Dockerfile

oW

Dockerfile

e Docker can build images automatically by reading the instructions
from a Dockerfile.

A Dockerfile is a text document that contains all the commands a user
could call on the command line to assemble an image.

* Using docker build users can create an automated build that executes
several command-line instructions in succession.

Docker build

* The docker build command builds an image from a Dockerfile and a
context. The build’s context is the set of files at a specified location

PATH or URL. The PATH is a directory on your local filesystem. The URL
is a Git repository location.

" L -
L docker build .

e use the -f flag with docker build to point to a Dockerfile anywhere in
your file system.

L docker build -t /path/to/a/Dockerftile .

* specify a repository and tag at which to save the new image if the
build succeeds:

% docker build -t shykes/myapp .

Dockerfile format

i Comment

INSTRUCTION arguments

* The instruction is not case-sensitive. However, convention is for them
to be UPPERCASE to distinguish them from arguments more easily.

* A dockerfile must begin with a FROM instruction. The FROM
instructions specifies the Parent image from which we are building

* Docker treats lines begins with # as a comment

RUN

e RUN has 2 forms:

e RUN <command> (shell form, the command is run in a shell, which by default
is /bin/sh -c on Linux or cmd /S /C on Windows)

 RUN ["executable", "param1", "param?2"] (exec form)

* The RUN instruction will execute any commands in a new layer on top
of the current image and commit the results. The resulting committed
image will be used for the next step in the Dockerfile.

* The exec form makes it possible to avoid shell string munging, and to
RUN commands using a base image that does not contain the
specified shell executable.

CMD

e The CMD instruction has three forms:

 CMD ["executable","param1","param?2"] (exec form, this is the preferred form)
* CMD ["param1","param?2"] (as default parameters to ENTRYPOINT)
e CMD command param1 param?2 (shell form)

* There can only be one CMD instruction in a Dockerfile. If you list more
than one CMD then only the last CMD will take effect.

LABEL

e LABEL <key>=<value> <key>=<value> <key>=<value> ...

* The LABEL instruction adds metadata to an image. A LABEL is a key-
value pair. To include spaces within a LABEL value, use quotes and
backslashes as you would in command-line parsing.

= Is
m m m m
-

/Fm m m m
=

. o -
CExT 1i1llusTraoes

(o s Y N e
[

label-values can span multiple lines.™

T I I I=
i

EXPOSE

EXPOSE <port> [<port>/{protocols...]

The EXPOSE instruction informs Docker that the container
listens on the specified network ports at runtime. You can

specify whether the port listens on TCP or UDP, and the default
is TCP if the protocol is not specified.

ADD and COPY

* The ADD instruction copies new files, directories or remote file URLs
from <src>and adds them to the filesystem of the image at the path
<dest>.

* The COPY instruction copies new files or directories from <src> and
adds them to the filesystem of the container at the path <dest>.

ENTRYPOINT

 An ENTRYPOINT allows you to configure a container that will run as an
executable.

ENTRYPOIMNT [“execu

i
a1}
o

1]

", "paraml”, "“param2™]

(1]

FROEM whuoantu
EMNMTRYPOINT ["top™., B = R |
M [T

% docker rumn -it --rm --name test top -H

top - @8:25:8@ up 7:27, @ users, load average: .80, #.91, 8.85

Threads: 1 total, 1 running, @ sleeping, @ stopped, @ zombie

¥Cpu(s): ®@.1us, @.1 sy, 0.8 ni, 99.7 id, 0.8 wa, 0.8 hi, .8 =i, 0.8 st
KiB Mem: 2856668 total, 1616832 used, 439836 free, 99352 buffers

KiB Swap: 1441848 total. @ used. 1441848 free 1324448 cached Mem

Understand how CMD and ENTRYPOINT
interact

 Both CMD and ENTRYPOINT instructions define what command gets
executed when running a container. There are few rules that describe
their co-operation.

* Dockerfile should specify at least one of CMD or ENTRYPOINT commands.

 ENTRYPOINT should be defined when using the container as an executable.

 CMD should be used as a way of defining default arguments for an
ENTRYPOINT command or for executing an ad-hoc command in a container.

Examples

root@ubuntu20:~# cat dockerfile
FROM debian:stable
LABEL authors="amit"
RUN apt-get update && apt-get install -y —--force-yes apache?2
EXPOSE 80
root@ubuntu20:~# docker build -t mydeb
Sending build context to Docker daemon 16.9kB
Step 1/4 : FROM debian:stable
stable: Pulling from library/debian
Ob5aeaf®8977: Pull complete
Digest: sha256:3d2aa501lcd4cefd4415895b1dE877dfbbal73%cabld58chbe8f1baa3f01lbe739690
Status: Downloaded newer image for deblan:stable
-——> f£70ab%14d71a
Step 2/4 : LABEL authors="amit"
—-——> Running in 158%a5adb5d7
Removing intermediate container 1589a5adbbd7
—-——> £d9%3ccl36079
Step 3/4 : RUN apt-get update && apt-get install -y --force-yes apache?
—-——> Running in 5f23b0fl4c23

Docker hubs

* Signup to docker hubs
* docker login

root@ubuntuz0:~/test# docker login
Login with your Docker ID to push and pull images from Docker Hub. If you don't have a Docker ID, he:

.docker.com to create one.
Username: amitow

Password:
WARNING! Your password will be stored unencrypted in /root/.docker/config.]json.

Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded

Push image to docker hub

e Tag the image with the host name or IP address, and the port of the
registry

docker image tag myimage amitow/myimage
e Push the image

docker image push amitow/myimage

The push refers to repository [docker.io/amitow/myimage]
07d0f86laed3: Pushed

8cB8553f0e37a: Pushed
994393dc58e7: Mounted from library/alpine

latest: digest: sha256:f7eded6b6c5616a354efafd0b81d8245de8b3800c4654b28a56817a3a7404042 size: 942

amitow / myimage
Last pushed: 2 minutes ago

amitow / calc-new
Last pushed: 4 months ago

amitow / testnginx
Last pushed: 4 manths ago

amitow / ubuntu
Last pushed: & months ago

(9 Not Scanned

& Not Scanned

& Not Scanned

% Not Scanned

37 0

37 0

¥ 0

|4=

|4

|4=

|4=

@) Public

@) Public

@) Public

®) Public

	Slide 1: Dockerfile
	Slide 2: Dockerfile
	Slide 3: Docker build
	Slide 4: ..
	Slide 5: Dockerfile format
	Slide 6: RUN
	Slide 7: CMD
	Slide 8: LABEL
	Slide 9: EXPOSE
	Slide 10: ADD and COPY
	Slide 11: ENTRYPOINT
	Slide 12: Understand how CMD and ENTRYPOINT interact
	Slide 13: Examples
	Slide 14: Docker hubs
	Slide 15: Push image to docker hub
	Slide 16: ..

