
Terraform Plugin 
Architecture

ow



Overview

• Terraform's plugin architecture allows it to interact with various 
infrastructure platforms and providers. Plugins enable Terraform to 
communicate with specific APIs and services, abstracting away the 
complexities of managing infrastructure resources.
• Provider Plugins

• Provisioner Plugins

• State Backend Plugins

• External Data Source Plugins



..



Provider Plugins

• Purpose: Provider plugins enable Terraform to interact with different 
infrastructure platforms (e.g., AWS, Azure, GCP). Each provider plugin 
implements the necessary functionality to manage resources on a 
specific platform.

• Example: Suppose you want to provision AWS EC2 instances using 
Terraform. To achieve this, you need the AWS provider plugin. You 
would configure the AWS provider in your Terraform files, and when 
you run terraform plan or terraform apply, Terraform uses the AWS 
provider plugin to communicate with the AWS API, create, modify, or 
delete EC2 instances.



Provisioner Plugins

• Purpose: Provisioner plugins allow Terraform to execute additional 
actions on resources during the provisioning process. These actions 
can include running scripts, executing commands, or performing 
configuration tasks on the created resources.

• Example: Let's say you want to install specific software on an EC2 
instance after provisioning it with Terraform. You can use a 
provisioner plugin, such as the "remote-exec" provisioner, to execute 
shell commands on the EC2 instance once it's created. This plugin 
allows you to run scripts or commands remotely on the provisioned 
resource.



State Backend Plugins

• Purpose: State backend plugins handle the storage and retrieval of 
Terraform state. They define where the state file is stored and how to 
access it. Different backend plugins support various storage options 
like local file system, remote storage systems (e.g., Amazon S3, Azure 
Blob Storage), or remote state management services (e.g., Terraform 
Cloud, HashiCorp Consul).

• Example: If you want to store your Terraform state in an S3 bucket, 
you would use the S3 backend plugin. This plugin configures 
Terraform to store and retrieve the state file from the specified S3 
bucket. When you run Terraform commands, the S3 backend plugin 
handles the interaction with the S3 API.



External Data Source Plugins

• Purpose: External data source plugins allow Terraform to fetch data 
from external sources and use it within the Terraform configuration. 
These plugins retrieve data from APIs, databases, or other external 
systems and provide the fetched data as input to Terraform resources.

• Example: Imagine you need to fetch information about existing AWS 
security groups to be used within your Terraform configuration. You 
can use an external data source plugin, such as the AWS Security 
Group data source plugin. This plugin communicates with the AWS 
API, retrieves the desired security group details, and exposes them as 
data that can be used in your Terraform resources.


	Slide 1: Terraform Plugin Architecture
	Slide 2: Overview
	Slide 3: ..
	Slide 4: Provider Plugins
	Slide 5: Provisioner Plugins
	Slide 6: State Backend Plugins
	Slide 7: External Data Source Plugins

