
Introduction to docker
Build once use anywhere

Installation of a software

• Download the installer

• Run the installer

• It may fail during the installation? Why

• Failed due to dependency

• Environmental issues

• OS compatibility issue

• Older version has issue

Current Challenges

A standardized package

History

• In 2008 a project called Linux Containers (LXC) started to pop-up in the wild,
which should revolutionize the container world. LXC combined cgroup and
namespace technologies to provide an isolated environment for running
applications

• This means that Google started their own containerization project in 2007
called Let Me Contain That For You (LMCTFY), which works mainly at the same
level as LXC does. With LMCTFY, Google tried to provide a stable and API driven
configuration without users having to understand the details of cgroups and its
internals.

https://github.com/google/lmctfy

..

• 2013 we see that there was a tool written called Docker, which was built on top of
the already existing LXC stack. One invention of Docker was that the user is now
able to package containers into images to move them between machines.

• Some years later they began to work on libcontainer, a Go native way to spawn
and manage containers

• In 2015, where projects like Kubernetes hit version 1.0. A lot of stuff was ongoing
during that time: The CNCF was founded as part of the Linux Foundation with the
target to promote containers. The Open Container Initiative (OCI)was founded
2015 as well, as an open governance structure around the container ecosystem.

https://github.com/docker/libcontainer
https://golang.org/
https://www.linuxfoundation.org/
https://www.opencontainers.org/

Container runtime

• Application which can run container. For example, systemd is able to
run containers via systemd-nspawn, and NixOS has
integrated container management as well.

• All the other existing container runtimes like CRI-O, Kata
Containers, Firecracker, gVisor, containerd, LXC, runc, Nabla
Containers and many more. A lot of them are now part of the Cloud
Native Computing Foundation (CNCF)

https://www.freedesktop.org/software/systemd/man/systemd-nspawn.html
https://nixos.org/
https://nixos.org/nixos/manual/#ch-containers
https://cri-o.io/
https://katacontainers.io/
https://katacontainers.io/
https://firecracker-microvm.github.io/
https://github.com/google/gvisor
https://containerd.io/
https://linuxcontainers.org/
https://github.com/opencontainers/runc
https://nabla-containers.github.io/
https://nabla-containers.github.io/
https://www.cncf.io/
https://www.cncf.io/

Docker

• Docker is a set of platform as a service products that use OS-level
virtualization to deliver software in packages called container.

• Containers are isolated from one another and bundle their own
software, libraries and configuration files.

• They can communicate with each other through well defined channels

• All containers are run by a single operating-system kernel

Container

• Docker container is a standardized unit which can be created on the fly
to deploy a particular application or environment.

• It can be ubuntu/centos/or some app container (nginx)

• Containers are light-weight

• Docker takes advantage of several features of linux kernel to deliver its
functionality

• Question: If we want to use container for application what are the org
requirements??

Docker internals

Namespaces

• Docker makes use of kernel namespace to provide the isolated
workspace called container

• When we run container, docker creates a set of namespaces for that
container. These namespace provides a set of isolation.

• Each aspect of container run in separate namespace and its access is
limited to that namespace
• PID namespace for process isolation
• NET namespace for managing network interface
• IPC namespace for managing access to IPC resources
• MNT namespace for managing filesystem mount points
• UTS namespace for isolation kernel and version identifier

Cgroups

• Docker makes use of kernel control group for resource allocation and
isolation

• A cgroup limits an application to a specific set of resources

• Control group allow Docker Engine to share available hardware
resources to containers and optionally enforce limits and constraints
• Memory cgroup

• CPU cgroup

• Devices cgroup

• BlkIO cgroup

..

Union File systems

• Union file systems operates by creating layers, making them
lightweight and fasters

• Docker Engine uses UnionsFS to provide the building blocks for
containers

• Union filesystem works on the top of the other file system. It works on
mounting mechanism

• In other words, it mounts multiple directories to a single root.

• AUFS,OverlayFS are few popular UnionFS

..

Containerd

• What Is containerd?
• containerd is a Docker-developed container runtime that manages the life

cycle of a container on a physical or virtual machine (i.e., a host). It creates,
starts, stops, and destroys containers. It can also pull container images from
container registries, mount storage, and enable networking for a container.

• containerd is a daemon, meaning it’s a computer program that runs as a
background process rather than being under the direct control of an
interactive user. It’s available for both Linux and Windows.

• containerd manages the complete container life cycle of its host system—from
image transfer and storage to container execution and supervision to low-level
storage to network attachments and more.

containerd

• containerd is a Docker-made runtime solution. This daemon is
available for Linux and Windows OSes. As part of the Docker project,
containerd manages image transfer and storage, as well as container
creation, execution and supervision.

• Kubernetes does not need the entire Docker platform to use
containerd. With the CRI compatibility plugin, Kubernetes and
containerd can communicate directly.

Open Container Initiative (OCI)

• Docker and other important container industry actors established the
Open Container Initiative (OCI) in 2015. The OCI aims to create
standards for container formats and runtimes. Currently, the OCI has
two specifications:
• image-spec - the image specification that outlines how to create an OCI-

compliant image.

• runtime-spec - the runtime specification for unpacking the filesystem bundle.

runC

• runC is a universal container runtime created by Docker. Although it is
a part of the Docker set of tools, it does not require Docker platform to
run.

• Some important features of runC are:
• Full Linux namespaces support.

• Native support for Linux security features, such as AppArmor, SELinux, etc.

• Windows 10 containers native support.

• Containers that runC creates and manages are OCI compliant.

Container Runtime Interface (CRI)

• Although Kubernetes is a container orchestration platform, at the
lowest level, it also needs to create and manage containers. To achieve
this, Kubernetes uses container runtimes.

• In the beginning, Docker Engine was the only available runtime on the
platform. But the popularity of containerization resulted in competing
solutions and the need for Kubernetes to support them all. With
the Container Runtime Interface plugin, Kubernetes can communicate
with all major runtimes.

.

	Slide 1: Introduction to docker
	Slide 2: Installation of a software
	Slide 3: Current Challenges
	Slide 4: A standardized package
	Slide 5: History
	Slide 6: ..
	Slide 7: Container runtime
	Slide 8: Docker
	Slide 9: Container
	Slide 10: Docker internals
	Slide 11: Namespaces
	Slide 12: Cgroups
	Slide 13: ..
	Slide 14: Union File systems
	Slide 15: ..
	Slide 16: Containerd
	Slide 17: containerd
	Slide 18: Open Container Initiative (OCI)
	Slide 19: runC
	Slide 20: Container Runtime Interface (CRI)
	Slide 21: .

