WikipediA

List of integrals of trigonometric functions

The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral.

Generally, if the function $\sin x$ is any trigonometric function, and $\cos x$ is its derivative,

$$
\int a \cos n x d x=\frac{a}{n} \sin n x+C
$$

In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.

Contents

Integrands involving only sine Integrands involving only cosine Integrands involving only tangent Integrands involving only secant Integrands involving only cosecant Integrands involving only cotangent Integrands involving both sine and cosine Integrands involving both sine and tangent Integrand involving both cosine and tangent Integrand involving both sine and cotangent Integrand involving both cosine and cotangent Integrand involving both secant and tangent Integrand involving both cosecant and cotangent Integrals in a quarter period Integrals with symmetric limits Integral over a full circle
See also

Integrands involving only sine

$\int \sin a x d x=-\frac{1}{a} \cos a x+C$
$\int \sin ^{2} a x d x=\frac{x}{2}-\frac{1}{4 a} \sin 2 a x+C=\frac{x}{2}-\frac{1}{2 a} \sin a x \cos a x+C$
$\int \sin ^{3} a x d x=\frac{\cos 3 a x}{12 a}-\frac{3 \cos a x}{4 a}+C$
$\int x \sin ^{2} a x d x=\frac{x^{2}}{4}-\frac{x}{4 a} \sin 2 a x-\frac{1}{8 a^{2}} \cos 2 a x+C$
$\int x^{2} \sin ^{2} a x d x=\frac{x^{3}}{6}-\left(\frac{x^{2}}{4 a}-\frac{1}{8 a^{3}}\right) \sin 2 a x-\frac{x}{4 a^{2}} \cos 2 a x+C$
$\int x \sin a x d x=\frac{\sin a x}{a^{2}}-\frac{x \cos a x}{a}+C$
$\int\left(\sin b_{1} x\right)\left(\sin b_{2} x\right) d x=\frac{\sin \left(\left(b_{2}-b_{1}\right) x\right)}{2\left(b_{2}-b_{1}\right)}-\frac{\sin \left(\left(b_{1}+b_{2}\right) x\right)}{2\left(b_{1}+b_{2}\right)}+C \quad\left(\right.$ for $\left.\left|b_{1}\right| \neq\left|b_{2}\right|\right)$
$\int \sin ^{n} a x d x=-\frac{\sin ^{n-1} a x \cos a x}{n a}+\frac{n-1}{n} \int \sin ^{n-2} a x d x \quad($ for $n>0)$
$\int \frac{d x}{\sin a x}=-\frac{1}{a} \ln |\csc a x+\cot a x|+C$
$\int \frac{d x}{\sin ^{n} a x}=\frac{\cos a x}{a(1-n) \sin ^{n-1} a x}+\frac{n-2}{n-1} \int \frac{d x}{\sin ^{n-2} a x} \quad($ for $n>1)$

$$
\begin{aligned}
& \int x^{n} \sin a x d x=-\frac{x^{n}}{a} \cos a x+\frac{n}{a} \int x^{n-1} \cos a x d x \\
& =\sum_{k=0}^{2 k \leq n}(-1)^{k+1} \frac{x^{n-2 k}}{a^{1+2 k}} \frac{n!}{(n-2 k)!} \cos a x+\sum_{k=0}^{2 k+1 \leq n}(-1)^{k} \frac{x^{n-1-2 k}}{a^{2+2 k}} \frac{n!}{(n-2 k-1)!} \sin a x \\
& =-\sum_{k=0}^{n} \frac{x^{n-k}}{a^{1+k}} \frac{n!}{(n-k)!} \cos \left(a x+k \frac{\pi}{2}\right) \quad(\text { for } n>0) \\
& \int \frac{\sin a x}{x} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{(a x)^{2 n+1}}{(2 n+1) \cdot(2 n+1)!}+C \\
& \int \frac{\sin a x}{x^{n}} d x=-\frac{\sin a x}{(n-1) x^{n-1}}+\frac{a}{n-1} \int \frac{\cos a x}{x^{n-1}} d x \\
& \int \sin \left(a x^{2}+b x+c\right) d x=\left\{\begin{array}{l}
\sqrt{a} \sqrt{\frac{\pi}{2}} \cos \left(\frac{b^{2}-4 a c}{4 a}\right) S\left(\frac{2 a x+b}{\sqrt{2 a \pi}}\right)+\sqrt{a} \sqrt{\frac{\pi}{2}} \sin \left(\frac{b^{2}-4 a c}{4 a}\right) C\left(\frac{2 a x+b}{\sqrt{2 a \pi}}\right) \text { to } b^{2}-4 a c>0 \\
\sqrt{a} \sqrt{\frac{\pi}{2}} \cos \left(\frac{b^{2}-4 a c}{4 a}\right) S\left(\frac{2 a x+b}{\sqrt{2 a \pi}}\right)-\sqrt{a} \sqrt{\frac{\pi}{2}} \sin \left(\frac{b^{2}-4 a c}{4 a}\right) C\left(\frac{2 a x+b}{\sqrt{2 a \pi}}\right) \text { to } b^{2}-4 a c<0
\end{array} \text { for } a \neq 0, a>0\right. \\
& \int \frac{d x}{1 \pm \sin a x}=\frac{1}{a} \tan \left(\frac{a x}{2} \mp \frac{\pi}{4}\right)+C \\
& \int \frac{x d x}{1+\sin a x}=\frac{x}{a} \tan \left(\frac{a x}{2}-\frac{\pi}{4}\right)+\frac{2}{a^{2}} \ln \left|\cos \left(\frac{a x}{2}-\frac{\pi}{4}\right)\right|+C \\
& \int \frac{x d x}{1-\sin a x}=\frac{x}{a} \cot \left(\frac{\pi}{4}-\frac{a x}{2}\right)+\frac{2}{a^{2}} \ln \left|\sin \left(\frac{\pi}{4}-\frac{a x}{2}\right)\right|+C \\
& \int \frac{\sin a x d x}{1 \pm \sin a x}= \pm x+\frac{1}{a} \tan \left(\frac{\pi}{4} \mp \frac{a x}{2}\right)+C
\end{aligned}
$$

Integrands involving only cosine

$$
\begin{aligned}
& \int \cos a x d x=\frac{1}{a} \sin a x+C \\
& \int \cos ^{2} a x d x=\frac{x}{2}+\frac{1}{4 a} \sin 2 a x+C=\frac{x}{2}+\frac{1}{2 a} \sin a x \cos a x+C \\
& \int \cos ^{n} a x d x=\frac{\cos ^{n-1} a x \sin a x}{n a}+\frac{n-1}{n} \int \cos ^{n-2} a x d x \quad(\text { for } n>0) \\
& \int x \cos a x d x=\frac{\cos a x}{a^{2}}+\frac{x \sin a x}{a}+C \\
& \int x^{2} \cos ^{2} a x d x=\frac{x^{3}}{6}+\left(\frac{x^{2}}{4 a}-\frac{1}{8 a^{3}}\right) \sin 2 a x+\frac{x}{4 a^{2}} \cos 2 a x+C \\
& \int x^{n} \cos a x d x=\frac{x^{n} \sin a x}{a}-\frac{n}{a} \int x^{n-1} \sin a x d x \\
& =\sum_{k=0}^{2 k+1 \leq n}(-1)^{k} \frac{x^{n-2 k-1}}{a^{2+2 k}} \frac{n!}{(n-2 k-1)!} \cos a x+\sum_{k=0}^{2 k \leq n}(-1)^{k} \frac{x^{n-2 k}}{a^{1+2 k}} \frac{n!}{(n-2 k)!} \sin a x \\
& =\sum_{k=0}^{n}(-1)^{\lfloor k / 2\rfloor} \frac{x^{n-k}}{a^{1+k}} \frac{n!}{(n-k)!} \cos \left(a x-\frac{(-1)^{k}+1}{2} \frac{\pi}{2}\right) \\
& =\sum_{k=0}^{n} \frac{x^{n-k}}{a^{1+k}} \frac{n!}{(n-k)!} \sin \left(a x+k \frac{\pi}{2}\right) \quad(\text { for } n>0) \\
& \int \frac{\cos a x}{x} d x=\ln |a x|+\sum_{k=1}^{\infty}(-1)^{k} \frac{(a x)^{2 k}}{2 k \cdot(2 k)!}+C \\
& \int \frac{\cos a x}{x^{n}} d x=-\frac{\cos a x}{(n-1) x^{n-1}}-\frac{a}{n-1} \int \frac{\sin a x}{x^{n-1}} d x \quad(\text { for } n \neq 1) \\
& \int \frac{d x}{\cos a x}=\frac{1}{a} \ln \left|\tan \left(\frac{a x}{2}+\frac{\pi}{4}\right)\right|+C \\
& \int \frac{d x}{\cos ^{n} a x}=\frac{\sin a x}{a(n-1) \cos ^{n-1} a x}+\frac{n-2}{n-1} \int \frac{d x}{\cos ^{n-2} a x} \quad(\text { for } n>1) \\
& \int \frac{d x}{1+\cos a x}=\frac{1}{a} \tan \frac{a x}{2}+C \\
& \int \frac{d x}{1-\cos a x}=-\frac{1}{a} \cot \frac{a x}{2}+C
\end{aligned}
$$

$\int \frac{x d x}{1+\cos a x}=\frac{x}{a} \tan \frac{a x}{2}+\frac{2}{a^{2}} \ln \left|\cos \frac{a x}{2}\right|+C$
$\int \frac{x d x}{1-\cos a x}=-\frac{x}{a} \cot \frac{a x}{2}+\frac{2}{a^{2}} \ln \left|\sin \frac{a x}{2}\right|+C$
$\int \frac{\cos a x d x}{1+\cos a x}=x-\frac{1}{a} \tan \frac{a x}{2}+C$
$\int \frac{\cos a x d x}{1-\cos a x}=-x-\frac{1}{a} \cot \frac{a x}{2}+C$
$\int\left(\cos a_{1} x\right)\left(\cos a_{2} x\right) d x=\frac{\sin \left(\left(a_{2}-a_{1}\right) x\right)}{2\left(a_{2}-a_{1}\right)}+\frac{\sin \left(\left(a_{2}+a_{1}\right) x\right)}{2\left(a_{2}+a_{1}\right)}+C \quad\left(\right.$ for $\left.\left|a_{1}\right| \neq\left|a_{2}\right|\right)$

Integrands involving only tangent

$\int \tan a x d x=-\frac{1}{a} \ln |\cos a x|+C=\frac{1}{a} \ln |\sec a x|+C$
$\int \tan ^{2} x d x=\tan x-x+C$
$\int \tan ^{n} a x d x=\frac{1}{a(n-1)} \tan ^{n-1} a x-\int \tan ^{n-2} a x d x \quad($ for $n \neq 1)$
$\int \frac{d x}{q \tan a x+p}=\frac{1}{p^{2}+q^{2}}\left(p x+\frac{q}{a} \ln |q \sin a x+p \cos a x|\right)+C \quad\left(\right.$ for $\left.p^{2}+q^{2} \neq 0\right)$
$\int \frac{d x}{\tan a x \pm 1}= \pm \frac{x}{2}+\frac{1}{2 a} \ln |\sin a x \pm \cos a x|+C$
$\int \frac{\tan a x d x}{\tan a x \pm 1}=\frac{x}{2} \mp \frac{1}{2 a} \ln |\sin a x \pm \cos a x|+C$

Integrands involving only secant

See Integral of the secant function.
$\int \sec a x d x=\frac{1}{a} \ln |\sec a x+\tan a x|+C=\frac{1}{a} \ln \left|\tan \left(\frac{a x}{2}+\frac{\pi}{4}\right)\right|+C=\frac{1}{a} \operatorname{artanh}(\sin a x)+C$
$\int \sec ^{2} x d x=\tan x+C$
$\int \sec ^{3} x d x=\frac{1}{2} \sec x \tan x+\frac{1}{2} \ln |\sec x+\tan x|+C$.
$\int \sec ^{n} a x d x=\frac{\sec ^{n-2} a x \tan a x}{a(n-1)}+\frac{n-2}{n-1} \int \sec ^{n-2} a x d x \quad($ for $n \neq 1)$
$\int \frac{d x}{\sec x+1}=x-\tan \frac{x}{2}+C$
$\int \frac{d x}{\sec x-1}=-x-\cot \frac{x}{2}+C$

Integrands involving only cosecant

$\int \csc a x d x=-\frac{1}{a} \ln |\csc a x+\cot a x|+C=\frac{1}{a} \ln |\csc a x-\cot a x|+C=\frac{1}{a} \ln \left|\tan \left(\frac{a x}{2}\right)\right|+C$
$\int \csc ^{2} x d x=-\cot x+C$
$\int \csc ^{3} x d x=-\frac{1}{2} \csc x \cot x-\frac{1}{2} \ln |\csc x+\cot x|+C=-\frac{1}{2} \csc x \cot x+\frac{1}{2} \ln |\csc x-\cot x|+C$
$\int \csc ^{n} a x d x=-\frac{\csc ^{n-2} a x \cot a x}{a(n-1)}+\frac{n-2}{n-1} \int \csc ^{n-2} a x d x \quad($ for $n \neq 1)$
$\int \frac{d x}{\csc x+1}=x-\frac{2}{\cot \frac{x}{2}+1}+C$
$\int \frac{d x}{\csc x-1}=-x+\frac{2}{\cot \frac{x}{2}-1}+C$

Integrands involving only cotangent

$\int \cot a x d x=\frac{1}{a} \ln |\sin a x|+C$
$\int \cot ^{2} x d x=-\cot x-x+C$
$\int \cot ^{n} a x d x=-\frac{1}{a(n-1)} \cot ^{n-1} a x-\int \cot ^{n-2} a x d x \quad($ for $n \neq 1)$
$\int \frac{d x}{1+\cot a x}=\int \frac{\tan a x d x}{\tan a x+1}=\frac{x}{2}-\frac{1}{2 a} \ln |\sin a x+\cos a x|+C$
$\int \frac{d x}{1-\cot a x}=\int \frac{\tan a x d x}{\tan a x-1}=\frac{x}{2}+\frac{1}{2 a} \ln |\sin a x-\cos a x|+C$

Integrands involving both sine and cosine

An integral that is a rational function of the sine and cosine can be evaluated using Bioche's rules.
$\int \frac{d x}{\cos a x \pm \sin a x}=\frac{1}{a \sqrt{2}} \ln \left|\tan \left(\frac{a x}{2} \pm \frac{\pi}{8}\right)\right|+C$
$\int \frac{d x}{(\cos a x \pm \sin a x)^{2}}=\frac{1}{2 a} \tan \left(a x \mp \frac{\pi}{4}\right)+C$
$\int \frac{d x}{(\cos x+\sin x)^{n}}=\frac{1}{2(n-1)}\left(\frac{\sin x-\cos x}{(\cos x+\sin x)^{n-1}}+(n-2) \int \frac{d x}{(\cos x+\sin x)^{n-2}}\right)$
$\int \frac{\cos a x d x}{\cos a x+\sin a x}=\frac{x}{2}+\frac{1}{2 a} \ln |\sin a x+\cos a x|+C$
$\int \frac{\cos a x d x}{\cos a x-\sin a x}=\frac{x}{2}-\frac{1}{2 a} \ln |\sin a x-\cos a x|+C$
$\int \frac{\sin a x d x}{\cos a x+\sin a x}=\frac{x}{2}-\frac{1}{2 a} \ln |\sin a x+\cos a x|+C$
$\int \frac{\sin a x d x}{\cos a x-\sin a x}=-\frac{x}{2}-\frac{1}{2 a} \ln |\sin a x-\cos a x|+C$
$\int \frac{\cos a x d x}{(\sin a x)(1+\cos a x)}=-\frac{1}{4 a} \tan ^{2} \frac{a x}{2}+\frac{1}{2 a} \ln \left|\tan \frac{a x}{2}\right|+C$
$\int \frac{\cos a x d x}{(\sin a x)(1-\cos a x)}=-\frac{1}{4 a} \cot ^{2} \frac{a x}{2}-\frac{1}{2 a} \ln \left|\tan \frac{a x}{2}\right|+C$
$\int \frac{\sin a x d x}{(\cos a x)(1+\sin a x)}=\frac{1}{4 a} \cot ^{2}\left(\frac{a x}{2}+\frac{\pi}{4}\right)+\frac{1}{2 a} \ln \left|\tan \left(\frac{a x}{2}+\frac{\pi}{4}\right)\right|+C$
$\int \frac{\sin a x d x}{(\cos a x)(1-\sin a x)}=\frac{1}{4 a} \tan ^{2}\left(\frac{a x}{2}+\frac{\pi}{4}\right)-\frac{1}{2 a} \ln \left|\tan \left(\frac{a x}{2}+\frac{\pi}{4}\right)\right|+C$
$\int(\sin a x)(\cos a x) d x=\frac{1}{2 a} \sin ^{2} a x+C$
$\int\left(\sin a_{1} x\right)\left(\cos a_{2} x\right) d x=-\frac{\cos \left(\left(a_{1}-a_{2}\right) x\right)}{2\left(a_{1}-a_{2}\right)}-\frac{\cos \left(\left(a_{1}+a_{2}\right) x\right)}{2\left(a_{1}+a_{2}\right)}+C \quad\left(\right.$ for $\left.\left|a_{1}\right| \neq\left|a_{2}\right|\right)$
$\int\left(\sin ^{n} a x\right)(\cos a x) d x=\frac{1}{a(n+1)} \sin ^{n+1} a x+C \quad($ for $n \neq-1)$
$\int(\sin a x)\left(\cos ^{n} a x\right) d x=-\frac{1}{a(n+1)} \cos ^{n+1} a x+C \quad($ for $n \neq-1)$

$$
\begin{aligned}
& \int\left(\sin ^{n} a x\right)\left(\cos ^{m} a x\right) d x=-\frac{\left(\sin ^{n-1} a x\right)\left(\cos ^{m+1} a x\right)}{a(n+m)}+\frac{n-1}{n+m} \int\left(\sin ^{n-2} a x\right)\left(\cos ^{m} a x\right) d x \quad(\text { for } m, n>0) \\
& =\frac{\left(\sin ^{n+1} a x\right)\left(\cos ^{m-1} a x\right)}{a(n+m)}+\frac{m-1}{n+m} \int\left(\sin ^{n} a x\right)\left(\cos ^{m-2} a x\right) d x \quad(\text { for } m, n>0) \\
& \int \frac{d x}{(\sin a x)(\cos a x)}=\frac{1}{a} \ln |\tan a x|+C \\
& \int \frac{d x}{(\sin a x)\left(\cos ^{n} a x\right)}=\frac{1}{a(n-1) \cos ^{n-1} a x}+\int \frac{d x}{(\sin a x)\left(\cos ^{n-2} a x\right)} \quad(\text { for } n \neq 1) \\
& \int \frac{d x}{\left(\sin ^{n} a x\right)(\cos a x)}=-\frac{1}{a(n-1) \sin ^{n-1} a x}+\int \frac{d x}{\left(\sin ^{n-2} a x\right)(\cos a x)} \quad(\text { for } n \neq 1) \\
& \int \frac{\sin a x d x}{\cos ^{n} a x}=\frac{1}{a(n-1) \cos ^{n-1} a x}+C \quad(\text { for } n \neq 1) \\
& \int \frac{\sin ^{2} a x d x}{\cos a x}=-\frac{1}{a} \sin a x+\frac{1}{a} \ln \left|\tan \left(\frac{\pi}{4}+\frac{a x}{2}\right)\right|+C \\
& \int \frac{\sin ^{2} a x d x}{\cos ^{n} a x}=\frac{\sin a x}{a(n-1) \cos ^{n-1} a x}-\frac{1}{n-1} \int \frac{d x}{\cos ^{n-2} a x} \quad(\text { for } n \neq 1) \\
& \int \frac{\sin ^{2} x}{1+\cos ^{2} x} d x=\sqrt{2} \operatorname{arctangant}\left(\frac{\tan x}{\sqrt{2}}\right)-x \quad(\text { for } \mathrm{x} \text { in }]-\frac{\pi}{2} ;+\frac{\pi}{2}[) \\
& \left.=\sqrt{2} \operatorname{arctangant}\left(\frac{\tan x}{\sqrt{2}}\right)-\operatorname{arctangant}(\tan x) \quad \text { (this time } \mathrm{x} \text { being any real number }\right) \\
& \int \frac{\sin ^{n} a x d x}{\cos a x}=-\frac{\sin ^{n-1} a x}{a(n-1)}+\int \frac{\sin ^{n-2} a x d x}{\cos a x} \quad(\text { for } n \neq 1) \\
& \int \frac{\sin ^{n} a x d x}{\cos ^{m} a x}= \begin{cases}\frac{\sin ^{n+1} a x}{a(m-1) \cos ^{m-1} a x}-\frac{n-m+2}{m-1} \int \frac{\sin ^{n} a x d x}{\cos ^{m-2} a x} & (\text { for } m \neq 1) \\
\frac{\sin ^{n-1} a x}{a(m-1) \cos ^{m-1} a x}-\frac{n-1}{m-1} \int \frac{\sin ^{n-2} a x d x}{\cos ^{m-2} a x} & (\text { for } m \neq 1) \\
-\frac{\sin ^{n-1} a x}{a(n-m) \cos ^{m-1} a x}+\frac{n-1}{n-m} \int \frac{\sin ^{n-2} a x d x}{\cos ^{m} a x} & (\text { for } m \neq n)\end{cases} \\
& \int \frac{\cos a x d x}{\sin ^{n} a x}=-\frac{1}{a(n-1) \sin ^{n-1} a x}+C \quad(\text { for } n \neq 1) \\
& \int \frac{\cos ^{2} a x d x}{\sin a x}=\frac{1}{a}\left(\cos a x+\ln \left|\tan \frac{a x}{2}\right|\right)+C \\
& \int \frac{\cos ^{2} a x d x}{\sin ^{n} a x}=-\frac{1}{n-1}\left(\frac{\cos a x}{a \sin ^{n-1} a x}+\int \frac{d x}{\sin ^{n-2} a x}\right) \quad(\text { for } n \neq 1) \\
& \int \frac{\cos ^{n} a x d x}{\sin ^{m} a x}= \begin{cases}-\frac{\cos ^{n+1} a x}{a(m-1) \sin ^{m-1} a x}-\frac{n-m+2}{m-1} \int \frac{\cos ^{n} a x d x}{\sin ^{m-2} a x} & (\text { for } m \neq 1) \\
-\frac{\cos ^{n-1} a x}{a(m-1) \sin ^{m-1} a x}-\frac{n-1}{m-1} \int \frac{\cos ^{n-2} a x d x}{\sin ^{m-2} a x} & (\text { for } m \neq 1) \\
\frac{\cos ^{n-1} a x}{a(n-m) \sin ^{m-1} a x}+\frac{n-1}{n-m} \int \frac{\cos ^{n-2} a x d x}{\sin ^{m} a x} & (\text { for } m \neq n)\end{cases}
\end{aligned}
$$

Integrands involving both sine and tangent

$$
\begin{aligned}
& \int(\sin a x)(\tan a x) d x=\frac{1}{a}(\ln |\sec a x+\tan a x|-\sin a x)+C \\
& \int \frac{\tan ^{n} a x d x}{\sin ^{2} a x}=\frac{1}{a(n-1)} \tan ^{n-1}(a x)+C \quad(\text { for } n \neq 1)
\end{aligned}
$$

Integrand involving both cosine and tangent

$$
\int \frac{\tan ^{n} a x d x}{\cos ^{2} a x}=\frac{1}{a(n+1)} \tan ^{n+1} a x+C \quad(\text { for } n \neq-1)
$$

Integrand involving both sine and cotangent

$\int \frac{\cot ^{n} a x d x}{\sin ^{2} a x}=-\frac{1}{a(n+1)} \cot ^{n+1} a x+C \quad($ for $n \neq-1)$

Integrand involving both cosine and cotangent

$$
\int \frac{\cot ^{n} a x d x}{\cos ^{2} a x}=\frac{1}{a(1-n)} \tan ^{1-n} a x+C \quad(\text { for } n \neq 1)
$$

Integrand involving both secant and tangent

$\int(\sec x)(\tan x) d x=\sec x+C$

Integrand involving both cosecant and cotangent

$\int(\csc x)(\cot x) d x=-\csc x+C$

Integrals in a quarter period

$\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x= \begin{cases}\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & \text { if } n \text { is even } \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdots \frac{4}{5} \cdot \frac{2}{3}, & \text { if } n \text { is odd and more than } 1 \\ 1, & \text { if } n=1\end{cases}$

Integrals with symmetric limits

$\int_{-c}^{c} \sin x d x=0$
$\int_{-c}^{c} \cos x d x=2 \int_{0}^{c} \cos x d x=2 \int_{-c}^{0} \cos x d x=2 \sin c$
$\int_{-c}^{c} \tan x d x=0$
$\int_{-\frac{a}{2}}^{\frac{a}{2}} x^{2} \cos ^{2} \frac{n \pi x}{a} d x=\frac{a^{3}\left(n^{2} \pi^{2}-6\right)}{24 n^{2} \pi^{2}} \quad($ for $n=1,3,5 \ldots)$
$\int_{\frac{-a}{2}}^{\frac{a}{2}} x^{2} \sin ^{2} \frac{n \pi x}{a} d x=\frac{a^{3}\left(n^{2} \pi^{2}-6(-1)^{n}\right)}{24 n^{2} \pi^{2}}=\frac{a^{3}}{24}\left(1-6 \frac{(-1)^{n}}{n^{2} \pi^{2}}\right) \quad($ for $n=1,2,3, \ldots)$

Integral over a full circle

$$
\begin{array}{ll}
\int_{0}^{2 \pi} \sin ^{2 m+1} x \cos ^{n} x d x=0 & n, m \in \mathbb{Z} \\
\int_{0}^{2 \pi} \sin ^{m} x \cos ^{2 n+1} x d x=0 & n, m \in \mathbb{Z}
\end{array}
$$

See also

- Trigonometric integral

Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_integrals_of_trigonometric_functions\&oldid=1046264767"

This page was last edited on 24 September 2021, at 19:19 (UTC).
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipediaß is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

