
Service
Ow



What is Service?

• An abstract way to expose an application running on a set of pods as 
network service.

• Problem statement: Kubernetes Pods are created and destroyed to 
match the desired state of your cluster. Pods are nonpermanent 
resources. if some set of Pods (call them "backends") provides 
functionality to other Pods (call them "frontends") inside your cluster, 
how do the frontends find out and keep track of which IP address to 
connect to, so that the frontend can use the backend part of the 
workload?

https://kubernetes.io/docs/concepts/workloads/pods/


Service Resources

• In Kubernetes, a Service is an abstraction which defines a logical set of 
Pods and a policy by which to access them (sometimes this pattern is 
called a micro-service).

• The set of Pods targeted by a Service is usually determined by 
a selector.

• Kubernetes api-server will be queried for service discovery, they 
provide the updated end-points.

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


Defining a service

• A Service in Kubernetes is a REST object, similar to pod

• Service request post to the API Server to create a new instance

• The name of a Service object must be a valid RFC 1035 label name.

• This means the name must:

• contain at most 63 characters

• contain only lowercase alphanumeric characters or '-'

• start with an alphabetic character

• end with an alphanumeric character

https://kubernetes.io/docs/concepts/overview/working-with-objects/names#rfc-1035-label-names


Example

• For example, suppose you have a set of Pods where each listens on 
TCP port 9376 and contains a label app.kubernetes.io/name=MyApp



..

• This specification creates a new Service object named "my-service", 
which targets TCP port 9376 on any Pod with the 
app.kubernetes.io/name=MyApp label.

• Kubernetes assigns this Service an IP address (sometimes called the 
"cluster IP"), which is used by the Service proxies 

• The controller for the Service selector continuously scans for Pods that 
match its selector, and then POSTs any updates to an Endpoint object 
also named "my-service".



lab

• Nginx-svc and nginx-pod yaml in repo

• Create svc using
• kubectl create –f <svc.yaml>

• kubectl get svc

• kubectl get ep

• Create pod using kubectl command

• kubectl get ep



Service without selectors

• We can services without selector. In this case used corresponding 
endpoint. the Service can abstract other kinds of backends, including 
ones that run outside the cluster. For example:
• You want to have an external database cluster in production, but in your test 

environment you use your own databases.

• You want to point your Service to a Service in a different Namespace or on 
another cluster.

• You are migrating a workload to Kubernetes. While evaluating the approach, 
you run only a portion of your backends in Kubernetes.



example



.

• Because this Service has no selector, the corresponding Endpoints 
object is not created automatically. You can manually map the Service 
to the network address and port where it's running, by adding an 
Endpoints object manually:



Virtual ips and service proxies

• Every node in a Kubernetes cluster runs a kube-proxy. kube-proxy is 
responsible for implementing a form of virtual IP for Services 

• The kube-proxy's configuration is done via a ConfigMap, and the 
ConfigMap for kube-proxy effectively deprecates the behaviour for 
almost all of the flags for the kube-proxy.

• Kubectl get pods –namespace=kube-sytem

• kubectl get pod kube-proxy-vkm79 -n kube-system -o yaml

• kubectl exec kube-proxy-vkm79 -c kube-proxy -n kube-system -- cat 
/var/lib/kube-proxy/config.conf



..



Proxy mode

• Mainly two types proxy modes
• Iptables
• IPVS

• Iptables mode In this mode, kube-proxy watches the Kubernetes 
control plane for the addition and removal of Service and Endpoint 
objects, Using iptables to handle traffic has a lower system overhead, 
because traffic is handled by Linux netfilter without the need to switch 
between userspace and the kernel space.

• You can use Pod readiness probes to verify that backend Pods are 
working OK, so that kube-proxy in iptables mode only sees backends 
that test out as healthy

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes


IPVS

• In ipvs mode, kube-proxy watches Kubernetes Services and Endpoints, 
calls netlink interface to create IPVS rules accordingly and synchronizes 
IPVS rules with Kubernetes Services and Endpoints periodically.

• To run kube-proxy in IPVS mode, you must make IPVS available on the 
node before starting kube-proxy.

• When kube-proxy starts in IPVS proxy mode, it verifies whether IPVS 
kernel modules are available. If the IPVS kernel modules are not 
detected, then kube-proxy falls back to running in iptables proxy 
mode.



Choosing your own IP address

• You can specify your own cluster IP address as part of a Service 
creation request. To do this, set the .spec.clusterIP field. For example, 
if you already have an existing DNS entry that you wish to reuse, or 
legacy systems that are configured for a specific IP address and difficult 
to re-configure.

• The IP address that you choose must be a valid IPv4 or IPv6 address 
from within the service-cluster-ip-range CIDR range that is configured 
for the API server. If you try to create a Service with an invalid clusterIP
address value, the API server will return a 422 HTTP status code to 
indicate that there's a problem



Core-DNS

• CoreDNS, watches the Kubernetes API for new Services and creates a 
set of DNS records for each one

• For example, if you have a Service called my-service in a Kubernetes 
namespace my-ns, the control plane and the DNS Service acting 
together create a DNS record for my-service.my-ns. Pods in the my-ns 
namespace should be able to find the service by doing a name lookup 
for my-service (my-service.my-ns would also work).

• Pods in other namespaces must qualify the name as my-service.my-ns. 
These names will resolve to the cluster IP assigned for the Service.



SRV records

• Kubernetes also supports DNS SRV (Service) records for named ports. 
If the my-service.my-ns Service has a port named http with the 
protocol set to TCP, you can do a DNS SRV query for _http._tcp.my-
service.my-ns to discover the port number for http, as well as the IP 
address.



Headless Services

• Sometimes you don't need load-balancing and a single Service IP. In this 
case, you can create what are termed "headless" Services, by explicitly 
specifying "None" for the cluster IP (.spec.clusterIP).

• You can use a headless Service to interface with other service discovery 
mechanisms, without being tied to Kubernetes' implementation.

• For headless Services, a cluster IP is not allocated, kube-proxy does not 
handle these Services, and there is no load balancing or proxying done by 
the platform for them.

• For headless Services that define selectors, the endpoints controller creates 
Endpoints records in the API, and modifies the DNS configuration to return 
A records (IP addresses) that point directly to the Pods backing the Service.



Type of services

• ClusterIP: Exposes the Service on a cluster-internal IP. Choosing this value 
makes the Service only reachable from within the cluster. This is the default 
ServiceType.

• NodePort: Exposes the Service on each Node's IP at a static port (the 
NodePort). A ClusterIP Service, to which the NodePort Service routes, is 
automatically created. You'll be able to contact the NodePort Service, from 
outside the cluster, by requesting <NodeIP>:<NodePort>.

• LoadBalancer: Exposes the Service externally using a cloud provider's load 
balancer. NodePort and ClusterIP Services, to which the external load 
balancer routes, are automatically created.

• ExternalName: Maps the Service to the contents of the externalName field 
(e.g. foo.bar.example.com), by returning a CNAME record with its value. No 
proxying of any kind is set up.



Nodeport

• If you set the type field to NodePort, the Kubernetes control plane allocates 
a port from a range specified by --service-node-port-range flag (default: 
30000-32767)

• Each node proxies that port (the same port number on every Node) into 
your Service. Your Service reports the allocated port in its 
.spec.ports[*].nodePort field.

• If you want a specific port number, you can specify a value in the nodePort
field. The control plane will either allocate you that port or report that the 
API transaction failed. This means that you need to take care of possible 
port collisions yourself. You also have to use a valid port number, one that's 
inside the range configured for NodePort use.



Example and lab

• Note that this Service is visible as <NodeIP>:spec.ports[*].nodePort
and .spec.clusterIP:spec.ports[*].port. 


	Slide 1: Service
	Slide 2: What is Service?
	Slide 3: Service Resources
	Slide 4: Defining a service
	Slide 5: Example
	Slide 6: ..
	Slide 7: lab
	Slide 8: Service without selectors
	Slide 9: example
	Slide 10: .
	Slide 11: Virtual ips and service proxies
	Slide 12: ..
	Slide 13: Proxy mode
	Slide 14: IPVS
	Slide 15: Choosing your own IP address 
	Slide 16: Core-DNS
	Slide 17: SRV records
	Slide 18: Headless Services
	Slide 19: Type of services
	Slide 20: Nodeport
	Slide 21: Example and lab

