
Terraform state files
Ow

Topics

• What is Terraform State?

• Purpose of Terraform State Files

• Types of state files

• Local vs. Remote State Storage

• Protecting and Managing State Files

• Working with State Files

What is terraform state file and purpose??

• Terraform state is a fundamental concept in Terraform, an
infrastructure as code tool.

• State files are used to store and manage the current state of your
infrastructure resources.

• State files contain information about the resources managed by
Terraform, including their attributes, dependencies, and metadata.

• By tracking resource state, Terraform can plan and apply changes
efficiently, only modifying the necessary resources.

terraform.tfstate

• terraform.tfstate is the default filename for the Terraform state file.
• It is automatically generated and managed by Terraform.
• The state file is written in JSON format and contains information about the

current state of your infrastructure.
• It includes details such as resource IDs, attributes, dependencies, and

metadata.
• The state file is used by Terraform to plan and apply changes to your

infrastructure, ensuring consistency and managing resource dependencies.
• By default, terraform.tfstate is stored locally in the same directory as your

Terraform configuration files (*.tf).
• It should not be manually modified or manipulated, as Terraform relies on

the integrity of the state file for accurate deployments.

terraform.tfstate.backup

• terraform.tfstate.backup is an automatically generated backup file of the previous
state file.

• Whenever Terraform modifies the state file (e.g., during terraform apply), it
creates a backup of the previous state file.

• The backup file provides a safety net in case of accidental loss or corruption of
the primary state file.

• The backup file has the same content and format as the primary state file.

• It is stored in the same directory as terraform.tfstate, and its purpose is to allow
you to revert to the previous state in case of issues.

• The backup file can be used to restore the previous state by renaming it to
terraform.tfstate.

• It is good practice to keep backups of the state file to mitigate potential risks and
enable recovery in case of accidents.

Local State Storage:

• By default, Terraform stores the state files locally on the machine
where you run the Terraform commands.

• Local state storage is convenient and suitable for individual or small-
scale projects.

• The state file (terraform.tfstate) is stored in the same directory as
your Terraform configuration files.

• However, local state storage has limitations in terms of collaboration,
concurrent access, and scalability.

• It may not be the best choice for team-based projects or
environments with multiple Terraform users.

Remote State Storage:

• Remote state storage involves storing the Terraform state files in a
remote location accessible to all team members and infrastructure
components.

• There are various options for remote state storage, such as Terraform
Cloud, AWS S3, Azure Blob Storage, Google Cloud Storage, and more.

• To use remote state storage, you need to configure the backend in
your Terraform configuration, specifying the storage location and
access credentials.

Protecting and Managing State Files

• Access Control:
• Limit access to state files to only authorized individuals or systems

• Use appropriate file permissions to restrict read and write access to state
files.

• Consider using encryption to protect the contents of the state files

• Backup and Recovery:
• Regularly back up your state files to ensure their availability in case of

accidental loss, corruption, or disaster.

• Maintain separate copies of backups in secure and reliable storage locations.

..

• Remote State Storage
• Utilize remote state storage solutions such as Terraform Cloud, AWS S3, Azure Blob

Storage, or Google Cloud Storage.
• Remote storage offers better collaboration, versioning, and access control features.
• Ensure proper configuration and authentication to securely interact with remote

storage.

• State Locking:
• Implement state locking mechanisms to prevent concurrent access and modifications

to the state files.
• State locking helps maintain consistency and avoid conflicts when multiple users or

systems are working with the same state simultaneously.
• Consider using backend-specific locking mechanisms or external tools like Consul or

DynamoDB for state locking.

	Slide 1: Terraform state files
	Slide 2: Topics
	Slide 3: What is terraform state file and purpose??
	Slide 4: terraform.tfstate
	Slide 5: terraform.tfstate.backup
	Slide 6: Local State Storage:
	Slide 7: Remote State Storage:
	Slide 8: Protecting and Managing State Files
	Slide 9: ..

