
Stateful sets
OW

Explain

• What is stateful sets?

• API

• Limitation

StatefulSets

• StatefulSet is the workload API object used to manage stateful
application

• Like a Deployment, a StatefutSet manages Pods are based on an
identical Spec

• StatefulSet maintains a sticky identity for each of their pods

• Each pod has persistent identifier that maintains across any
rescheduling.

• When application need stable network identifier or stable persistent
storage, StatefulSet are useful

..

• Deleting or scaling down StatefulSet will not delete the volumes
associated .

• StatefulSet currently require Headless Service to be responsible for
network identity of the pods. Kubernetes admin has to create the
service.

• StatefulSet persistent volume must be provided by storage class and
storage provisioner

Api for stateful set

..

• A Headless Service, named nginx, is used to control the network
domain.

• The StatefulSet, named web, has a Spec that indicates that 3 replicas
of the nginx container will be launched in unique Pods.

• The volumeClaimTemplates will provide stable storage using
PersistentVolumes provisioned by a PersistentVolume Provisioner.

• You must set the .spec.selector field of a StatefulSet to match the
labels of its .spec.template.metadata.labels [Pod Selector]

Stable Network ID

• Each pod in StatefulSet drives its hostname from StatefulSet and the ordinal
of the pod. The pattern constructed hostname is $(statefulsetname)-
$(ordinal)

• The yaml in lab will create three pod: web-0,web-1,web-2.

• StatefulSet can use a Headless service to control the domain of the Pods.

• The domain managed by this service takes form:
$(servicename).$(namespace).svc.cluster.local, where “cluster.local” is the
cluster domain.

• Each pod is created, it gets matching DNS subdomain:
$(podname).$(governing service domain).

..

Deployment and Scaling

• For a StatefulSet with N replicas, when Pods are being deployed, they
are created sequentially, in order from {0..N-1}.

• When Pods are being deleted, they are terminated in reverse order,
from {N-1..0}.

• Before a scaling operation is applied to a Pod, all of its predecessors
must be Running and Ready.

• Before a Pod is terminated, all of its successors must be completely
shutdown

Update Strategies

• A StatefulSet’s .spec.updateStrategy field allows you to configure
rolling update:
• OnDelete: When a StatefulSet’s .spec.updateStrategy.type is set to OnDelete,

the StatefulSet controller will not automatically update the pods. Users must
manually delete Pods to cause the controller to create new pods that reflect
modification made to .spec.template

• RollingUpdate: When .spec.udpateStrategy.type is set to RollingUpdate, the
controller will delete and recreate each pod. It will proceed from largest
ordinal to the smallest. It will wait until the updated pod is Running and ready
prior to update the next one.

Partitioned rolling updates

• The RollingUpdate update strategy can be partitioned, by specifying a
.spec.updateStrategy.rollingUpdate.partition. If a partition is specified,
all Pods with an ordinal that is greater than or equal to the partition
will be updated when the StatefulSet's .spec.template is updated.

• All Pods with an ordinal that is less than the partition will not be
updated, and, even if they are deleted, they will be recreated at the
previous version.

• They are useful if you want to stage an update, roll out a canary, or
perform a phased roll out.

PersistentVolumeClaim retention

• The optional .spec.persistentVolumeClaimRetentionPolicy field
controls if and how PVCs are deleted during the lifecycle of a
StatefulSet. You must enable the StatefulSetAutoDeletePVC feature
gate to use this field. Once enabled, there are two policies you can
configure for each StatefulSet:

• whenDeleted
• configures the volume retention behavior that applies when the StatefulSet is

deleted

• whenScaled
• configures the volume retention behavior that applies when the replica count

of the StatefulSet is reduced; for example, when scaling down the set.

..

Replicas

• spec.replicas is an optional field that specifies the number of desired
Pods. It defaults to 1.

• Should you manually scale a deployment, example via kubectl scale
statefulset statefulset --replicas=X, and then you update that
StatefulSet based on a manifest (for example: by running kubectl apply
-f statefulset.yaml), then applying that manifest overwrites the manual
scaling that you previously did.

• If a HorizontalPodAutoscaler (or any similar API for horizontal scaling)
is managing scaling for a Statefulset, don't set .spec.replicas. Instead,
allow the Kubernetes control plane to manage the .spec.replicas field
automatically.

	Slide 1: Stateful sets
	Slide 2: Explain
	Slide 3: StatefulSets
	Slide 4: ..
	Slide 5: Api for stateful set
	Slide 6: ..
	Slide 7: Stable Network ID
	Slide 8: ..
	Slide 9: Deployment and Scaling
	Slide 10: Update Strategies
	Slide 11: Partitioned rolling updates
	Slide 12: PersistentVolumeClaim retention
	Slide 13: ..
	Slide 14: Replicas

