
Deployments
OW



Explain

• Deployment

• Api

• Replica set

• Command line options

• Update strategies

• Rollback



Deployments

• A deployment provides declarative update for pods and replica set.

• In deployment, describe desired state. Deployment controller 
changes the actual state to the desired state

• It maintains the replica set.



example



..

• : The .spec.selector.matchLabels field is a map of {key,value} pairs. A 
single {key,value} in the matchLabels map is equivalent to an element 
of matchExpressions, whose key field is "key", the operator is "In", and 
the values array contains only "value". All of the requirements, from 
both matchLabels and matchExpressions, must be satisfied in order to 
match.



..

• In—Label’s value must match one of the specified values.

• NotIn—Label’s value must not match any of the specified values.



Try Lab

• Yaml and commands
• kubectl apply -f https://k8s.io/examples/controllers/nginx-deployment.yaml

• kubectl get deloyment

• kubectl rollout status deployment/nginx-deployment

• kubectl get pods --show-labels

https://k8s.io/examples/controllers/nginx-deployment.yaml


Updating a deployment

• Deployment rollout triggers, if .spec.template changes such as
• Labels change

• Image change

• Image change can be done using
• Kubectl command

• Check rollout status

• Try commands from the doc



Rollover

• If the Deployment is updated, the existing ReplicaSet that controls 
Pods whose labels match .spec.selector but whose template does not 
match .spec.template are scaled down. Eventually, the new ReplicaSet
is scaled to .spec.replicas and all old ReplicaSets is scaled to 0.

• suppose you create a Deployment to create 5 replicas of nginx:1.14.2, 
but then update the Deployment to create 5 replicas of nginx:1.16.1, 
when only 3 replicas of nginx:1.14.2 had been created. In that case, 
the Deployment immediately starts killing the 3 nginx:1.14.2 Pods that 
it had created, and starts creating nginx:1.16.1 Pods. It does not wait 
for the 5 replicas of nginx:1.14.2 to be created before changing course



Label selector update

• It is generally discouraged to make label selector updates and it is suggested 
to plan your selectors up front. In any case, if you need to perform a label 
selector update, exercise great caution and make sure you have grasped all 
of the implications

• Selector additions require the Pod template labels in the Deployment spec 
to be updated with the new label too, otherwise a validation error is 
returned

• Selector removals removes an existing key from the Deployment selector --
do not require any changes in the Pod template labels. Existing ReplicaSets
are not orphaned, and a new ReplicaSet is not created, but note that the 
removed label still exists in any existing Pods and ReplicaSets.



Rolling Back a Deployment

• Sometimes, you may want to rollback a Deployment; for example, 
when the Deployment is not stable, such as crash looping. By default, 
all of the Deployment's rollout history is kept in the system so that you 
can rollback anytime you want (you can change that by modifying 
revision history limit).

• Lab 3 perform

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#rolling-back-a-deployment


Strategy

• .spec.strategy specifies the strategy used to replace old Pods by new 
ones. .spec.strategy.type can be "Recreate" or "RollingUpdate". 
"RollingUpdate" is the default value.

• Recreate Deployment
• All existing Pods are killed before new ones are created when 

.spec.strategy.type==Recreate.

• Rolling Update Deployment
• The Deployment updates Pods in a rolling update fashion when 

.spec.strategy.type==RollingUpdate. You can specify maxUnavailable and 
maxSurge to control the rolling update process

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#rolling-update-deployment


Max Unavailable

• .spec.strategy.rollingUpdate.maxUnavailable is an optional field that 
specifies the maximum number of Pods that can be unavailable during the 
update process. The value can be an absolute number (for example, 5) or a 
percentage of desired Pods (for example, 10%). The absolute number is 
calculated from percentage by rounding down. The value cannot be 0 if 
.spec.strategy.rollingUpdate.maxSurge is 0. The default value is 25%.

• For example, when this value is set to 30%, the old ReplicaSet can be scaled 
down to 70% of desired Pods immediately when the rolling update starts. 
Once new Pods are ready, old ReplicaSet can be scaled down further, 
followed by scaling up the new ReplicaSet, ensuring that the total number of 
Pods available at all times during the update is at least 70% of the desired 
Pods.



Max Surge

• .spec.strategy.rollingUpdate.maxSurge is an optional field that specifies the 
maximum number of Pods that can be created over the desired number of 
Pods. The value can be an absolute number (for example, 5) or a percentage 
of desired Pods (for example, 10%). The value cannot be 0 if MaxUnavailable
is 0. The absolute number is calculated from the percentage by rounding up. 
The default value is 25%.

• For example, when this value is set to 30%, the new ReplicaSet can be 
scaled up immediately when the rolling update starts, such that the total 
number of old and new Pods does not exceed 130% of desired Pods. Once 
old Pods have been killed, the new ReplicaSet can be scaled up further, 
ensuring that the total number of Pods running at any time during the 
update is at most 130% of desired Pods


	Slide 1: Deployments
	Slide 2: Explain
	Slide 3: Deployments
	Slide 4: example
	Slide 5: ..
	Slide 6: ..
	Slide 7: Try Lab
	Slide 8: Updating a deployment 
	Slide 9: Rollover
	Slide 10: Label selector update
	Slide 11: Rolling Back a Deployment 
	Slide 12: Strategy  
	Slide 13: Max Unavailable
	Slide 14: Max Surge 

