Jekins pipeline

oW

What is pipeline?

What is Pipeline?

* InJenkins, a pipeline is a group of events or jobs which are interlinked with one another in a

sequence.
Pipe
1
-ﬁw-

3
Pipeline

BUILD

Notification Notification Notification Notification
Feedback Feedback Feedback Feedback

How to setup BUILD PIPELINE in Jenkins

Step1: Chain required jobs in sequence Add upstream/downstream jobs
Step2: Install Build Pipeline Plugin
Step3: Add

Build Pipeline View
Configure the view Step

Step4: Run and Validate

Cl & CD

&

— Production

Environment
Developer 1

GitHub
o 0 S
—— — - |
— e 0 u Release and
t.- Pass deploy
Devel
w2 Source Control Jenkins C)
e Management Server Server

@ Fail

T .
Developer 3 Q Fall

Toactar

Jenkins Pipeline

Commiit Build Deploy Dev/QA...

——» Continuous Integration/Delivery —»

Production

How many Ways we can create Pipeline

» We can Create Jenkins Pipeline in 2 Ways
* 1) Using Build And Delivery Pipeline Plugins

+ 2) Using Groovy Script on the Fly(Here we use Jenkins file)
- Scripted

- Declarative

Build And Delivery Pipeline Plugins

-3

Jobl lob2 Job3 lobd
Pipeline Job with Scripting

J

Pipeline Job Deploy

Gy
=
3
=
-
g
=
=
=

W PAVANDNLINETRAININGS C Ob

Types of Pipeline

= Scripted Pipeline

= Declarative Pipeline

Scripted Pipeline

Jenkinsfile (Scripted Pipeline)
node { o

stage('Build') { Q © Execute this Pipeline or any of its stages, on any available agent.
// 0 Defines the "Build™ stage. stage blocks are optional in Scripted Pipeline syntax. However, implementing
} © ::upe blocks in a Scripted Pipeline provides clearer visualization of each “stage's subset of tasks/steps in the
stage('Test') { o kB UL
// ° e Perform some steps related to the "Build” stage.
} © Defines the “Test" stage.
stage('Deploy') { o © Perform some steps related to the “Test” stage.
/7 o © Defines the "Deploy” stage.
} 0 Perform some steps related to the "Deploy” stage.

Declarative Pipeline

Aerrirrrsifile (M eclfararive FPippaelirzal
pipelime {
agernt =y
stage=
stagsed "Bwudild " 3 £
steps 4
= o "Buildings .-
¥
_..
|
stagsed "Te=1t "3 4
sTteps 4
=choa "Testing. -
¥
_..
|
staged "Deployw " -+
sTteps 4
= o "Deploywinmg .
¥
_..
|

Build

* For many projects the beginning of "work" in the Pipeline would be
the "build" stage. Typically this stage of the Pipeline will be where
source code is assembled, compiled, or packaged. The Jenkinsfile is
not a replacement for an existing build tool such as GNU/Make,
Maven, Gradle, etc, but rather can be viewed as a glue layer to bind

the multiple phases of a project’s development lifecycle (build, test,
deploy, etc) together.

* Jenkins has a number of plugins for invoking practically any build tool

in general use, but this example will simply invoke make from a shell
step (sh)

Jenkinsfile (Declarative Pipeline)

pipeline {
agent any
stages {
stage('Build') {
steps {
sh "make’ o
archiveArtifacts artifacts: '"**/target/*.jar’, fingerprint: true ‘,
h
}
¥

Test

* Running automated tests is a crucial component of any successful
continuous delivery process. As such, Jenkins has a number of test
recording, reporting, and visualization facilities provided by a number
of plugins. At a fundamental level, when there are test failures, it is

useful to have Jenkins record the failures for reporting and
visualization in the web UI.

* The example below uses the junit step, provided by the JUnit plugin.

Jenkinsfile (Declarative Pipeline)
pipeline {
agent any

stages
stage('Test') {
steps {
F* "make check™ returns non-zero on test failures,
* using " true” to allow the Pipeline to continue nonetheless
*/
sh 'make check || true' @
junit “**/target/*.xml’
¥
F
L

Deploy

* Deployment can imply a variety of steps, depending on the project or
organization requirements, and may be anything from publishing built
artifacts to an Artifactory server, to pushing code to a production
system.

At this stage of the example Pipeline, both the "Build" and "Test"
stages have successfully executed. In essence, the "Deploy" stage will
only execute assuming previous stages completed successful

Jenkinsfile (Declarative Pipeline)
pipeline {
agent any

stages |
stage('Deploy ') {
when {
expression {
currentBuild.result == null || currentBuild.result == "SUCCESS' "

Y
h
steps {
sh 'make publish®

Difference

e Syntax: Scripted pipelines are written in Groovy code, while declarative
pipelines are written in YAML.

* Flexibility: Scripted pipelines offer more flexibility and control over the
pipeline execution, while declarative pipelines have a more opinionated
and structured approach.

 Complexity: Scripted pipelines can be more complex and difficult to
maintain, while declarative pipelines are designed to be simpler and easier
to understand.

e Features: Scripted pipelines offer access to the full Jenkins APl and can be
used to implement advanced features, while declarative pipelines have a
more limited set of features and are more focused on simplicity and ease
of use.

	Slide 1: Jekins pipeline
	Slide 2: What is pipeline?
	Slide 3: ..
	Slide 4
	Slide 5
	Slide 6: ..
	Slide 7: ..
	Slide 8: .
	Slide 9: ..
	Slide 10
	Slide 11: Declarative Pipeline
	Slide 12: Build
	Slide 13: ..
	Slide 14: Test
	Slide 15: ..
	Slide 16: Deploy
	Slide 17: ..
	Slide 18: Difference

