might need to set the --pod-network-cidr to a

provider-specific value

..

..

To start using your cluster, you need to run the following as a regular user:

mkdir -p $HOME/.kube

sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config

sudo chown $(id -u):$(id -g) $HOME/.kube/config

Check the nodes status

Setup network

 You must deploy a Container Network Interface (CNI) based Pod network

add-on so that your Pods can communicate with each other.

 Cluster DNS (CoreDNS) will not start up before a network is installed.

 Flannel or calico can be used for the same

 kubectl apply -f

https://raw.githubusercontent.com/coreos/flannel/master/Documentatio

n/kube-flannel.yml

	Slide 1: Kubernetes Intro
	Slide 2: Docker limitation
	Slide 3: Need of Container Orchestration Engine
	Slide 4: Why we need??
	Slide 5: Kubernetes
	Slide 6:
	Slide 7: ..
	Slide 8: Comparison of COEs
	Slide 9: Key features of COE
	Slide 10: Why kubernetes
	Slide 11: Kubernetes history
	Slide 12: What is Kubernetes??
	Slide 13: Kubernetes architecture
	Slide 14: …
	Slide 15: Kubernetes Architecture
	Slide 16: What next?
	Slide 17: Master components
	Slide 18: Kube api-server
	Slide 19: Master Component: etcd
	Slide 20: …
	Slide 21: Other solution
	Slide 22: kube-scheduler
	Slide 23: kube-controller-manager
	Slide 24: kubelet
	Slide 25: Kube-proxy
	Slide 26: …
	Slide 27: Key features of k8s
	Slide 28: Setting up Kubernetes using kubeadm
	Slide 29: Setting up k8s cluster using kubeadm
	Slide 30: ..
	Slide 31: ..
	Slide 32: Check the nodes status
	Slide 33: Setup network
	Slide 34

