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Abstract

This thesis investigates the mechanisms underlying the formation, main-
tenance, and sharing of reference in tasks in which language and vision
interact. Previous research in psycholinguistics and visual cognition has
provided insights into the formation of reference in cross-modal tasks. The
conclusions reached are largely independent, with the focus on mecha-
nisms pertaining to either linguistic or visual processing.

In this thesis, we present a series of eye-tracking experiments that aim to
unify these distinct strands of research by identifying and quantifying fac-
tors that underlie the cross-modal interaction between scene understanding
and sentence processing. Our results show that both low-level (image-
based) and high-level (object-based) visual information interacts actively
with linguistic information during situated language processing tasks. In
particular, during language understanding (Chapter 3), image-based infor-
mation, i.e., saliency, is used to predict the upcoming arguments of the
sentence, when the linguistic material alone is not sufficient to make such
predictions.

During language production (Chapter 4), visual attention has the active
role of sourcing referential information for sentence encoding. We show
that two important factors influencing this process are the visual density
of the scene, i.e., clutter, and the animacy of the objects described. Both
factors influence the type of linguistic encoding observed and the associ-
ated visual responses. We uncover a close relationship between linguistic
descriptions and visual responses, triggered by the cross-modal interac-
tion of scene and object properties, which implies a general mechanism
of cross-modal referential coordination. Further investigation (Chapter 5)



shows that visual attention and sentence processing are closely coordi-
nated during sentence production: similar sentences are associated with
similar scan patterns. This finding holds across different scenes, which
suggests that coordination goes beyond the well-known scene-based ef-
fects guiding visual attention, again supporting the existence of a general
mechanism for the cross-modal coordination of referential information.

The extent to which cross-modal mechanisms are activated depends on the
nature of the task performed. We compare the three tasks of visual search,
object naming, and scene description (Chapter 6) and explore how the
modulation of cross-modal reference is reflected in the visual responses of
participants. Our results show that the cross-modal coordination required
in naming and description triggers longer visual processing and higher
scan pattern similarity than in search. This difference is due to the coor-
dination required to integrate and organize visual and linguistic referential
processing.

Overall, this thesis unifies explanations of distinct cognitive processes (vi-
sual and linguistic) based on the principle of cross-modal referentiality,
and provides a new framework for unraveling the mechanisms that allow
scene understanding and sentence processing to share and integrate infor-
mation during cross-modal processing.
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Chapter 1

Introduction

1.1 Cross-modal synchronous processing

The growing body of multi-modal data powered by new tools and technologies has
brought forward questions about the role of different modalities and their interaction in
cognition. A central challenge in cognitive science today remains the identification and
quantification of cross-modal mechanisms that mediate the synchronous processing of
multi-modal information.

Cognitive modalities are in synchronous processing during tasks requiring the coor-
dination of multi-modal information. For example, when we are driving a car or simply
walking, our visual system has to share and coordinate information with the associated
motor-actions; thus looks to the road turn in our visual field have to be coordinated
with steering movements of the wheel. It follows that access to certain aspects of the
visual information occurs in synchrony with associated motor-responses.

Even if the majority of our daily tasks need the synchronization of different cogni-
tive processes, very little is known about the mechanisms allowing such cross-modal
interaction.

By exploring the temporal mechanisms regulating this cross-modal processing, we
gain additional insight into the individual cognitive processes involved, while aim-
ing at a unified explanation of the underlying cognitive architecture. We believe that
this knowledge can be used to integrate multi-modal processes, in order to conceive
models, computational tools and applications which can exploit such richness. Such
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1.2 Cross-modal referentiality in multi-modal interaction

integrated understanding requires moving beyond mere correlation to identify plau-
sible underlying dynamic mechanisms directly from experimental or behavioral data,
that involve two or more modalities in synchrony. We must examine the emerging rela-
tionships between different cognitive processes at various temporal and spatial scales,
and identify the links between top-down and bottom-up factors that influence their in-
terdependence. A first step to achieve these goals is to discover general mechanisms
of cognition which unify evidence gathered by different disciplines interested in cog-
nition.

Cross-modal synchronous processing is a broad and largely unexplored topic which
cannot be covered in a single thesis; thus, here, we focus on referentiality, a key
mechanism that enables multi-modal interaction. Reference arises at the interface be-
tween different modalities. As such, it is subject to influences from various cognitive
processes. Moreover, it is the core of all shared representations which form the build-
ing blocks of meaning. By investigating how referential information is shaped across
modalities by various factors and mechanisms, we can begin to uncover the emergence
of cross-modal integration.

1.2 Cross-modal referentiality in multi-modal interac-
tion

Referents can be defined as cognitive entities with logical, visual, linguistic, and other
components from distinct modalities, which unify the perception of a real world coun-
terpart.

This thesis explores the claim that multi-modal perceptual processing occurs over
a shared referential interface. In order to explain the multi-modal interaction of vision
and language during tasks demanding synchronous processing, we assume the prin-
ciple of cross-modal referentiality. We examine which visual and linguistic factors
contribute to the formation and maintenance of cross-modal referentiality. Our aim
is to unravel the shared cognitive mechanisms allowing visual attention and sentence
processing to be coordinated during this synchronous interaction.

Insights about the existence of a shared referential interface between vision and
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language have come, rather independently, from research in psycholinguistics and vi-
sual cognition.

On one hand, a psycholinguistic paradigm of eye-tracking research (Visual World
Paradigm, VWP), where sentence understanding is investigated concurrently with a
visual context, has shown clear links between visual and linguistic referential informa-
tion (e.g. Altmann & Kamide 1999; Altmann & Mirkovic 2009; Crocker et al. 2010;
Knoeferle & Crocker 2006; Spivey-Knowlton et al. 2002; Tanenhaus et al. 1995). A
major conclusion reached by this paradigm is that the interpretation of linguistic infor-
mation is mediated by the visual information in the context; and this interaction can be
observed in the visual responses launched at the referents depicted in the visual context.
By focusing on linguistic phenomena, however, these studies have largely underesti-
mated mechanisms and factors attributable to visual processing, hence restricting their
conclusions to linguistically motivated explanations.

On the other hand, research in visual cognition has gradually gathered evidence
supporting the idea that the allocation of visual attention during goal-directed tasks
is driven by object-based, referent-dependent, top-down processes (e.g. Findlay &
Gilchrist 2001; Henderson & Hollingworth 1999; Henderson 2003; Nuthmann & Hen-
derson 2010; Zelinsky & Schmidt 2009). The leading idea is that contextual informa-
tion relating the visual referents of a scene (e.g. their semantics) is utilized to guide
visual attention. Furthermore, this guidance seems to be modulated by processing
of linguistic information, and by the nature of the task performed (Castelhano et al.,
2009; Schmidt & Zelinsky, 2009). Crucially, the tasks explored in the visual cogni-
tion literature were mainly visual, e.g. search. To have a thorough understanding of
the mechanisms underlying visual attention, however, the investigation of visual tasks
involving sentence processing cannot be neglected.

1.3 Background: Referential information

Referentiality allows the mapping from external world-entities to internal cognitive
counterparts. The existence of such a mechanism enables different cognitive processes
to happen. For instance, the ability of recognizing what is and is not edible, or whether
we are confronting a prey or a predator, is strictly related to the capacity of linking the
perception of real-world entities with their referential cognitive counterpart.
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Referents are used to recognize, categorize and communicate information about
the real world, and constitute a primary thread tying together perception, planning and
action (Steedman, 2002). In fact, through the referents and their perceptual proper-
ties, we categorize, understand and perform actions afforded by them (Gibson, 1977).
Imagine, for example, that we want to open a door. In order to perform this action, we
need to know which referents compose this event, i.e. the DOOR1 and the HANDLE, the
perceptual properties involved, e.g. the DOOR and the HANDLE are movable objects,
and the affordances inferred, i.e. by moving the HANDLE we open the DOOR.

Each modality sources different types of information about the referents, e.g. the
door is red (vision) and heavy (haptic); nevertheless, this perceptual diversity is inte-
grated within the same referential identity, a door. Moreover, it is interesting to note
that a referent is conceptually unique (Wittgenstein, 1921), while the perceptual pat-
terns by which an object is classified are fuzzy (Labov, 2004). For example, different
MUGS can vary in size (small or tall) or color (red or blue) as objects, but they will be
classified under the same type. Thus, reference can extend over different perceptual
realizations of the same world-entity while preserving unique denotation. This implies
that, even if the physical features of an object, or its spatial location, change it would
afford the same set of actions, as long as its referential identity is maintained. Thus, if
a MUG is on a COUNTER or on CHAIR, it would still afford the drinking action.

The integration of cross-modal referential information is essential to synchronize
processing across modalities during tasks requiring the coordination of multi-modal
information. The action of opening a door, for instance, requires the coordination be-
tween visual attention and motor-action on both referents the DOOR and the HANDLE:
visual attention retrieves information about the HANDLE, while motor-actions adapt the
hand position to perform grasping on it (Land, 2006). Even if the identity of referents
is shared across modalities, the way the perceptual information is processed, and the
mechanisms utilizing such information, have modality-specific effects. In this thesis,
we explore the mechanisms of cross-modal referentiality underlying the interaction of
vision and language. Thus, we review the concept of referentiality in both modalities,
before passing onto the evidence about mechanisms that could relate their interaction.

1We use the following typography DOOR to indicate the real-world referent and the door for its
linguistic counterpart.
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1.3.1 Referentiality in language

The existence of referential identity makes it possible not only to recognize and cate-
gorize new instances of the same world-entity but also, and more importantly, to com-
municate about them. It is here that the notion of referentiality overtly interacts with
language processing. Referents in language processing can be imagined as discourse
pointers toward real-world counterparts. Interestingly, not everything that is linguisti-
cally processed has a clear referential counterpart in perception. For instance, concrete
nouns usually refer to perceivable objects (e.g. cup, dog, mug), whereas verbs refer
to events, where different aspects of perceptual information are conveyed (e.g. run,
make, drive). However, despite these different levels of abstraction, it seems reason-
able to frame language as the faculty for structuring referential information. By taking
this approach, language is naturally contextualized within cognition as the interface
organizing multi-modal perceptual information. The main challenge posed to this way
of looking at language processing is the grounding problem (Barsalou, 1999; Gorniak
& Roy, 2007; Roy, 2005; Stevan, 1990); i.e. finding mechanisms of correspondence
between symbols of language and contents of perception. Neurophysiological research
has shown that there are specific associations between linguistic processing and neu-
ral circuitry, a verb like kick elicits activity in the motor cortex (Pulvermuller, 2005).
Moreover, Rizzolatti & Arbib (1998) have identified structures in the mirror neurons
where this integration might take place. However, beside proving that language is
indeed wired in our brain, the grounding problem remains largely unsolved.

In order to investigate language processing in terms of grounding, we have to
break down the problem, at least, in three parts: the formation of referentiality, lan-
guage grounding, and the mechanisms of cross-modal interactivity. The formation
of a referential interface takes place during the first stages of cognitive development
(Barsalou, 1999) and regards the question of dividing the fuzzy categories of percep-
tion into finite conceptual referents (Labov, 2004). After the referential mapping has
been established, the referents are organized into event structures representing contex-
tual expectation of our external world (Altmann & Mirkovic, 2009). During this pe-
riod, language assigns the word/sound labels to the conceptual referents while building
links to the different perceptual representations of that entity across modalities (Roy,
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2005; Tomasello, 2003). The mechanisms of cross-modal interactivity, arising dur-
ing language grounding, allow language processing to share and integrate grounded
referential information across different modalities.

In this thesis, we assume the existence of a shared referential interface linking
perceptual information across modalities, and, on the basis of that, we explore the
mechanisms allowing cross-modal interaction. Especially, we explore how linguistic
reference interacts with visual reference during situated language processing, while
unraveling the visual and linguistic factors involved and the patterns emerging as a
result of their interaction.

1.3.2 Referentiality in vision

A definition for the notion of reference in visual perception is more difficult to for-
mulate than in sentence processing. The main reason is that in sentence processing,
a referent is directly linked to a word, which can be uniquely identified, whereas in
vision the debate about what an object is, and how it could be identified is still open.
A main distinction emerging in the visual cognition literature to classify what is, from
what is not referential information, is the difference between image-based (e.g. Itti &
Koch 2000a) and object-based information (e.g. Nuthmann & Henderson 2010).

Image-based information, i.e. saliency, is made of primitive visual features, such
as color, intensity and orientation, of the scene as a whole. Thus, this information does
not imply referentiality, as it is purely based on the raw visual stimulus. Within this
approach, there has been an attempt to use this information to derive an intermediate,
referent-like, representation (i.e. proto-objects Walther & Koch 2006). However, even
if proto-objects can be computationally found using image-based information, they do
not seem to have any cognitive relevance for visual attention during performance of
visual tasks (Nuthmann & Henderson, 2010).

Object-based information, as the name suggests, is the information carried by the
objects composing a certain scene. In this approach, objects are recognized by integrat-
ing spatial, semantic and statistical information of the scene context in which they oc-
cur (Bar, 2004; Galleguillos & Belongie, 2010). Evidence of the important role played
by contextual information comes from experimental, and computational research in
visual cognition. Experimental work has shown that object-based, contextually driven,
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information is utilized to efficiently allocate visual attention during goal-directed tasks,
such as search (Brockmole & Henderson, 2006; Rayner et al., 2009; Zelinsky et al.,
2008). Furthermore, computational models of visual attention, which integrate contex-
tual information, outperform purely image-based models on such tasks (Ehinger et al.,
2009; Judd et al., 2009; Torralba et al., 2006).

In this thesis, since we are interested in cross-modal reference during situated lan-
guage processing tasks, we adopt an object-based perspective, which deals with refer-
ential information processing more deeply than the image-based approach. Moreover,
we take a more ‘linguistic‘ view to interpret visual objects and contextual scene infor-
mation. An object, for us, is defined with respect to a content word that can be used
to refer to it; the contextual scene information, instead, is conceptualized as the spa-
tial, semantic and statistical relations holding between the referent objects of a certain
scene.

1.3.3 Situated language processing

Language processing does not occur in isolation. Usually, it depends on contextual
information that is processed concurrently: linguistic, e.g. previous sentences of a
discourse, or non-linguistic, e.g. an image we are watching. Research in formal lin-
guistics has mainly focused on mechanisms of syntactic dependency, e.g. anaphora or
co-referent resolution (Reinhart, 1983), happening at the level of syntactic clauses and
trying to capture how linguistic information is selected (semantics), encoded (syntax)
and maintained (discourse). The mechanisms found focused around formal observa-
tions based solely on linguistic information. However, when sentence processing is
observed in relation to a non-linguistic context, e.g. visual information, linguistic ex-
planations are not sufficient. Within a multi-modal framework, in fact, different types
of contextual information concurrently interact and integrate to sentence processing.

A psycholinguistic eye-tracking paradigm of studies investigating linguistic phe-
nomena situated in visual contexts is the Visual World Paradigm VWP (e.g. Altmann
& Kamide 1999; Spivey-Knowlton et al. 2002; Tanenhaus et al. 1995). This paradigm
is based on the assumption that eye-movements launched on a visual context during
linguistic tasks (mainly comprehension) can show underlying mechanisms of linguistic
processing. In a VWP study, the visual context, usually an array of objects or a clip-art
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scene, has a direct correspondence with the ongoing linguistic processing. Typically,
linguistic referential information of the sentence matches depicted information of the
visual context. This correspondence makes it possible to investigate eye-movement re-
sponses time-locked to linguistic regions of interest (ROI). Thus, visual objects looked
at, before and after a linguistic ROI, are interpreted as responses to ongoing linguistic
processing.

Overall, these studies support the hypothesis that visual information is integrated
during sentence processing, and utilized to situate (Crocker et al., 2010) linguistic
mapping. The integration has been observed, especially during sentence comprehen-
sion, at different levels of processing: from prosody (Snedeker & Yuan, 2008), where
intonational patterns are combined with visual information to resolve syntactic refer-
ential ambiguity; to lexical semantics, where linguistic predictions based on verbal or
thematic information (Altmann & Kamide, 1999; Knoeferle & Crocker, 2006), e.g.
eat expects an edible direct object the apple, are anticipated as visual responses to
contextually appropriate objects, e.g. looks to APPLE before the linguistic referent is
mentioned.

A shortcoming of the VWP paradigm, however, has been the strict linguistic per-
spective used to investigate and interpret the integration.VWP experiments are mainly
designed to test specific linguistic phenomena, e.g. syntactic priming (Arai et al.,
2007), thus manipulations are focused on the linguistic material. Within this approach,
visual responses are understood as consequences to linguistic processing, hence assum-
ing a uni-directional dependence (from language to vision) between the visual objects
fixated and the linguistic material processed. However, a consistent body of studies in
the visual cognition literature has shown that there are several factors, most of which
independent from linguistic processing, influencing how visual attention is deployed.
These mechanisms have to be understood in the context of situated language process-
ing, in order to clearly interpret the combined output of linguistic and visual responses.

1.3.4 Mechanisms of visual attention

In the visual cognition literature, as already mentioned in section 1.3.2, the debate
about the mechanisms guiding visual attention centers on the distinction between low
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(e.g. Baddeley & Tatler 2006; Itti & Koch 2000b) vs high (e.g. Brockmole & Hender-
son 2006; Henderson 2007) level mechanisms; also distinguished as image vs object-
based mechanisms of visual attention (Nuthmann & Henderson, 2010). Conceptually,
low-level, or bottom-up, mechanisms are linked to physical properties of the image
(e.g. color), whereas high-level, or top-down, mechanisms are based on cognitive
structures attached to the individual objects (e.g. a mug is often in relation to kitchen
counters) forming it. At the foundation for models of bottom-up driven visual atten-
tion is saliency (Itti & Koch, 2000b; Parkhursta et al., 2002): an aggregated measure
of visual information, based on primitive features of the image, such as color, intensity
and orientation, computed at different spatial scales. The saliency map, in combina-
tion with a winner-take-all1 network and the inhibition of return mechanism2, can be
used to predict the scanning sequence of fixations during free viewing tasks (Walther
& Koch, 2006). The strength of models based on saliency is their reliance on visual
primitive features, which have neurophysiological soundness (Moore, 2006). Within
this approach, however, it is not clear how high-level cognitive knowledge about the
scene is utilized. A scene, in fact, is not a meaningless combination of primary fea-
tures, but rather it has a specific configuration consisting of individual objects, which
are usually semantically and functionally related. The cognitive relevance of a scene
becomes especially evident when vision is actively used to perform tasks requiring
access to knowledge.

Experimental evidence, in support of a cognitive driven, object-based, approach to
visual attention, comes from the active vision perspective (Findlay & Gilchrist, 2001;
Land, 2006; Noton & Stark, 1971; Yarbus, 1967). The main assumption of this ap-
proach is that the deployment of visual attention is mainly bounded to the type of task
performed (Castelhano et al., 2009), and the knowledge structures activated in order to
complete it (Malcolm & Henderson, 2009, 2010). For instance, if our task is to find a
mug in a kitchen (visual search), we inspect only regions of the scene that are contextu-
ally relevant (Neider & Zelinsky, 2006; Schmidt & Zelinsky, 2009; Yang & Zelinsky,
2009), e.g. the COUNTER but not the CEILING, despite their saliency within the image
(Henderson, 2007). Only objects that are cognitively relevant to the task are going to
be fixated. The cognitive relevance approach (Henderson et al., 2009a; Nuthmann &

1The highest value of the saliency map is selected.
2The likelihood of re-fixating the same location, after having just inspected it, is very low.
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Henderson, 2010) is based on the assumption that we have cognitive knowledge about
the visual objects, and this knowledge guides visual attention. Nevertheless, as already
mentioned, it is unclear how representations about individual objects are, in the first
place, generated from primary visual features, and which cognitive principles make
categorical inference possible.

There is experimental evidence reconciling some aspects of the dichotomy, low vs
high-level. For instance, objects and saliency are spatially correlated, thus the locations
of a scene that are rich in objects have also high saliency (Einhuser et al., 2008; Elazary
& Itti, 2008); or that categorical search is also guided by low-level visual similarity1

(Alexander et al., 2010). Nevertheless, the mechanisms allowing the interaction and
integration between low and high level information are still under debate.

The main aim of this thesis is to unify the evidence from psycholinguistic stud-
ies on situated language processing (VWP) with those found in visual cognition to
uncover the connections and cross-modal mechanisms allowing the formation, mainte-
nance and sharing of multi-modal referential information between visual and linguistic
processing during tasks requiring their synchronous interaction.

1.4 Central Claims

Neither of the fields discussed above has managed to provide an exhaustive theory of
cross-modal referentiality; where the mechanisms of integration, the factors involved,
and the type of task performed during synchronous visual and linguistic processing are
accounted for by the same framework.

In order to provide a unified theory of cross-modal referentiality, we must integrate
empirical evidence gathered in both fields: psycholinguistics and visual cognition. To
do so, we put forward four main claims.

The first claim is that visual attention and sentence processing interact bi-
directionally during tasks demanding synchronous processing. So, mechanisms known
to influence the response of one modality are expected to modulate the response of the
other modality. We demonstrate this dependence in a series of situated language under-
standing eye-tracking experiments. We show that low-level, image-based, scene infor-

1An effect that has also been found within the VWP (Huettig & Altmann, 2007).
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mation, i.e. saliency, is actively used to make predictions about upcoming arguments
of the sentence. When the linguistic information accumulated during the understand-
ing process is not sufficient, sentence processing resorts to saliency information in the
scene.

The second main claim is that object-based information modulates the type of sen-
tences observed and the associated pattern of visual responses. We investigate this
hypothesis in two language production experiments situated in photo-realistic scenes.
By looking at production, rather than comprehension, we give more prominence to vi-
sual attention which sources referential information for the sentence processor. More-
over, by situating the language generation task in photo-realistic scenes, we are able to
analyse more realistic visual responses. We demonstrate that the clutter of the scene
and the animacy of the objects described can modulate the cross-modal interaction of
sentence processing and visual attention.

The third central claim is that cross-modal integration is established through coor-

dination of referential information. We demonstrate a consistent positive correlation of
similarity between sentences and associated scan patterns. This effect is robust across
the different phases of language generation, both within and across scenes. The cross-
modal similarity found across different scenes highlights an object-based, rather than
image-based, interaction between sentence processing and visual attention.

The fourth claim is that the nature of the task performed affects cross-modal in-
teraction. We distinguish between single modality task (e.g. visual search) where
only one modality (e.g. visual attention) is actively involved, and multi-modal task
(e.g. scene description), where different modalities demand synchronous processing.
We find that a single-modality task requires less visual processing than a multi-modal
task. Moreover, we show that in a single modality task participants display a lower
scan pattern similarity than during a multi-modal task. The synchronization between
visual and linguistic referential information leads to a stronger scan pattern coordi-
nation. Coordination arises when multi-modal information needs to be synchronized
across different cognitive processes.

11



1.5 Overview of the thesis and Contributions

1.5 Overview of the thesis and Contributions

In Chapter 2, we present our methodology of investigation situated in the context of
previous approaches. We also give details on the experimental procedure, the response
measures utilized and the reasons for choosing linear mixed effect models to perform
inferential statistics.

In Chapter 3 (Experiments 1-3), we investigate the interaction between low-level
visual (saliency) and linguistic (intonational break) information during the resolution
of syntactic ambiguity. Our approach differs from previous work in the VWP, which
has investigated sentence understanding situated in a visual context (e.g. Tanenhaus
et al. 1995), without, however, questioning whether visual mechanisms are actively in-
volved during sentence processing. Through our findings, we demonstrate that mech-
anisms of visual attention are important during situated language processing, as they
directly interact with linguistic factors. The results show that when the linguistic ma-
terial processed is not sufficient to generate a full prediction, (e.g. around verb site),
saliency is utilized to predict upcoming arguments. This suggests that image-based
low-level information can actively inform the sentence processor when the linguis-
tic material is unable to guide visual attention towards precise visual referents of the
scene, on its own.

In situated language understanding tasks, visual attention plays only a marginal
role. Thus, in Chapter 4 (Experiments 4-5) we decided to investigate situated lan-
guage production tasks, where visual attention is expected to play a more active role.
Through the use of photo-realistic scenes, we can explore more realistically the impact
of scene referential information on cross-modal interaction between visual and linguis-
tic responses. In particular, we show how the visual density of the scene, i.e., clutter

(Rosenholtz et al., 2007), and the animacy of the object cued for description (Mc-
Donald et al., 1993) influence the type of sentence encoded and the associated visual
responses. One main hypothesis is that scene clutter should facilitate language gener-
ation. Regarding object animacy, we expect that an inanimate object will be described
in spatial relation with another object, whereas an animate object will be primarily
chosen as the subject of an action. Beside these independent effects, we expect inter-
actions to emerge between clutter and animacy. In particular, the linguistic encoding
of animate objects should benefit from higher clutter, as more visual information can
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be used to contextualize their role/action in the scene. Our results show more looks on
the scene during mention of the animate referent in cluttered scenes, thus confirming
that the description of animate objects benefits from the density of visual information.
In contrast, in minimal scenes, participants faced more difficulties in encoding animate
referents; and visual attention had to source additional information from the animate
object itself to feed the ongoing sentence. The convincing evidence of cross-modal in-
teraction gathered in Chapters 3-4 strongly motivate us to quantify more precisely the
relation between visual and linguistic referential information. Inspired by literature in
visual cognition showing coordination of gazes (represented as scan patterns), during
multi-modal tasks, such as dialogue (Richardson et al., 2007) and motor-action (Land,
2006), we test whether coordination emerges also between sentence processing and vi-
sual attention. In Chapter 5 (Experiment 6), we demonstrate cross-modal coordination
between visual attention and sentence processing. Our main hypothesis is that similar
sentences are associated to similar scan patterns, and our results confirm it. Across
different phases of the language generation task, we observe a positive correlation of
similarity between sentences and scan patterns.

Throughout the thesis, we investigate situated language processing tasks, where
cross-modal interaction is a requirement to perform the task. However, tasks can dif-
fer by the level of cross-modal interaction they require. Some tasks, such as search,
demand the active engagement of a single modality. On the other hand, more com-
plex tasks, e.g. scene description, require the involvement of more than one cognitive
modality. So, in Chapter 6 (Experiments 7-8), we investigate how the cross-modal na-
ture of the task affects visual responses. We analyze three tasks: visual search, object
naming and scene description. They vary by the degree of cross-modal interactivity de-
manded. Our main hypothesis is that naming and description, being tasks that demand
explicitly cross-modal interaction, should be characterized by longer visual responses
than search, which is an intrinsically visual task. This difference in temporal process-
ing is confirmed by our empirical results, and seems to be due to cross-modal referen-
tial integration, which is a key feature of synchronous processing. The comparison of
the scan patterns across tasks reveals that the multi-modal tasks have higher scan pat-
tern similarity than the single modality task. This effect is due to the synchronization
of referential information across modalities (visual objects and linguistic referents). In
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search, instead, more variability can arise as the cognitive control of visual attention
decays after an early phase of contextually driven guidance (e.g. Torralba et al. 2006).

Finally, in Chapter 7, we summarize our findings and discuss the implications that
cross-modal referential interaction entails. We also propose future research to expand
and strengthen our understanding about the role of cross-modal referential interface
during synchronous processing.

1.6 Collaborations and Publications

The experiments presented in Chapter 4 were published in Coco & Keller (2009,
2010b), The experiment presented in Chapter 4 have published in Coco & Keller
(2010a). The thesis has also benefited from the comments of the audience of CogSci-
09/10, CUNY-09/10, AMLaP-08/09 and HSI-09 which have refined and strengthened
the content and form of my ideas. I am grateful to Jeff Mitchell to have provided
the code to calculate LSA similarity of sentences for Experiment 6 in Chapter 5, and
George Malcolm for designing and running Experiment 7 in Chapter 6.
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Chapter 2

Methodology, Tools and Analysis

2.1 Introduction

In this chapter, we describe the methodology of investigation used to support the hy-
potheses discussed in the thesis. In section 2.2, we begin by illustrating the importance
of eye-movements for the study of cognitive processes, while presenting components,
definitions and measures commonly adopted in eye-tracking research. Since this the-
sis focuses on the interaction of vision and language, in section 2.3 we contextualize
eye-movements analysis during language processing, and we discuss theoretical and
technical implications of this approach. Then, in section 2.5 we focus on cross-modal
referential alignment with particular emphasis on its temporal implications. Here, se-
quence analysis techniques, used to measure similarity between visual and linguistic
referential information, are described. All the measures presented are used in inferen-
tial statistical analysis. In the last section 2.6, we review statistical methods commonly
used to analyze eye-movements data showing advantages and disadvantages. On these
premises, we motivate and describe the choice of a linear mixed effects modeling ap-
proach.

2.2 Eye-movements: a window on cognitive processes

With our eyes, we actively gather and process visual information from the surrounding
world. During this activity, the eyes constantly move from one location to another of
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2.2 Eye-movements: a window on cognitive processes

the visual space. This motion can be used as an explicit indicator of how visual atten-
tion distributes in space over time while performing a task, e.g. reading (Rayner, 1984;
Yarbus, 1967). Eye-tracking technology makes it possible to quantify visual attention
by capturing two main components of the oculomotor signal: the saccade, usually
measured as a distance1, which is the movement covered by the eye when moving in
the visual space, from one location to another; and the fixation, which is the time,
between saccades, during which the eye remains relatively still2 on a spatial location
for about 200-300ms3. A fixation is usually directly interpreted as an indicator of on-
going cognitive processes. It provides information regarding the identity of the spatial
region where attention is allocated, e.g. for reading studies, it can be an ambiguous
word, and of the processing load, i.e. the time spent in the region (Rayner, 1998). A
saccade, instead, is a more implicit index of visual attention4, especially informative
of spatial inspection. Different visual tasks, e.g. memorization or search, trigger dif-
ferent saccadic lengths, with search having longer initial saccade than memorization
(Castelhano et al., 2009). A search task requires, initially, a wider sampling of the
scene to identify the likely locations where the cued target might be found, whereas
during memorization, the goal is to remember as many objects as possible regardless
of their position within the scene. In this thesis, we focus on fixation data. The main
reason is that a fixation explicitly tells us about which visual referent is currently pro-
cessed, when and for how long. This piece of information is especially crucial when
eye-movements are interpreted in the context of other ongoing processes, e.g. sentence
processing. In such case, the responses of the visual system are modulated by mech-
anisms of sentence processing; thus, the only way to interpret this interaction is by
looking at how the relation between visual referents fixated and processed linguistic
information changes over time.

1Expressed in degree of visual angle. The distance is correlated with time: the longer the distance,
the more time saccading takes.

2The eye makes always micro-movements (e.g.,nistagmus).
3Fixation duration varies according to the task performed (Castelhano et al., 2009; Rayner, 1984).
4An open debate is whether during saccading, there is partial suppression of cognitive processes,

e.g. Van Duren & Sanders 1995.
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2.3 Eye-movements in situated language processing

2.3 Eye-movements in situated language processing

In reading (e.g. Clifton et al. 2007; Demberg & Keller 2008; Tinker 1958), or purely
visual tasks (e.g. search Malcolm & Henderson 2009; Schmidt & Zelinsky 2009), eye-
movements are observed with respect to a Region Of Interest (ROI), which can be
a word of the sentence, or a target object embedded in the scene. At the ROI, eye-
movements are expected to carry crucial information about the process investigated.
For example, in reading, the fixation duration on words reflects processing complex-
ity; or in search, the time spent inspecting the scene before finding the target object
can inform on the complexity of the scene. Notice that, in reading or visual search, the
experimental conditions manipulated in a trial are time independent. In reading studies
of garden-path sentences, e.g. the horse raced past the barn fell (Ferreira et al., 2001),
the ambiguous ROI past can be read by different participants at different times; what is
crucial is the eye-movement information at that particular ROI, e.g. first pass gaze du-
ration (Sturt, 2002). Thus, the measure of fixation observed at the ROI is independent
from the time-course of the trial.

More recently, however, the use of eye-movements has extended to more inter-
active tasks where language is situated in a visual context (Visual World Paradigm,
e.g. Tanenhaus et al. 1995). In these studies, participants are asked to perform lan-
guage processing tasks, such as understanding spoken stimuli (e.g. (Spivey-Knowlton
et al., 2002)), or producing sentences (e.g. (Griffin & Bock, 2000)) while concurrently
viewing a visual context; this context, to some extent, corresponds to the linguistic
information processed, e.g. a depicted APPLE matching the spoken phrase the ap-

ple. The presence of a visual context required new ways of analyzing eye-movement
data. In fact, during synchronous processing of visual and linguistic information, eye-
movements patterns on the visual context are conditioned by the linguistic stimuli pro-
cessed. Thus, at different time-points during a trial, which usually correspond to the
phrases of a sentence, the eye-movement patterns change in response to linguistic pro-
cessing. Moreover, depending on the complexity of the visual context, each change
in the linguistic stimuli can involve more than one visual ROI; the most evident case
being when linguistic and visual information are referentially ambiguous1, i.e. to one
linguistic referent (the apple) might correspond several visual objects (APPLES).

1Referential ambiguity will be more deeply discussed in chapter 4.
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2.3 Eye-movements in situated language processing

A solution to treat time in its continuity is achieved by time-locking the visual
responses to the linguistic stimuli. Time-locking means aligning the eye-movements
data to the linguistic window of interest. In a typical situated language comprehension
experiment the phrases of a sentence are analyzed with respect to the visual regions
of the context. Once the linguistic and visual ROIs have been decided, fixations are
first aligned1 to the onset of linguistic ROI and then aggregated by visual ROI. After
aligning fixations to the onset of the linguistic ROI, we have to decide on the size of
the temporal window to be considered, and its position with respect to the onset of
the linguistic ROI, i.e. before or after. This decision depends on whether the task
is language comprehension or production, and on the issues concerning the research
question. In general, for language comprehension the effects are usually expected to
emerge after the linguistic ROI is mentioned, thus the window considered starts at the
onset of the critical region and ends after it. For production instead, effects can be
observed while the referent is mentioned, thus the window considered starts before the
referent is mentioned (Qu & Chai, 2008), and ends shortly after it (Coco & Keller,
2010b). Often, however, the decision about which window of analysis has to be con-
sidered strictly depends on the theoretical expectations based upon the experimental
design. For example, in studies investigating the phenomena of visual anticipation
during sentence comprehension, looks on the visual ROI are expected to increase be-
fore the corresponding linguistic ROI is mentioned: the verb eat triggers anticipatory
looks to edible objects (CAKE) before the referent the cake is actually mentioned (Alt-
mann & Kamide, 1999). Once the window of analysis is set, we have to decide its size.
Sentences usually vary both within and across different experiments. For example,
the time elapsing between phrases of the same type of sentence might be consider-
ably different across sentences. Thus, in order to avoid a misleading interpretation of
the data, it is important to correctly center the window around the linguistic ROI and
choose a size that does not overlap with neighboring regions. Each window can be
further sliced into smaller units, e.g. 10ms, where the presence or absence of a fixa-
tion is represented by a binary response2 (0,1). On each slice, then, proportions3 are

1In an experiment there are several trials, each with different onsets for the linguistic regions; align-
ment is done considering this information.

2Larger slices, however, can contain more than a single fixation. A 50ms slice might contain 2
fixations.

3Other measures can be computed, e.g. log-ratio (Arai et al., 2007) or empirical logit (Barr, 2008),
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2.3 Eye-movements in situated language processing

Figure 2.1: Example of a VWP experimental trial and proportion of fixations plot taken from Spivey-
Knowlton et al. 2002. Visual ROI: Target Referent (APPLE ON TOWEL); Distractor Referent (PENCIL

— APPLE ON NAPKIN) Correct Goal (EMPTY BOWL); Incorrect Goal (EMPTY TOWEL).

computed, across the different conditions, aggregating by participants and trials (more
details about statistical analyses of eye-movements can be found in section 2.6).

In order to exemplify how the analysis of eye-movements during situated language
processing is done, we are going to briefly walk through an experiment by Spivey-
Knowlton et al. 2002.

In this study, the authors asked how prepositional phrase (PP) attachment ambigu-
ity of sentences such as Put the apple on the towel in the box, is resolved in different

depending on the specific research hypotheses, and the statistical analysis performed.
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2.3 Eye-movements in situated language processing

visual contexts: one-referent context which supports an ambiguous goal-location read-
ing of the prepositional phrase on the towel (A: a single apple on the towel), and the
two-referent context that does not (B: two apples depicted); see Figure 2.1 for an exam-
ple trial. Their hypothesis is that in one-referent context, on the towel is ambiguously
interpreted as goal location: i.e. the APPLE ON TOWEL has to be moved in the EMPTY

TOWEL; whereas in a two-referent context, the referential ambiguity of APPLE (single
and on a towel) resolve the syntactic ambiguity by making on the towel interpreted as
noun-modification the apple that’s on the towel.

This hypothesis is tested by looking at proportion of fixations over time across
the different visual ROIs compared on the same condition1, e.g. unambiguous vs am-
biguous. During the first PP on the towel, proportion of fixations are mainly expected
to change on two visual ROIs: the EMPTY TOWEL (Incorrect Goal), and APPLE ON

TOWEL (Target Referent); whereas at the second PP in the bowl, effects are expected
only on the BOWL (Correct Goal). Their prediction is that there should more looks
on the EMPTY TOWEL during linguistic ROI on the towel for one-referent context (A:
APPLE ON TOWEL) compared to two-referent context (B: SINGLE APPLE, APPLE ON

TOWEL). For one-referent context, if the first PP on the towel is interpreted only as
noun-modification, we would expect looks only to APPLE ON TOWEL; instead if it is
also misinterpreted as goal-location, we would expect looks also on EMPTY TOWEL. In
Figure 2.1, we show proportion of fixations for one-referent and two-referent context
across the different visual ROI when sentence is ambiguous. The fixations are aligned
at the onset of direct object the apple and proportions calculated across the four dif-
ferent visual ROIs in slices of 33 ms, over a total time course of 5 sec. By comparing
the two plots, we can observe that in one-referent context, there are more looks, i.e.
higher proportion of fixation, on EMPTY TOWEL (Incorrect Goal) during the first PP on

the towel compared to two-referent context. This implies that in one-referent context,
participants are interpreting the first PP on the towel as goal location for direct object
the apple; whereas in two-referent context, the referential ambiguity resolves syntactic
ambiguity through visual competition. The statistical significance of these results is
assessed using ANOVA on proportion of fixations aggregated over trials and time. In

1In our work, we compare proportion of fixations on the same object across conditions. In this way,
the effect of conditions emerge more clearly on individual objects.
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2.4 Situated language processing in naturalistic scenes

section 2.6, we discuss the shortcomings of this approach while motivating our use of
linear mixed effect modeling.

By analyzing proportion of looks aggregated in visual objects, the sequentiality of
individual eye-movement record is lost, thus failing to utilize the information about
temporal relations of looks across the different objects: i.e. looking at the APPLE ON

TOWEL just after having looked at SINGLE APPLE. In experimental designs which
make use of object arrays, and therefore the total number of objects is small and bal-
anced across trials, this is not problematic. However, when sentence processing is
investigated within naturalistic scenes (Coco & Keller, 2009), and the number of ob-
jects, together with their visual properties, varies considerably across scenes, focusing
on individual objects detached from their sequential context might be oversimplistic.

2.4 Situated language processing in naturalistic scenes

Psycholinguistic research based on the VWP has mainly used very simple visual con-
texts, such as objects arrays or clip-art pseudo-scenes where the number of objects is
controlled, and the visual complexity, both in terms of low (i.e. color, intensity etc.)
and high (i.e. spatial layout, contextual information etc.) level features, is minimal.

Figure 2.2: Comparison between photo-realistic scenes used by Coco & Keller (2010b) and standard
VWP visual material used by Knoeferle & Crocker (2006).

In Figure 2.2 we compare a standard VWP visual context with a photo-realistic
scene. The first noticeable difference is the number of objects. In a pseudo-scene the
number of objects is much smaller than in a photo-realistic scene. This referential
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2.4 Situated language processing in naturalistic scenes

simplicity makes the match between linguistic and visual referents easier in a pseudo-
scene, where very few objects can be named or referred to. This also reduces signifi-
cantly the noise in the eye-movements data, in that visual attention will be artificially
drawn by the few objects depicted compared to a photo-realistic scene.

The referential simplicity of pseudo-scenes often implies the absence of ambigu-
ity1 in that each visual object can be uniquely referred to. In a photo-realistic scene,
instead, many objects could share the same linguistic referent. Moreover, when deal-
ing with photo-realistic scenes, there is the clear advantage of having more natural
visual responses; hence, we can also observe the impact of image-based visual fac-
tors, e.g. clutter (Rosenholtz et al., 2007), on sentence processing mechanisms (see
Chapter 4). Some of the differences between pseudo and photo-realistic scenes can
be accounted for using methods already applied in VWP studies. The issue of mul-
tiple referentiality, for example, can be solved by simply comparing the log-ratio of
fixations between ambiguous objects: where log( p(O1)

p(O2)
, and p(O1 is the proportion of

fixation on an object compared to fixating another p(O2; see Arai et al. 2007 for an
application. However, the introduction of photo-realistic scenes imposes a more rad-
ical re-interpretation of eye-movements. The fixations on objects are now dependent
on contextual relationship, which are implicit in the scene layout: a FORK and a PLATE

are both spatially close and semantically connected, thus also the order of fixations on
them is expected to be temporally related (Hwang et al., 2009). In contrast to pseudo-
scenes, where the objects do not have contextual relationship, both in terms of visual
layout, i.e. objects float, and semantics, i.e. a BALLERINA is expected in a THEATER

dancing rather than pouring water on a CELLIST. Therefore, there is no contextually
implicit ordering, determining the way visual attention is displayed. When monitoring
visual attention during situated language processing in a photo-realistic scene, instead,
it becomes crucial to keep track of sequential order when analyzing fixations.

1Unless ambiguity is experimentally manipulated.
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2.5 Sequentiality during referential information processing

2.5 Sequentiality during referential information pro-
cessing

When we observe a scene, our eyes move sequentially from one object to another.
This sequence of fixations forms a scan pattern (Noton & Stark, 1971). We interpret
a scan pattern as an explicit representation of the referential information visually at-
tended to during a task by a viewer. However, during situated language processing, a
scan pattern is paired with a corresponding sentence, which is a sequence of words.
Thus, the objects visually attended have a sequential relation with the words uttered
(in production) or listened to (in comprehension).

In Chapter 4, we report a situated language production eye-tracking experiment,
where participants are asked to describe photo-realistic scenes. The sentences gener-
ated are paired to the scan pattern that followed (see Figure 2.3 for an example of scene
and data obtained, sentence and scan pattern). A sentence is already in the form of a
sequence, e.g. the man is signing in; however, in order to have also eye-movement
in sequential form we need to map fixations generated during the course of the trial
into a scan pattern. To do that, we use the LabelMe Matlab toolbox (Russell et al.,
2008), which allows us to annotate the scene with polygons, drawn around the edges
of a recognized object. In the scene of Figure 2.3, MAN or COUNTER are examples
of LabelMe annotations. The information of polygons is saved in XML format, and
beside the name of the label given by the annotator, it contains all coordinates (x,y) for
the points of the vertexes forming the polygon. In order to map a fixation to the label of
polygon visually attended, we calculate whether the fixation’s coordinates fall within
the area covered by the polygon. In case of embedded polygons, i.e. a HEAD is part
of the BODY, we assign to the fixation the names of all embedded polygons ordered by
their area calculated in pixel square, from smallest to largest, e.g. HEAD < BODY <

MAN. A final scan pattern is then a sequence of fixated objects represented as labels.
Once sentences and scan patterns are in the form of sequences, we can investigate

their synchronous relation as a problem of referential information alignment. However,
before being able to create a model of cross-modal alignment1, it is crucial to explore
the conditions influencing this alignment.

1 A goal which goes beyond the purposes of this thesis.
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2.5 Sequentiality during referential information processing

Figure 2.3: An example of scene used in experiment 6 (Chapter 5) annotated with polygons. A visual-
ization of scan-pattern information for two different participants.

A first question that needs to be addressed is whether similar sentences correlate
with similar scan patterns, and if so, which linguistic and visual factors are involved
in this coordination. To answer this question, in Chapter 5 we look at the pairwise
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2.5 Sequentiality during referential information processing

similarity between these two types of sequences, and derive a measure of cross-modal
coordination which can be used to predict the strength of association of a pair sen-
tence/scan pattern.

The problem of computing similarity between sentences and scan patterns can be
treated as a problem of sequence analysis. Finding similarity between sequences is a
well known problem in the field of bio-informatics (Durbin et al., 2003), where ge-
netic codes have to be compared to unravel underlying similarities. A guiding princi-
ple used to capture these similarities is alignment. The more elements two sequences
share, the more similar they are. Alignment presents, however, two major issues: se-
quences differ in length, and the elements composing the sequences, even if identical,
can be positioned differently. We implement three measures1, Needleman-Wunsch
(NW, Durbin et al. 2003), Longest Common Subsequence (LCS, Gusfield 1997) and
Ordered Sequence Similarity (OSS, Gomez & Valls 2009), all of them able to solve
these issues.

NW is a classic and simple method of sequence alignment, which has recently been
applied to eye-movements2 data in a study conducted by Cristino et al. 2010. NW is an
iterative dynamic programming algorithm which performs a global alignment between
two sequences using a substitution matrix and a gap-penalty term. A substitution ma-
trix returns a similarity score between two aligned data-points (i.e. aligning MAN-L
with MAN-R may return a score of 0.8, whereas aligning MAN-L with CLIPBOARD

returns a score of 0.1; and aligning MAN-L with MAN-L may return the maximum
similarity of 1), and the gap-term, e.g. -1, penalizes this score every time a gap has
to be introduced in order to allow a matching between two sequences. The algorithm
scores and saves values of local alignment of sub-sequences using the substitution ma-
trix and the gap penalty. Then, the best alignment is found by backtracking the optimal
alignment path within the matrix. The similarity between the two sequences corre-
sponds to the score obtained by this optimal path: the higher the score, the more the
similarity.

A simpler method of sequence alignment similar to NW3 is LCS. In LCS, the goal

1For application, see Chapter 5.
2Implemented as Matlab toolbox (ScanMatch): http://eis.bris.ac.uk/ psidg/ScanMatch/index.html.
3In Chapter 5 we show that LCS gives highly correlated result with NW, when the substitution

matrix has 1 along the diagonal, indicating a perfect match, 0 otherwise; and the gap-penalty is 0, i.e.
no penalty.
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Figure 2.4: Longest Common Subsequence is a measure of similarity based on ordered subsequences.
Between two sequences, it explores the space of all common subsequences seeking for the longest. SP-1
and SP-2 share several common subsequences of length 2 (e.g. man-man). In this example, the LCS is
of length 3.

is to find the longest subsequence common to two, or more, sequences. Conceptually,
the algorithm searches the space of all combinations of ordered subsequences, look-
ing for the alignment which maximizes the number of common elements. The algo-
rithm follows a dynamic programming approach, where the final solution (the longest
alignment) is iteratively built up, based on solutions of subproblems (looking for all
common subsequences). Once we find the longest subsequence, we calculate the sim-
ilarity score as the ratio between the length of LCS and the geometric mean of the two
sequences. For example in Figure 2.4, SP-1 and SP-2 share several common ordered
subsequences, e.g. man-man or man-statue, with a length of 2. The algorithm is de-
signed to explore all possible combinations trying to find the common subsequence
with the longest length. In this example, the longest ordered common subsequence is
man-statue-man with a length of 3. Often, LCS finds more than an unique solution,
i.e. two sequences can have two LCS of the same length. However, even if more than
one LCS is found, they will have the same similarity score.

The second method used to compute sequence analysis is Ordered Sequence Sim-
ilarity, shown to be more effective than established measures such as edit distance
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Figure 2.5: Ordered Sequence Similarity is a dissimilarity measure which integrates the information
about which elements are common or uncommon between 2 sequences while taking into account the
relative distance between those elements that are common.

(Gomez & Valls, 2009). OSS is based on two aspects of sequential data: the elements
the sequence is composed of, and their positions. When comparing two sequences, it
divides the elements into common (shared) and uncommon (unique); and on the shared
elements, it takes into account the relative position. The first step is to separate target
objects that are common in both scan patterns, from those that are unique. For ex-
ample in Figure 2.5, four objects are shared by the two scan patterns (man-R, plant,
statue, suitcase); whereas two objects (telephone, man-L) are unique respectively in
SP-1 and SP-2. For each common element, we calculate the distance between the two
sequences, e.g., statue of scan pattern 1 is two units distant from statue in scan pat-
tern 2. Distances between common elements, and number of uncommon elements are
integrated into a unique metric, which is normalized on the basis of sequence lengths
(for details refer to Gomez & Valls 2009). Despite its name, OSS gives a dissimilarity
measure, which we convert into similarity, to allow easier visualization, by simply sub-
tracting distances from 1. We use sequence analysis in Chapter 5 to quantify patterns
of similarities between cross-modal (visual and linguistic) referential information. In
Chapter 6, sequence analysis is used to compare scan pattern similarity within and
between different tasks, which allows us to unravel shared mechanisms of referential
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information processing underlying the different tasks performed.

2.6 Inferential Analysis

In the previous sections, we have discussed our methodology of investigation, con-
textualized within the literature, along with descriptions of the measures that we will
be using to explore our hypotheses. However, in order to test the statistical validity
of our experiments, we need to have a general framework for our inferential analy-
sis. Statistical inference is a crucial step to extract significance from the data observed
while refining, in the light of its application, the explanations of the hypothesis inves-
tigated. Therefore, it is extremely important to select a method which correctly adapts
to the data observed. First, we review statistical methods commonly used to analyze
eye-movements data showing advantages and disadvantages; then we motivate and
describe the use of the linear mixed effect modeling approach.

2.6.1 Traditional Vs Modern methods of statistical inference

Eye-movements data used to quantify linguistically situated visual attention are spec-
ified both spatially and temporally. Fixations are, in fact, spatially bounded to visual
objects and temporally distributed over a precise time-course. Moreover, fixations are
repeatedly sampled (longitudinal data) at a high resolution, over the same subject dur-
ing the same trial in a hierarchically nested design. A comprehensive analysis of eye-
movements needs, therefore, to take into account the spatial and temporal components
of the data while accounting for the way in which the data is sampled.

A standard method used to analyze visual-world data is ANOVA. ANOVA tells
us whether the mean of a certain response variable, e.g., proportion of fixation, is
significantly different between different explanatory variables, e.g. number of visual
Referents (One Vs Two) corresponding to a linguistic referent the apple, by looking
at their variance. So, if the proportion of fixations to a certain target object changes
by including more than a visual referent (e.g. Two referents lead to a smaller propor-
tion of fixations on target object than One): ANOVA compares the means of different
experimental conditions and determines whether to reject the hypothesis that the con-
ditions have the same population means given the observed sample variances within
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and between the conditions. ANOVA compares the means of different experimental
conditions, e.g. One or Two referents, and determines whether it is or not statistically
different by looking at their variance1.

The first problem of using ANOVA in this example stems from the fact that we
are dealing with proportions calculated over categorical variables. On a continuous
variable we can have a clear interpretation of mean, variance and confidence intervals,
whereas on a categorical variable, the confidence intervals can extend beyond the in-
terpretable values of 0 and 1 (refer to Jaeger (2008); Richter (2006) for a more detailed
discussion). The application of ANOVA might, therefore lead to spurious results.

A second problem encountered by using ANOVA is the assumption of indepen-
dence between observations. Namely, the proportion of fixations at time t is assumed
to be independent from that at time t + 1. Eye-movements are sampled over time at
a very high resolution (e.g. every 10ms), thus observations at time t + 1 are certainly
dependent on those observed at time t (Barr, 2008). An ad-hoc solution to overcome
this limitation was to calculate proportions on fixations aggregated in large temporal
windows (e.g. 200ms), and then run separate ANOVA over the different windows
(Kamide et al., 2003; Novick et al., 2008). This solution is redundant, i.e. as many
ANOVA as there are windows; incomplete, i.e. we know the variance of explanatory
variables within a specific window but we cannot estimate how it changes over time2,
and more importantly prone to Type II errors, i.e. by multiple testing we might accept
the null hypothesis when it is in fact false.

The third problem concerns the presence of random variance due to a nested exper-
imental design. Observations are sampled on different trials and subjects, which are
both nested within the explanatory variables (e.g. One or Two Referent).
The solution proposed to deal with the random variance was to calculate proportions
aggregated by the design random effects, i.e. subjects and trials, and then get ANOVA
F-scores for both (Clark, 1973). This method discriminates the random variance by
independent random groups, either subject or trial, but without handling both simulta-
neously. Also, by computing the proportions twice, aggregated by subjects and trials,
we redundantly duplicate results over the same dataset.

1ANOVA partitions the total sum of square information into components related to the effects used
in the model. Then, an F-test is used to assess the total deviation among these components.

2ANOVA is thus temporally underspecified.
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2.6.1.1 Linear Mixed Effect Regression Models

For the reasons presented above, extensively discussed in the Journal of Memory and

Language special issue on Emerging Data Analysis edited by Forster & Masson 2008,
we perform our inferential analysis under the Generalized Linear Mixed Effects Re-
gression Models (GLMM) framework, using the Linear Mixed Effect (LME) class of
models (Baayen et al., 2008; Pinheiro & Bates, 2000).
The simplest model of regression is a linear model which assumes a linear relationship
between the observed response variable, e.g. proportion of fixations, and the explana-
tory variables, e.g. One/Two referents. The explanatory variables are expressed in
terms of regression coefficients, β, which inform on the nature and strength of the lin-
ear relationship with the response variable y.
A linear model is then a selection of coefficients βi, one for each explanatory variable
i (and one for each of their interactions): y = β0 +β1x1 + ...+βixi. The coefficient βi

expresses the contribution of the ith variable to the probability of the outcome event,
that is, in our case, proportion of fixation (Agresti, 2007). So, the explanatory variable
Two will have a negative coefficient if it contributes negatively to the proportion of
fixation on our target object. Moreover, the strength of this negative relation will be
expressed by the size of the coefficient: e.g. small coefficient, small contribution.

A GLM is a generalized case of linear model, where the linear relationship be-
tween the response variable and the explanatory variables can be established for a
variety of distributions through the use of link functions (e.g. logistic, Poisson, etc.).
In eye-movement data, the measure of fixations is a binary response variable (e.g.
presence/absence of fixation on target object), not normally distributed, which we
can transform into a probability distribution through the logit link function. The
logit function is created by taking the logarithm of the odds of the response variable:
logit(y) = log( y

1−y). The odds is the ratio of the probability that the event of interest
occurs, y, to the probability that it does not, 1− y1. In our case, odds is the ratio of the
number of times that an object (e.g. BOWL) has been fixated to the number of times
that it has not been. Then, the logit is obtained by scaling the odds logarithmically.
The logit transformation allows binary responses to be normally distributed.

1If we chose a random day for a week, the odds that it would be a Sunday is 1/6. Instead, the
probability that by choosing a random day it will be a Sunday is 1/7.
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The limit of GLM is that it can’t distinguish between effects due to explanatory vari-
ables fixed, and those, instead, related to sampling (random): both in terms of variables
(e.g. subjects) or method (e.g. longitudinal data). LME can overcome this limitation
by explicitly discriminating in the formula between fixed βi and random bi effects:
y = β0 +β1x1 + ...+βpxp +b1z1 + ...+bqzq + ε; where p and z denote fixed and ran-
dom regressors respectively, and ε is the error term. In summary, we adopt LME
because it allows us to quantify the relative contribution of each explanatory variable
to the outcome of our binary response variable through logistic regression, while dis-
criminating the relative impact between the different multilevel components, fixed and
random, of the model.

2.6.1.2 Model Selection

A common problem encountered when doing model based inference is the process of
selection.
Complex experimental designs with many explanatory variables can lead to different
models, all equally good in explaining and fitting the data observed.
At a superficial glance, the optimal model should set the explanatory variables in a way
that is consistent with the hypothesis under investigation. However, by building such
an ad-hoc model we would deductively test an unique hypothesis wrongly assuming
that no other explanations of the phenomena under observation are possible. In a more
inductive approach to model selection, we can instead assume that multiple hypotheses
(Anderson, 2008) are linked to the explanatory variables, and through a bottom-up
exploration of the data we bootstrap the best hypothesis/model. The assumption is that
the experimental design is deductively built to contain a certain universe of hypotheses,
expressed in terms of explanatory variables. Then, through an inductive exploration
of the data, i.e., model selection, we decide the hypothesis that best models the data
observed.
There are two main approaches to perform model selection: backward (Crawley, 2007;
Whittingham et al., 2006) and forward (Baayen, 2008; Burnham & Anderson, 2002).
The terms refer to the direction of inclusion/exclusion of explanatory variables.
In backward selection the explanatory variables, main effects and interactions, are all
initially included in a fully specified model. Then, the model is reduced by iteratively
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excluding non-significant variables.
A forward selection operates in the other direction. It starts with an empty model, and
then variables are included, one at time, if statistically significant.
The decision on which variables have to be excluded or included is made on the basis
of model fit.

A statistical method which allows us to compare the fit between two models is
the Log-Likelihood test. The likelihood tells us how well a certain model is fitting the
data; the natural logarithm of the likelihood is taken because it is computationally more
convenient. We utilize the Log-likelihood test to test nested models. Given a specific
model, we calculate the likelihood of observing the actual data. The log-likelihood
of this model is compared to the log-likelihood of a nested model (i.e. one in which
fewer parameters are allowed to vary independently). The model with the best log-
likelihood is retained. Comparison between models is performed pairwise. Thus, at
every iteration two models are compared: a new model containing one more or less
parameter (depending on whether the selection is backward or forward) and an old
model coming from the precedent iteration; we compare their Log-Likelihood, and we
keep the model that has the higher Log-Likelihood (better fit).

When dealing with LME another aspect that further complicates the process of
model selection is the distinction between fixed and random effects. For example, a
fixed effect can have a stronger impact on the fit than another: how do we decide the
order of inclusion of fixed effects? It can also have quite different intercepts for the
different groups of our random effect: how do we treat the relation between fixed and
random effect?
We implement a step-wise forward selection algorithm that iteratively finds the best
model containing both fixed and random effects. We start with an empty model, then
we add the random effects, e.g. (1|sub ject)+ (1|item)+ (1|...)1 until no further im-
provement is possible. Supposing that after iterating over the random effects we have
a model where (1|sub ject) improved the fit, whereas a model containing also item,
(1|sub ject)+(1|item), didn’t; we keep the first, simpler model.
With a model containing random effects, we pass on to add fixed effects. Fixed and ran-
dom factors are included ordered by their log-likelihood improvement. Every time we
include a new fixed variable (1|sub ject)+re f erent we calculate whether the inclusion

1The example uses R lme4 pseudo-code.
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of a random slope improves model fit (1|sub ject)+re f erent+(0+re f erent|sub ject).
Notice that we assume the random slope on referent to be independent (0|...) from an-
other random slope on a different fixed effect (0+ f ixe f f |sub ject). In our experimen-
tal design, the different explanatory variables are unrelated, thus we do not expect them
to have similar randomness (1+ re f erent+ f ixe f f |sub ject) on the different groups of
the random effect. We iterate over fixed effects and related random slopes until no
further improvement is possible.
The next step is to include the interactions. We generate the interactions which do not
violate the subset criterion by considering only the fixed effects present in the final
model selected. At this point, we do not calculate random slopes on the interactions as
it makes computation intractable. We include interactions up to three ways. The final
model obtained is guaranteed to have only those fixed and random effects that signif-
icantly improve model fit. Moreover, the forward selection guarantees parsimony on
the number of parameters included. This algorithm of model selection has been used
to generate the inferential results reported along the different chapters.

2.6.1.3 Comparison with alternative analyses

Data can be analyzed in multiple ways, each with advantages and disadvantages. Tra-
ditionally, fixation data is represented in terms of probability of fixation1, which being
‘raw‘, is assumed to be a more credible quantification of the data; see section 2.3 for
a discussion in the context of Spivey-Knowlton et al. (2002). However, several trans-
formations could be applied to the data to fit the requirements of modeling strategies,
as shown in the section above. These transformations may, or may not disrupt what is
actually seen in the raw data. In this thesis, we plot and use empirical logit of fixation,
rather than proportion; and we count a fixation when the eye lands, and remains still,
on the object. Thus, we don’t include the time saccading between objects as fixation
for the landing object. Planning a saccade towards an object implies the intention of
fixating, which can prove useful to find anticipatory effects. So, in order to justify our
definition of fixation, and assess the validity of our empirical logit transformation, in
the next part of the section I will compare methodologies on a subset of the data pre-

1Equivalently proportion.
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sented in 3. Then, I will walk the reader through a simple made-up experiment on how
linear mixed effect results are interpreted.

Including saccades and empirical logit comparison In Figure 2.6, we plot propor-
tions of fixation on the object BOWL during mention of the direct object the orange.
Fixations are aligned at the beginning of the critical word 1 for a window of 800 ms in
80 slices, 10 ms each. We compare two ways of counting fixation duration by Includ-

ing or Excluding the time spent during the saccade. In the Including case, the saccade
is added on the fixation duration at the landing object, i.e, the receiver object. In prac-
tice, we anticipate and extend the fixation duration on the object. In the Excluding case
instead a fixation is counted from landing. Comparing the two plots in Figure 2.6, it
is evident that there is almost complete equivalence between the two way of counting.
When a saccade is included, fixation proportion appears smoother then when it is not.
However, the two trends display a very similar distribution.

Turning onto the difference between probability and empirical logit, we compare
the equivalence of trends when either proportion of fixation, or empirical logit is
the dependent measure used. Empirical logit is a variation of logit, which includes
a constant 0.5 on both numerator and denominator to avoid undefined logarithms:
emplog(y) = log( y+0.5

N−y+0.5); where y are fixations, either proportions or frequencies,
and N is the normalization term. For proportions, y is the probability of gazing at
the target object (e.g. BOWL) across conditions at each time-point. N can be either
1 to scale it between ≈ −1and ≈ 1, or a normalization constant of the design. Both
methods give equivalent trends for different ranges of the dependent measure. We set
a normalization constant at 6, which is the number of possible objects2, assuming that
objects compete for fixations, i.e., we can look only one object at each time-point. For
frequencies, y is the number of fixations on the object along the time-course, over each
time-frame, aggregated by subjects and trials per condition; and N is the total number
of time-frames across conditions.

In Figure 2.6, we plot the two types of empirical logit transformation over 800 ms
from the onset of NP direct object the orange, and compare it with the above plot
showing it in proportions. We can immediately observe that, despite the difference in

1We mark its mean offset in the plot.
2Including the background object.
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(a) Including vs Excluding saccades.

(b) Empirical Logit transformations: Proportions vs Frequencies

Figure 2.6: Comparison of methodologies in the time-course analysis of data discussed in section 3.5.2.1
of Chapter 3
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the range of the dependent measure, the trend is perfectly equivalent across the dif-
ferent transformations. When comparing empirical logits calculated from proportions
and frequencies, the only noticeable different is in the range of the measure, but not
between conditions.

Since empirical-logit is more suitable to linear mixed effect modeling (Barr, 2008),
we will mainly use this measure for plots and models. For linear mixed effects mod-
eling, we calculate empirical logit such that we avoid data aggregation. The reason
is that if we aggregate, we loose our random variables (e.g., participants), which are
a necessary component of multi-level modeling. Thus, at the observation level, i.e.,
for each time-frame, our y is whether a fixation occurred or not (0,1), and N is the
length of the time-course, e.g., 80 frames, 10 ms each. Throughout the thesis, we
mainly show time-course plots of empirical logits calculated from frequencies, as the
range observed more faithfully matches the one estimated by the linear-mixed effect
models1.

Interpreting LME coefficients In an eye-tracking experiment, we test the influence
of low-level visual features, i.e saliency, during situated language understanding. Par-
ticipants are asked to listen to syntactically ambiguous sentences, e.g. the girl will put

the orange on the tray in the bowl while concurrently viewing a visual context contain-
ing 4 objects: WOMAN, ORANGE, ORANGE ON TRAY and BOWL; see Figure 2.7 for
an example trial. The explanatory variable manipulated is Saliency with 2 factors No-

Saliency (saliency has not been manipulated), and Single (saliency is manipulated on
the single orange). Our hypothesis is that at the beginning of direct object the orange,
we expect more looks to single ORANGE when saliency on it is manipulated.

We consider eye-movements on SINGLE ORANGE aligned at the onset of the orange

for 800ms. The fixed effects of our LME model are the factor variable Saliency, with
2 levels (No Saliency/Single) and Time, as continuous variable (8 windows 100ms
each). The predictors are centered around the mean to avoid collinearity. In a balanced
design, this means that our 2 levels of factor variable Saliency will take the values -0.5
for No-Saliency and 0.5 for Single. Our random effects are Subjects and Trials, 24
groups each.

1By using frequency of inspection, rather than proportions, we maintain the normalization range
closer to the observation-level.
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Figure 2.7: Example of made-up image trial based on experiments presented in Chapter 3.

Table 2.1: Example of mixed effects models table
of coefficients: Saliency: No-Saliency (0.5), Single
(-0.5)

ROI: the orange
Predictor Coefficient p

Intercept -3.4967 0.0002
Saliency -0.3333 0.0001
Saliency:Time -0.2252 0.01

In Table 2.1 we show an example of
LME coefficients table. In order to calcu-
late the regression coefficient relative to
the level for the categorical variable con-
sidered, we need to multiply the estimate
returned by the model of the explanatory
variable Saliency, β = −0.3333 for the
level we are interested Single, -0.5. We
obtain that Single has a regression coefficient of: βSingle = 0.1666; p < 0.05; which
means that there are more looks on ORANGE when saliency is manipulated, compared
to when it is not manipulated: βNo−Saliency =−0.1666; p < 0.05. The interpretation we
give is that saliency has triggered more looks to ORANGE in prediction for upcoming
post-verbal argument of the sentence. Moreover, we find that Single has a positive
interaction with Time (βSingle:Time = 0.1126; p < 0.05). Looks increase over time. Par-
ticipants prefer the single ORANGE as direct object the orange, compared to ORANGE

ON TRAY1. The results for random effects are not reported along the thesis. However,
for completeness of explanation, linear mixed models returns for each group of a ran-
dom effect, i.e. Subject has 24 groups (the number of participants), the corresponding

1If we want to test directly this comparison, we would need to include as explanatory variable
Object with 2 levels (orange and orange on tray).

37



2.6 Inferential Analysis

random intercept. We can also have random slopes, which allow each group of the
random effect to have a different slope. Then, we can observe the different effect of an
explanatory variable, e.g.Saliency for each group of the random effect.

A final remark on interpreting linear mixed effect models is the linearity assump-
tion, i.e., each predictor has a unique coefficient in the model indicating its difference
from the intercept. Fixations develop over a time-course, and their trend changes
as time unfolds. This might result in the measure being non-linear over time. A
workaround to this problem is to adopt a polynomial definition of time, where the
higher its degree is, the more terms we have to fit non-linearities in the time-course (see
Mirman et al. (2008) for an application). However, a major drawback of this approach
is a loss on the interpretation. In fact, by having a polynomial of 3 or more degrees, the
interpretation of underlying cognitive processes becomes harder, and prone to idiosyn-
crasy. In this thesis, we discuss only linear effects and we don’t add polynomial terms
to our time variable. For results where the trend of the dependent measure is highly
non-linear, we will remind the reader about our linearity assumption.
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Chapter 3

The Interaction of Visual Saliency and
Intonational Breaks during Syntactic
Ambiguity Resolution

3.1 Introduction

During tasks demanding synchronous exchange of multimodal information, e.g.
watching a movie, sentence processing has to interact with the other cognitive modal-
ities that are also actively involved, e.g. vision. At the state of art, very little is known
about the mechanisms underlying cross-modal interaction during synchronous pro-
cessing.

Imagine being in a museum listening to an audio-guide describing a painting that
we are simultaneously watching: the processing of linguistic descriptions e.g. the

woman depicted ..., interact with visual information of the canvas, e.g. brightness, that
our visual system is concurrently attending.

During cross-modal interaction, however, not all visual and linguistic information
available is accessed and integrated at once; it is rather more plausible, instead, to as-
sume that visual or linguistic information is selectively utilized to guide the allocation
of visual attention; both depending on the task we are engaged with, e.g. sentence
understanding, and the phase we are currently in, e.g. before vs after the description
begins.
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Suppose that we are approaching the painting and the audio-guide hasn’t started
yet. In this starting phase, we are freely viewing the scene, and visual attention is
mainly directed by image-based mechanisms, e.g. color, intensity, orientation; how-
ever, as soon as the linguistic stream begins, visual information is utilized contextually
with the linguistic information processed. So, the more linguistic information comes
in, the more linguistically structured will the guidance of visual attention be; hence
overriding the more ’primitive’, i.e. image-based features, acting upon visual attention.
Obviously, there are intermediate phases of cross-modal interaction, where visual and
linguistic information might compete for visual attentional resources.

In this chapter, we investigate how image-based visual information interacts with
prosodic information during a visually situated sentence comprehension task. We find
that low-level visual information is utilized in the prediction of linguistic referential in-
formation of the sentence, especially when linguistic information is not sufficient, e.g.
beginning of direct object, to generate a full prediction about the upcoming material.

Moreover, we investigate the pattern of interaction emerging when visual and lin-
guistic information compete for visual attentional resources. We observe high inde-
pendence in the way visual and linguistic information are accessed and utilized, which
strongly relates to the phase of the task under processing. Furthermore, we find ad-
ditive effects when both types of information cooperate. When linguistic and visual
information point visual attention to the same target object, we observe more looks
compared to when cues are tested independently.

3.2 Background

In psycholinguistic research, there is a growing body of eye-tracking research investi-
gating sentence processing situated in visual contexts (Visual World Paradigm Tanen-
haus et al. 1995). A large span of linguistic phenomena, across different levels of sen-
tence processing, have been re-investigated in the light of a visual context, by looking
at how referential contextual information is visually accessed under different linguistic
manipulations. For example, prosodic cues (Snedeker & Trueswell, 2003; Snedeker
& Yuan, 2008) and disfluences (Bailey & Ferreira, 2007) are observed disambiguat-
ing, referentially ambiguous visual contexts. Verb semantics (e.g. Altmann & Kamide
1999; Scheepers et al. 2008), and thematic role information, (e.g. Knoeferle & Crocker
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2006, 2007) are incrementally used to make visual predictions, i.e. anticipation, about
upcoming referents of the sentence. On the syntactic level, instead, it has been found
that priming of di-transitive structures (Arai et al., 2007), e.g. DO vs PO structure1,
is reflected on anticipatory eye-movements, at verb-site, launched to the visual object
expected by the priming condition.
At all levels of sentence processing, it has clearly emerged that linguistic information
is utilized in integration with the visual information present in the context, and this
has led to the conclusion that visual attention is mediated by the interaction between
utterance information (Crocker et al., 2010) and visual context (Altmann & Mirkovic,
2009).

VWP has mainly focused on linguistic phenomena; thus making the simplifying
assumption that visual attention during sentence processing would be mostly driven
by linguistic stimulation. This assumption is supported by the experimental use of
simple visual material, e.g. object arrays or clip-art scenes, which impoverishes visual
responses, thereby making them more likely to be guided by linguistic information
only.

A visual context, however, carries information which is actively implicated in the
attentional mechanisms of visual cognition; especially, when naturalistic scenes are in
the place of object arrays2. To the best of our knoweldge, beside the study of Huettig
& Altmann 2007, which has shown how objects with similar shapes, e.g. a ROPE and
a SNAKE, compete on visual attentional resources 3, and a few studies on visual cogni-
tion showing how linguistic information can boost search performance (e.g. Schmidt
& Zelinsky 2009), not much work has been done to understand the relation between
mechanisms of visual attention and sentence processing. During tasks activating syn-
chronous processing, viz. situated sentence comprehension, different cognitive modal-
ities, e.g. vision and language, have to exchange and integrate multi-modal, e.g. visual
and linguistic, information in order to achieve the goals of the task, e.g. understanding
a sentence in the context of a scene. Thus, in order to fully understand the mechanisms

1A DO structure is: The man is reading the boy a book; whereas a PO is: The man is reading a book
to the boy.

2We explore explore this issue in Chapter 4.
3If SNAKE is mentioned, ROPE will get more looks compare to an object, e.g. TEDDY, which has a

different visual shape.
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of situated language processing it becomes crucial to establish which visual and lin-
guistic factors are involved, when during a task, and, more generally, what the pattern
of their interaction is.

In this chapter, we investigate the impact of low-level (image-based) visual infor-
mation during processing of syntactically ambiguous PP-attachment sentences. Low-
level features, e.g. color, intensity and orientation, are primitive visual information
processed by the primary visual cortex. The unification of these features has been the-
oretically conceptualized and statistically quantified in the notion of saliency (Itti &
Koch, 2000b); which is a measure of visual prominence computed by aggregating val-
ues for the different features at different spatial scales1. Saliency is expected to guide
visual attention during free-viewing tasks. Fixations are expected to follow saliency
information, from highest to lowest saliency with the first fixation launched on the re-
gion highest in saliency and the subsequents ordered by decreasing saliency2. In the
absence of a specific goal, our attention is captured by the locations of the scene, which
are richest in saliency (e.g. Parkhursta et al. 2002). When our visual system is instead
used actively to achieve a certain goal (e.g. Findlay & Gilchrist 2001), e.g. search, the
effect of saliency is overriden by high-level object-based cognitive control (Henderson
et al., 2007), i.e. we look at objects that are contextually relevant to our task3.

We believe that situated language processing tasks are between the two extremes
of having or not having a goal. A situated sentence understanding task is, in fact,
constituted by two main phases: a free viewing phase (before speech onset) where par-
ticipants inspect the visual material, and the sentence phase (during speech) where the
linguistic information listened to is incrementally (i.e. word by word) mapped against
the visual context, hence setting up the ’goals’ of visual attention. Our expectation is
that, in the absence of linguistic information and any specific goal, i.e. free viewing,
low-level visual information is utilized to steer visual attention. Then, however, the
more linguistic information is processed, the less need there is, for the visual system,

1For a Matlab implementation of the measure and a computational model of visual attention refer
to Walther & Koch 2006

2The Inhibition of Return mechanism makes sure that fixations do not return on previously in-
spected regions.

3For a computational model of visual attention integrating, partially, low and high level visual fea-
tures refer to Torralba et al. 2006
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to rely on low-level information. Obviously, there are intermediate stages during sit-
uated sentence understanding, where the linguistic information is not yet sufficient to
generate a full prediction about which visual objects will be arguments of the sentence,
e.g. at the beginning of direct object. This assumption is especially valid, when the vi-
sual context is an object array (no contextual dependency among the objects), and the
linguistic material is not predictive of any specific object, as indeed is the case in Alt-
mann & Kamide 1999. Thus, we would expect in these intermediate stages, e.g at verb
and direct object sites, visual attention to be driven by low-level visual information,
which is utilized as a predictive proxy to sentence information.

In three eye-tracking experiments, we investigate the cross-modal interaction be-
tween visual and linguistic low-level information during a situated language under-
standing task, involving referentially ambiguous sentences. In Experiment 1, we in-
vestigate the impact of visual saliency, which is expected to trigger anticipatory eye-
movements on the salient object when the linguistic information parsed is not yet suf-
ficient, i.e. between verb and direct object, to make a full prediction about upcoming
post-verbal arguments. In Experiment 2, we test the effect of intonational breaks,
already explored in the VWP literature (e.g Snedeker & Trueswell 2003) on the res-
olution of PP-attachment ambiguity. We choose intonational breaks as linguistic cues
because they do not carry any explicit semantic information, and can be considered, in
some respect, low-level, therefore more directly comparable to saliency. Our expec-
tation is to replicate results from the literature, where intonational breaks give focus
to the visual object which is referenced within the prosodic phrase enclosed by the
breaks. Finally, in Experiment 3, we directly investigate the cross-modal interaction
between saliency and intonational breaks by looking at their competition and cooper-
ation. In the competitive scenario, visual saliency and intonational break cue visual
attention to different visual objects to resolve referential ambiguity1. In the cooper-
ative scenario, they both cue visual attention to the same target object. We assume
an integrated cross-modal architecture of cognition, where the different modalities ex-
change information in a highly interactive manner to optimally achieve the goals of a
specific task. In such an architecture, each modality gives a highly specific contribu-
tion to the multi-modal integration. Thus, we expect visual and linguistic information

1The different strategies of ambiguity resolution are interpreted in terms of eye-movement patterns
on visual ROI, refer to Chapter 2 for more details about the approach.
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to be selectively utilized at independent points of the task. For this reason, in case of
conflicting cues, i.e. competition, we should observe the same pattern as if the cue was
tested in isolation. However, in line with research on cooperative integration of cross-
modal information (e.g. Evans & Treisman 2010), the joint contribution of visual and
linguistic information should strengthen guidance of visual attention to the cued target
object. Cooperation, however, occurs only during the phases of the trial where the joint
contribution can optimally reinforce the information currently integrated.

3.3 Experiment 1: Visual saliency in syntactic ambigu-
ity resolution.

In Experiment 1, we investigate the impact of low-level visual information, i.e.
saliency, during comprehension of syntactically ambiguous sentences. In contrast to
standard VWP research, which has focused on sentence processing phenomena, we
test the hypothesis that mechanisms specific to the visual system, i.e. visual saliency,
can also play an active role during situated sentence understanding. Before going into
the details of the experiment, we first discuss syntactic ambiguity resolution in VWP.
Here, we highlight the importance of visual referential competition, i.e. to the apple

on the towel there are two visual apples depicted, in explaining the patterns of visual
attention observed in the literature. Then, we describe the notion of visual saliency in
the visual cognition literature and its implications for our experimental design.

3.3.1 Syntactic ambiguity resolution in the VWP

Most of the early work in VWP focuses on how a visual context can influence the
resolution of syntactic ambiguity (e.g Snedeker & Trueswell 2003; Spivey-Knowlton
et al. 2002; Tanenhaus et al. 1995). A syntactic ambiguity arises when phrases can be
combined in different configurations, hence licensing different semantic interpretations
of the sentence. A classic syntactic ambiguity is generated by prepositional phrase
(PP) attachment, e.g. put the apple on the towel in the box: where the PPs can be
interpreted either as modifiers, i.e. the apple that is on the towel, or goal locations,
i.e. take the apple and put it on the towel. Obviously, the presence of a visual context
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acts on the resolution of syntactic ambiguity by constraining the number of possible
interpretations. In fact, to each context corresponds certain resolutions of ambiguity.

Figure 3.1: Example of visual contexts used in Tanenhaus et al. 1995. The arrows indicate how eye-
movements are ’distributed’ in the different visual contexts.

In Figure 3.1 we show the two visual contexts used by Tanenhaus et al. 1995 to test
the effect of visual referential information on the resolution of syntactically ambiguous
PP-attachment sentences, e.g. put the apple on the towel in the box. The main differ-
ence between the two visual contexts relies on the number of visual referents (1 or 2)
available for the direct object the apple. The hypothesis tested is that in one-referent
context at linguistic ROI on the towel, the visual referent EMPTY TOWEL is ambigu-
ously interpreted as goal location, i.e. put the apple that is on the towel on the other
towel; whereas in a two-referent context, the presence of a visual competitor for the
linguistic referent apple, i.e. APPLE ON A NAPKIN, would trigger a modifier interpreta-
tion for the ambiguous PP on the towel, thus neutralizing the goal location effect driven
by the visually depicted EMPTY TOWEL. The results show that the presence of a visual
competitor helps the resolution of syntactic ambiguity, while more generally showing
a clear effect of integration between visual and linguistic referential information. From
this study it is evident that the visual context directly constrains the interpretation of a
sentence. In particular, the visual referential competition in two-referent context seems
to be responsible for the difference in looks. In the two-referent context at linguistic
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ROI on the towel, APPLE ON TOWEL, APPLE ON NAPKIN and EMPTY TOWEL, are all
possible visual candidates for the phrase the apple on the towel, however by the time
the competition between APPLE ON TOWEL and APPLE ON NAPKIN is concluded and
attention is shifted to the EMPTY TOWEL, the intervention of the second PP in the bowl

shifts attention to the visual object bowl, de-facto neutralizing the goal interpretation
of visual object EMPTY TOWEL. In other words, for the two-referent context, sentence
processing doesn’t have time to evaluate the candidate interpretation where EMPTY

TOWEL is a goal location.
The interplay between visual context and utterance mediates the guidance of visual

attention (Crocker et al., 2010; Knoeferle & Crocker, 2006). A visual context pro-
vides the domain of referents upon which the linguistic information has to be mapped.
Thus, the more referential ambiguity (both on the visual context and on the sentence)
there is, the more visual referents compete on visual attentional resources. Referential
ambiguity relates to the number of possible matchings available at the different point
of parsing, and can be found at two levels of situated sentence processing: local and
global. A local ambiguity is when by the end of the sentence a unique relation be-
tween linguistic and visual referents can be read. (e.g. Tanenhaus et al. 1995), i.e.
the APPLE will finish in the EMPTY BOX. A global ambiguity is when interpretation
remains ambiguous even after having processed the whole sentence, i.e. linguistic and
visual referents can still be related in several ways (e.g. Bailey & Ferreira 2007, i.e.
the APPLE can either finish in the EMPTY BOWL or on the TOWEL IN THE BOWL, re-
fer to section 3.4 for more details). In this experiment, as in Bailey & Ferreira 2007,
we set referential ambiguity both at the local and global level. We want to test how
much visual referential competition is responsible for the patterns of visual attention
observed during syntactic ambiguity resolution. Moreover, since we assume that visual
information is actively utilized to make predictions of upcoming linguistic material, we
investigate the impact of visual saliency during situated language understanding.

3.3.2 Visual saliency

Saliency is an image-based, low-level measure of visual prominence, based on the in-
formation of three visual features: color, intensity and orientation. For each of these
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features, a conspicuity map is computed by taking the changes in values of the fea-
ture, at each point of the image, relative to surrounding points, across different spatial
scales of comparison (see Figure 3.2 to visualize a saliency map computed using the
SaliencyToolBox (Walther & Koch, 2006)). The three different maps are then aggre-
gated into a unique map, the saliency map (Walther & Koch, 2006). Saliency doesn’t
generally match entire objects.

Figure 3.2: Example of a saliency map applied on the painting ’The Art of Painting’ by Jan Vermeer
(1666-72).

Edges or angles formed by two contiguous objects may have an high saliency, even
if they are not whole objects. There is evidence, however, showing that locations rich
in objects are positively correlated with saliency (Elazary & Itti, 2008). In our ex-
perimental design, since we use object arrays, to make our material comparable with
standard VWP studies, saliency is mostly reflected by the prominence of individual
objects, rather than image regions. Thus, we manipulate saliency at the level of in-
dividual objects. Saliency is expected to have effects only during free-viewing tasks
(Henderson et al., 2007). During a situated language processing task, the goals are
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3.3 Experiment 1: Visual saliency in syntactic ambiguity resolution.

set by the linguistic information. At the beginning of the trial, before speech begins,
participants are free-viewing the scene, thus image-based information is expected to
guide visual attention. During speech, visual attention is expected to be driven by lin-
guistic information. However, there are intermediate phases while speech is unfolding,
e.g between verb and direct object, where linguistic information is not yet sufficient to
generate a full prediction about the upcoming arguments of the sentence. During these
phases, we expect saliency to be utilized by sentence processing as a visual predictive
proxy for those upcoming arguments.

3.3.3 Method

In a sentence understanding eye-tracking experiment, we asked participants to listen to
syntactically ambiguous PP-attachment sentences, e.g. The girl will put the orange on

the tray in the bowl, while concurrently presented with a visual context, where Num-

ber of referents and Saliency of objects are manipulated (see Figure 3.3). In contrast
with previous studies which are similarly designed, where participants are engaged in
a behavioral task requiring an action response (see Novick et al. 2008; Snedeker &
Trueswell 2003; Spivey-Knowlton et al. 2002; Tanenhaus et al. 1995), i.e. the partici-
pant had to complete the action told in the sentence; our experiment is a look-and-listen
comprehension experiment. Thus, the use of imperative ambiguous sentence, Put the

orange on the tray in the bowl has been substituted with The girl will put the orange

on the tray in the bowl 1.
Moreover, similar to Bailey & Ferreira 2007, we use fully ambiguous visual con-

texts, i.e. both locally and globally ambiguous. Local ambiguity arises at the am-
biguous PP-attachment phrases, i.e. the orange on the tray, and it is resolved after
competition between the visual candidates SINGLE ORANGE, ORANGE ON TRAY and
TRAY IN BOWL that can be referred to by the linguistic information processed. Global
ambiguity arises at the end of the sentence, when there is still referential ambiguity
on the possible mappings between linguistic and visual information, i.e. at in bowl,
the ORANGE can finish either in the EMPTY BOWL or in the TRAY IN BOWL. A fully
ambiguous visual context allows us to better explore the mechanism of visual compe-
tition.

1To account for this variation the subject of the action was introduced in the picture stimuli.
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3.3 Experiment 1: Visual saliency in syntactic ambiguity resolution.

Figure 3.3: Conditions, 2 x 3: Number of referents (One, Two) crossed with Saliency (Single-Location,
Compound Location, No Saliency).

We have a 2 by 3 design, crossing Number of referents (1 Referent/2 Referent) and
Saliency (Single-Location/ No-Saliency/Compound-Location). The Number of Ref-

erent variable refers to the number of visual objects corresponding to the linguistic
referent, direct object, the orange. In 1 Referent, there is only one ORANGE depicted
ON A TRAY, whereas in 2 Referents, together with the ORANGE ON A TRAY, there is
also a SINGLE ORANGE. The Saliency variable refers to the visual object carrying the
saliency manipulation, on which we hypothesize an interpretation at the sentence level.
Single-Location is the visual object BOWL, which in the sentence reflects the goal loca-
tion, in the bowl, of the action put, on the direct object the orange. Compound-Location

is the visual compound object, TRAY IN BOWL, which in the sentence corresponds to
the prepositional modifier reading on the tray in the bowl, i.e. a tray which is located
in a bowl. No Saliency, saliency was not manipulated.
We have, moreover, introduced an external condition of scene preview. We have split
participants in two groups: Long preview, the participants had 1000ms of visual pre-
view before the onset of speech stimuli; Short preview, speech and visual stimuli
started simultaneously at beginning of the trial.
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3.3 Experiment 1: Visual saliency in syntactic ambiguity resolution.

In naturalistic scenes, change of preview-time has a direct impact on search perfor-
mance, with longer preview boosting identification of target objects (Vo & Henderson,
2010). We test the impact of preview during sentence understanding situated in an
object array context.

3.3.3.1 Participants

Thirty participants from the University of Edinburgh were each paid 5 pounds for
taking part in the experiment.

3.3.3.2 Materials

For each condition, a set of 36 experimental items was constructed. During the selec-
tion of visual objects we made sure that a depicted experimental item wasn’t repeated
more than twice; when repeated we used a different visual token. Visual objects were
displayed without any imposed grid. The saliency of the target object has been modi-
fied using Photoshop CS2. The following manipulations were applied on target object:
Luminosity +50 percent; Contrast +50 percent; Colour balancing RGB curves have
been modified reinforcing the colors’ dominance of target object; Black and White
input and output curves have been changed only in the cases in which the edges’ ori-
entation of target object was too prominent. In order to highlight the saliency of the
target object, we have manipulated also the background: Luminosity -30 percent;
Contrast -30 percent. To validate the saliency manipulation, we used the Saliency
Matlab ToolBox (Walther & Koch, 2006), by checking that the visual object of interest
had the highest saliency relative to the other objects. Regarding the linguistic stimuli,
some linguistic variability was introduced in the set of sentences by using, beside the
verb put, also the synonyms move, place, and lay. Each of the 4 verbs was used for
9 sentences. Moreover in order to avoid prosodic effects, we apply cross-splicing to
the spoken sentences utilized in Experiment 2, where intonational breaks are explicitly
manipulated. In Experiment 2, we use two types of intonational breaks1:

(1) NP modifier: ...[the orange on the tray] BREAK [in the bowl]

(2) PP modifier: ...[the orange] BREAK [on the tray in the bowl]

1More details on the rationale of the experiment can be found in section 3.4.
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3.3 Experiment 1: Visual saliency in syntactic ambiguity resolution.

which we splice and merge1 to obtain a neutral prosody, as following:

(3) the orange [PP modifier] + on the tray [NP modifier] + in the bowl [PP modifier]

We take the direct object the orange and the second PP in the bowl from sentences pro-
duced using intonational break PP-modifier, and we merge them with on the tray from
NP-modifier break. Between each phrase, a 50ms pause was added to yield a more
realistic prosody. In addition to the 36 experimental items there were 48 fillers. In one
third of the fillers, saliency was manipulated. The manipulation was to balance the
total amount of pictures containing salient objects. For counterbalancing reasons, the
position of objects was rotated in eight different configurations. Four configurations
were created by rotating objects clockwise, the other four scrambling positions along
diagonals. The position of the subject visual object was also interchanged, so that on
half of the trials it was on the left side of the screen, the other half on the right. In order
to keep participants engaged in the task, we asked 24 (yes/no) comprehension ques-
tions, 12 about the content of sentences and 12 about the content of the image. Trials
were randomized and divided into 4 different lists using the Latin Square rotation. In-
dividual lists were created for each participant making sure that between experimental
items there was always at least one filler.

3.3.3.3 Procedure

An EyeLink II head-mounted eye tracker was used to monitor participants’ eye-
movements with a sampling rate of 500 Hz. Images were presented on a 21” multiscan
monitor at a resolution of 1024 x 768 pixels. A test of eye dominance was performed
at the beginning of each session and only the dominant eye was tracked. Participants
were asked to wear swimming caps in order to avoid the eye-tracker sliding during the
experiment. After 0 or 1000 ms of visual presentation (depending on the previewing
condition), spoken sentences were concurrently played. The experiment was explained
to participants using written instructions. At the beginning of every session, partici-
pants were given 4 practice trials to familiarize them with the experiment. Calibration
was done at the beginning of the session and repeated again at approximately halfway

1We use Adobe Audition to manipulate the sound files.
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3.3 Experiment 1: Visual saliency in syntactic ambiguity resolution.

through the session. Some subjects required more than two calibrations. Between tri-
als a fixation cross appeared within which drift correction was performed. The entire
experiment was approximately 30 minutes long.

3.3.3.4 Pre-processing and Analysis

Fixations are extracted and cumulated per visual object by superimposing templates
with interest regions (visual objects) marked by colours and unfolded on a time course
of 6000ms by slices of 10ms, using the open source software ’Filter’ (Saarbrucken) and
SBtrans (Saarbrucken). In our experiment we have 5 different visual objects WOMAN,
SINGLE ORANGE OR DISTRACTOR, ORANGE/TRAY, TRAY/BOWL, BOWL over which
fixations were counted. Blinks or out of range fixations were excluded. The onset of
time course is aligned to the beginning of visual presentation. Furthermore, fixations
are associated with linguistic regions counting from the onset up to 800ms. In this
experiment, we have focused on three linguistic regions where ambiguity occurs: the
direct object (ROI:NP the orange), the first spatial preposition (ROI:1PP on the tray),
the second spatial preposition (ROI:2PP in the bowl). On the eye-movement data, we
perform descriptive and inferential analyses, using the statistical programming lan-
guage R. The descriptive analysis compares the distribution of fixations on target ob-
jects, e.g. BOWL, for the different 6 conditions, e.g. Single-Location/1 Referent, over
time (800ms) using log-odds as dependent measure (Barr, 2008). The inferential anal-
ysis examines the effects of experimental predictors on the trend of fixations. We did
our inferential analysis using linear-mixed effects model (LME) with empirical logit
as dependent measure on a specific target, e.g. BOWL, over time. The predictors of
our LME model, centered to avoid collinearity, are: Saliency, Number of Referent and
Time. The random effects are: Subject and Trial. The final model is selected following
an iterative stepwise forward selection procedure (for more details about the analy-
sis, refer to Chapter 2), which allows us to have maximum statistical fit with a minimal
number of parameters. We discuss our results in the context of the coefficient estimates
of those factors significant after model selection.
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3.3.4 Results

Before examining the main effects of our within subjects conditions (e.g. Number of

Referent), we briefly discuss the between subjects manipulation Preview (Long/Short).
We found that with a Short preview, participants are slightly slower in responding to
linguistic stimulation, i.e. looks to target object after its mention come later compared
to Long-preview.
The longer exposure to the visual array allows participants to identify and possibly
recall the linguistic labels of all the objects, whereas in a zero preview, the participants
are directly faced with the task of matching linguistic and visual information. Thus,
compared to Short-preview, in a Long-preview, the visual referent is immediately iden-
tified after its linguistic mention. This difference does not however reach significance.
Differently from a naturalistic scene, our visual array contains only few objects, which
can be quickly identified during the first few fixations, and this probably weakens the
impact of preview. For this reason, in the rest of our analysis, we analyze Long and
Short Preview aggregated.

We divide the discussion by linguistic ROI, analyzing the results obtained for the
different target objects. For this experiment we focus only on the linguistic ROI direct
object the orange. On the the object ORANGE, in line with previous literature (e.g.
Spivey-Knowlton et al. 2002), we expect more looks to single ORANGE compared
to DISTRACTOR, when visually depicted, i.e. 2 Referent. The referential ambiguity
between two visual objects sharing the same linguistic referent, i.e. orange, triggers
attentional competition. On the single object BOWL and compound object TRAY IN

BOWL, we expect anticipatory looks at the beginning of direct object, in prediction to
upcoming arguments of sentence, when saliency on object is manipulated, i.e. Single-
location (BOWL) Compound-location (TRAY IN BOWL). When linguistic information
alone is not sufficient to generate a full prediction of the sentence, i.e. at the auxil-
iary/verb region, the saliency on objects is visually used to infer it.

ROI NP: direct object the orange Figure 3.4 compares empirical logit fixation on
target object ORANGE (2 Referent) or distractor (1 Referent) across conditions. At the
beginning of the NP, there is no clear effect of Number of Referents.
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3.3 Experiment 1: Visual saliency in syntactic ambiguity resolution.

Table 3.1: Experiment 1. Linguistic ROI NP direct object: the orange; on the three Visual ROI: OR-
ANGE, SINGLE-LOCATION, COMPOUND-LOCATION. Predicted LME coefficient estimates of predic-
tors. Saliency is contrast coded (treatment). The level No-Saliency is used as reference level, contrasted
with Single-Location and Compound-Location. Number of Referents has been centered, and since the
experiment is balanced: 1 Referent was recoded as (-0.5) and 2 Referents as (0.5).

ORANGE

Predictor Coefficient p

Intercept -4.8014 0.0001

Time 0.0096 0.001

Referent 0.0935 0.08

Single-Location -0.0122 0.5

Compound-Location 0.0075 0.7

Referent:Time 0.0117 0.0001

Single-Location:Time 0.0083 0.0001

Compound-Location:Time -0.0008 0.5

Referent:Single-Location:Time 0.0063 0.02

Referent:Compound-Location:Time 0.0057 0.01

SINGLE-LOCATION

Predictor Coefficient p

Intercept -4.8570 0.0001

Single-Location 0.0978 0.0002

Compound-Location -0.0514 0.01

Referent -0.0539 0.1

Time -0.0009 0.7

Single-Location:Referent 0.0353 0.01

Compound-Location:Referent 0.0199 0.1

Referent:Time -0.0039 0.01

Single-Location:Time -0.0035 0.001

Compound-Location:Time -0.0001 0.9

COMPOUND-LOCATION

Predictor Coefficient p

Intercept -4.7494 0.0001

Single-Location -0.0695 0.01

Compound-Location 0.08 0.007

Time 0.0066 0.03

Referent -0.0034 0.9

Single-Location:Referent 0.0617 0.001

Compound-Location:Referent 0.0353 0.001

Compound-Location:Time -0.009 0.001

Referent:Time -0.0046 0.001

Single-Location:Time -0.0012 0.3

Compound-Location:Time 0.0031 0.01
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3.3 Experiment 1: Visual saliency in syntactic ambiguity resolution.

Figure 3.4: Experiment 1. Empirical logit fixation plot on ORANGE or DISTRACTOR at ROI:NP the
orange for Long and Short preview collapsed.

However after the first 300ms, we observe increasing looks to ROI OR-
ANGE/DISTRACTOR when 2 Referent are depicted, effects which strengthen over time
(refer to Table 3.1 for list of coefficients). Moreover, we observe interactions with
Time also for both saliency manipulations. When saliency is on Single-Location,
looks increase over time, especially when 2 Referents are depicted. For saliency on
Compound-location, instead, we observe a significant interaction with time only when
associated with Number of Referents. Before the linguistic referent the orange is com-
pletely spelled out, salient objects are attracting visual attention, thus competing on
looks with the mentioned object.

In Figure 3.5, we show empirical logit fixation on BOWL at ROI NP direct object
the orange. At the beginning of the region, we observe a main effect of Saliency, in
that for Single Location, there are significantly higher anticipatory looks, compared
to both No-Saliency and Compound-Location. Saliency information generates antic-
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3.3 Experiment 1: Visual saliency in syntactic ambiguity resolution.

Figure 3.5: Experiment 1. Empirical logit fixation plot on BOWL at ROI:NP the orange across conditions

ipatory eye-movements at the beginning of direct object the orange used to predict
upcoming linguistic material. However, as soon as the linguistic referent the orange

is spelled out, looks on the salient object decrease over time; especially when 2 Ref-
erents are depicted, as more visual objects, sharing the same reference, are competing
for attention.

Similar anticipatory effects are found also on the other salient object Compound-

Location. In Figure 3.6 we show empirical-logit on TRAY IN BOWL at direct object
the orange. We observe a main effect of saliency on Compound-Location, i.e. more
looks at TRAY IN BOWL when visually salient, compared to Single-Location; which
decreases over time and, similarly to what observed on BOWL, is negatively influenced
by the number of referents. Also on the compound object we confirm that saliency is
utilized to predict upcoming linguistic information. When linguistic information is not
sufficient to generate a prediction about upcoming arguments, sentence understanding
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3.3 Experiment 1: Visual saliency in syntactic ambiguity resolution.

Figure 3.6: Experiment 1. Empirical logit fixation plot on TRAY IN BOWL at ROI:NP the orange across
conditions.

relies on image-based visual information to provide such information.

3.3.5 Discussion

In this experiment, we have tested the hypothesis that purely visual information, e.g.
saliency (Itti & Koch, 2000b), plays a role during situated sentence processing. We
have found anticipatory looks on salient objects in both conditions, at the beginning
of the direct object region, e.g. the orange. The effect was modulated by the number
of visual referents sharing the same linguistic referent, i.e. ORANGE and ORANGE ON

TRAY. The more referential ambiguity, the more visual competition. In line with previ-
ous work on syntactic resolution in VWP (e.g. Tanenhaus et al. 1995), we find effects
of visual competition in two-referent context between visual objects sharing the same
linguistic referent: at the orange, SINGLE ORANGE and ORANGE ON TRAY compete
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3.3 Experiment 1: Visual saliency in syntactic ambiguity resolution.

for attention; especially, when saliency is not manipulated No-Saliency. When saliency
is manipulated instead, we find that visual competition between the two-referent is de-
layed, as visual attention is evaluating whether the salient object is going to be the
direct object of verb put. Since, in our visual context we do not have a visual object
EMPTY TOWEL that can be interpreted as goal location of 1PP on the towel, we cannot
directly assess whether, during this region, we find similar results to Tanenhaus et al.

1995.
In contrast with visual cognition studies showing that saliency has effect only dur-

ing free-viewing tasks (Henderson et al., 2009a), we observe an interaction of saliency
during a sentence understanding task. The effect of saliency is, however, restricted to
the phase (beginning of direct object) of linguistic processing where the information is
not sufficient to generate a full prediction of upcoming linguistic material; considering
also that the verbs utilized, e.g. put, do not favor any particular object of the array (un-
like Altmann & Kamide 1999). Within this setting, situated sentence understanding
can be configured as a free-viewing task, in that there is no precise goal, e.g. searching
for a cued object, and participants do not know which visual objects to look at until
they listen to the sentence. Moreover, even if the sentence has started, they need to
process at least until the verb, before being able to make linguistically based predic-
tions about sentence continuations. In this first phase of situated language processing,
where the linguistic material available is not sufficient, saliency functions as a visual
proxy to generate predictions.

The finding of interaction between low-level mechanisms of visual attention and
sentence processing suggests a cross-modal architecture of cognition, where the dif-
ferent modalities interact during tasks requiring synchronous processing, e.g. sentence
understanding. However, from these results we cannot tell whether during cross-modal
interaction, the information coming from a certain cognitive process, e.g. sentence
processing, takes precedence over the information gathered by a different cognitive
process, e.g. visual attention. The reason is that in the experiment just described, vi-
sual information does not compete with linguistic information, but rather complements
it. In the next two experiments, we are going to test whether linguistic or visual in-
formation takes precedence during situated sentence processing; or if they are used
rather independently according to the different phases of synchronous processing. In
particular, in experiment 2 we test the effect of ’low-level’ linguistic information of
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intonational breaks on the same experimental material of experiment 1. We use in-
tonational breaks as linguistic manipulation because they do not carry any explicit
semantic information, thus making their effect more comparable to saliency, which
also, to some degree, doesn’t carry any semantic information. In experiment 3, we put
visual and linguistic information either in competition, i.e. saliency and intonational
breaks point to a different resolution of ambiguity, or in cooperation, i.e. saliency and
intonational breaks point to the same resolution of ambiguity. With experiment 2, we
want to test the effect of intonational breaks independently from saliency; thus once
we look at their interaction in experiment 3, we can fully compare the results obtained
independently in experiment 1, saliency, and in experiment 2, intonational break, with
those obtained during their interaction (experiment 3).

3.4 Experiment 2: Intonational breaks in syntactic am-
biguity resolution

Based on the experimental design of experiment 1, in experiment 2 we investigate the
effect of intonational breaks during situated understanding of syntactic ambiguous PP-
attachment structures. We have chosen to manipulate intonational information because
it doesn’t carry any explicit high-level semantic information; hence making it more
suitable to be tested against visual saliency (experiment 3), which also acts on low-level
processing of visual information. Before going to the details of the current experiment,
we contextualize our work with previous studies on the topic.

3.4.1 The effect of prosodic information during situated ambiguity
resolution.

The importance of prosodic information on the resolution of referentially ambiguous
visual context has emerged during communicative tasks, where especially intonational
break information was used by speakers to contrast the intended visual object from
its referential competitor, both by adults and children (Snedeker & Trueswell, 2003;
Snedeker & Yuan, 2008).
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Figure 3.7: Example of trial, and results on prosodic
information used by speakers in a dialogue study
conducted by Snedeker & Trueswell 2003.

In the study conducted by Snedeker
& Trueswell 2003, pairs of participants,
a Speaker and a Listener, were engaged
in a dialogue/action task situated in a ref-
erentially ambiguous context (see Fig-
ure 3.7) to visualize an example trial).
Speakers were asked to give instructions
of actions to be performed by the Listen-
ers1, which had a PP-attachment syntac-
tic ambiguity e.g. Tap the frog with the

flower: where the 1PP with the flower

can be interpreted either as instrumen-
tal, i.e. take the FLOWER and tap the
FROG, or as modifier of direct object
the frog, i.e. tap the frog that has a
flower. The results show that speakers
make use of prosodic information to re-
solve PP-attachment ambiguity; and es-
pecially prominent was the use of intonational break information (see Figure 3.7 to
visualize). When a speaker intended a modifier interpretation, the ambiguous prepo-
sitional phrase with the flower was emitted together with the direct object in a sin-
gle prosodic phrase, the frog with the flower (i.e. no intervening intonational break).
Whereas an instrumental interpretation was obtained by introducing an intonational
break after the direct object the frog. Further studies have observed that the disam-
biguating effect of intonational breaks, is reflected also by the eye-movement responses
(Snedeker & Yuan, 2008): where an instrumental break, i.e. silent pause after the di-
rect object the frog, triggered more looks to FLOWER, during the ambiguous region
with the flower, compared to the modifier break.

A similar effect, though weaker, was found by Bailey & Ferreira 2007 in a situated
language comprehension study, where in place of intonational breaks there were filled
pause disfluencies, e.g. put the uh uh apple on the towel in the box. In a similar vein,

1The speakers had to memorize for 10 sec the instruction, which was given in written form, and
asked to repeat it verbatim.
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as previously discussed VWP studies, participants were instructed to perform actions
while listening to syntactically ambiguous PP-attachment sentences situated in a fully
ambiguous visual context (unlike Snedeker & Yuan 2008; Tanenhaus et al. 1995); see
Figure 3.8 to visualize an example trial. Filled pause disfluencies were introduced to
allow different resolution of ambiguity.

For example, a filled pause introduced after the first prepositional phrase, e.g. put

the apple on the uh uh towel in the box, should lead to the reading where ’the apple

that’s on the towel should go on the other towel that’s in the box’. Thus, more looks to
the TOWEL IN BOX during and after processing of the disfluency. The results show a
mild effect in this direction, which is however strongly connected to the type of context
(i.e. one or two referents). Similar to Tanenhaus et al. 1995 a two-referent context
triggers visual competition between the two APPLES, de facto reducing the time to
evaluate the other possible reading where the apple that’s on the towel is put on the

towel that’s in the box. In a one-referent context, instead, where there is no referential
ambiguity between the two APPLES, the competition emerges at 1PP towel between the
two compound objects sharing TOWEL, i.e. APPLE ON TOWEL and TOWEL IN BOX.

In Figure 3.8, we can observe, in fact, that while the towel unfolds, for the one-
referent context both APPLE ON TOWEL and TOWEL IN THE BOX have a higher prob-
ability of looks; whereas in two-referent context a similar pattern is found between
APPLE ON TOWEL and APPLE ON NAPKIN. Beside the effects driven by the differ-
ent syntactic readings of the ambiguous sentence, we believe that a simple mechanism
of visual competition might be also responsible for the patterns of eye-movement ob-
served in both the Tanenhaus et al. 1995 and Bailey & Ferreira 2007 studies. Obvi-
ously, as the sentence unfolds over time, the linguistic referents that visually compete
change. Thus the more visual competition there is at each phrase, the less time there
is to evaluate other possible readings before a new phrase is parsed and another visual
competition emerges. Together with visual competition, we expect eye-movement to
be also influenced by the syntactic/semantic plausibility of the event integrated; e.g.
a two-referent context makes more plausible the reading where a single ORANGE is
moved in the TRAY IN THE BOWL; rather than in one-referent context, where only
the ORANGE ON TRAY can be moved into TRAY IN BOWL, see Figure 3.9 to visualize
example.
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Figure 3.8: Top row: Example of fully ambiguous visual context. Bottom row: Probability of looks to
APPLE ON TOWEL, APPLE/DISTRACTOR ON NAPKIN, TOWEL IN BOX, in one and two-referent context
for modifier disfluency condition, e.g. put the uh uh apple on the towel in the box. The gray polygon
indicates probability of fixations, whereas the line refers to saccade. Extracted from a study by Bailey
& Ferreira 2007
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In this experiment, we test the effect of intonational breaks during disambiguation
of ambiguous syntactic structures, which have shown a clearer effect of disambiguation
than filled paused disfluencies. In line with experiment 1, we have chosen to situate it
in a fully ambiguous visual context to have more visual competition between objects.
We expect the visual objects corresponding to phrases bounded by certain intonational
breaks receive more looks compared to the different intonational condition (Snedeker
& Yuan, 2008). Moreover, visual competition is expected to change according to the
phrase observed and, the plausibility of the reading integrated. Finally, we test the
independent effect of intonational breaks before investigating it in interaction with
visual saliency (Experiment 3).

3.4.2 Method

In a 2x2 eye-tracking experiment crossing Number of Referent (1 Referent/ 2 Ref-
erents) and Intonational-Break (NP-modifier/PP-modifier), similarly to experiment 1,
participants listened to PP-attachment ambiguous sentences, such as the woman will

put the orange on the tray in the bowl while concurrently being presented with a fully
ambiguous visual context. We manipulate the intonational breaks similarly to Snedeker
& Yuan 2008. Thus, we consider two cases:

(4) NP-modifier: Intonational break after the first prepositional phrase (1PP)

a. [The girl will put] [the orange on the tray] [in the bowl]

(5) PP-modifier: Intonational break after the second prepositional phrase (2PP)

a. [The girl will put the orange] [on the tray in the bowl]

For the NP-modifier reading, the intonational break is placed after the 1PP modifier,
and the phrases the orange and on the tray are together into a single prosodic phrase to
trigger the unambiguous reading where: the orange that’s on a tray is put in the empty
bowl. In terms of eye-movement, for NP-modifier we expect more looks to ORANGE

ON TRAY at 1PP on the tray, compared to the other condition. For the PP-modifier
reading, the intonational break is placed after the NP direct object, and the phrases
the orange and on the tray are separated by an intonational break; whereas the second
and third PP are now aggregated on the tray in the bowl. The separation between the
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Figure 3.9: Experiment 2: example of visual and linguistic material across the different 4 Conditions.

NP and its 1PP modifier puts the single object ORANGE in referential focus1 whereas
the aggregation 1PP and 2PP does it for the compound object TRAY IN BOWL, thus
triggering the reading where the single orange is put on the tray that’s in the bowl. In
general, we expect visual attention to focus on the objects following the order in which
they are mentioned; thus, the intervention of a break on sentence processing signals a
visual check on the objects which correspond to the linguistic information processed
up to the interruption.

As for experiment 1, Number of Referents refers to the number of visual objects
corresponding to the direct object of the sentence, e.g. the orange. In a 2 Referents
visual context, there is a SINGLE ORANGE and AN ORANGE ON A TRAY; whereas
in 1 Referent condition, only an ORANGE ON A TRAY is depicted, see Figure 3.9 to

1At least during the break.
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visualize the four conditions.

3.4.2.1 Participants

Thirty-two participants, native speakers of English from the University of Edinburgh,
with normal or corrected to normal vision, were each paid 5 pounds for taking part in
the experiment.

3.4.2.2 Materials, Procedure and Analysis

We reuse the same images of experiment 1 but this time saliency is not manipulated
(refer to Figure 3.9 to visualize an example trial). For the spoken stimuli, we use the
same list of sentences of experiment 1, but repeated for two conditions of intonational
break. A female speaker was instructed to read aloud the sentences1 placing into-
national breaks according to the two conditions (NP-modifier, PP-modifier). For the
NP-modifier condition a mean break of 413.25 ms was placed between the end of 1PP
on the tray and the beginning of 2PP in the bowl; whereas for the PP-modifier, we
had a mean break of 637.54 ms between the end of direct object the orange and the
beginning of 1PP on the tray.

The experimental procedure is similar to experiment 1; the main difference is that
now we have only one preview condition of 1000ms, instead of two (refer to sec-
tion 3.3.3 for more details). Participants preview the image for 1000ms before the
spoken sentence is concurrently played. Calibration is done at the beginning of each
session and manual drift correction is done between trials. As for experiment 1, we
analyze looks on a target object, across conditions, aligned to the different linguistic
ROI; the predictors of the LME models are Number of Referents, Intonation Breaks

and Time and the random effects are Subject and Trials. For this experiment, we con-
sider three linguistic ROI: the NP direct object the orange, the 1PP on the tray and
the 2PP in the bowl. We show plots of observed fixation data, calculated as empirical
logit, and discuss LME coefficients for those factors remaining significant after model
selection.

1Recorded using a standard microphone.
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3.4 Experiment 2: Intonational breaks in syntactic ambiguity resolution

3.4.3 Results

For the ROI:NP direct object, e.g. the orange, we look at the pattern of fixations on the
object ORANGE. Here, similarly to experiment 1 and in line with previous work on am-
biguity resolution (e.g. Tanenhaus et al. 1995), we expect in the two referent-context
visual competition, i.e. when two objects depicted share the same referring expres-
sion, they will compete for visual attention while the referent is mentioned. Moreover,
visual competition is expected to persist also during the other phrases due to the full
ambiguity of the visual context. On ROI:1PP, e.g. on the tray, the different ambiguous
mappings of the sentence on the visual context arise, and the disambiguating effects
of intonational breaks are expected to emerge (Snedeker & Yuan, 2008). We analyze
fixations on three different objects, ORANGE ON TRAY, TRAY IN BOWL and BOWL. On
object ORANGE ON TRAY, we expect more looks for intonational break NP-modifier,
where there is no break present between the orange and on the tray, compared to PP-
modifier, especially when only 1 Referent is depicted, i.e. less referential competition.
On the contrary, on object TRAY IN BOWL, we expect more looks for intonational break
PP-modifier, where there is a break between the NP direct object and 1PP, and instead
1PP and 2PP are aggregated within the same prosodic phrase the tray in the bowl.
Moreover, on object BOWL, we expect anticipatory effects for intonational break NP-
modifier, where participants imagine a final reading of the sentence where BOWL is a
goal-location in the bowl, i.e. the orange that’s on the tray is put in the bowl. Finally,
on ROI:2PP, we look at objects BOWL and TRAY IN BOWL, to check whether the two
intonational breaks NP and PP-modifier converge on the two final readings discussed
in section 3.4. However, since we find no significant effects on the compound object
TRAY IN BOWL1, we only report results on object BOWL.

3.4.3.1 ROI:NP direct object the orange

In Figure 3.10, we show a plot of empirical logit on object ORANGE OR DISTRACTOR

across conditions during the linguistic region the orange.
At the beginning of the region, we observe a preference of looks to the object, for

PP-modifier break, which is not, nevertheless, statistically significant. Also Number

1Probably the visual complexity of the compound object, and often its semantic implausibility, has
made it less likely to be given the final reading of goal location.
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3.4 Experiment 2: Intonational breaks in syntactic ambiguity resolution

Figure 3.10: Experiment 2. Empirical logit of fixations on target object ORANGE/DISTRACTOR at
ROI:NP the orange across conditions.

of Referent does not emerge as a main effect. However, as time develops, we observe
increasing looks for 2 Referent compared to 1 Referent, especially in interaction with
intonational break PP-modifier (refer to Table 3.2 for coefficients).

Similar to experiment 1, the effect of referents is found only when time is con-
sidered. In fact, the competition between visual objects sharing the same linguistic
reference begins when it is completely unfolded. Moreover, a PP-modifier break, com-
pared to the NP-modifier, puts the direct object the orange in focus; and before the 1PP
begins, i.e. during the break, looks to ORANGE have the time to develop.

3.4.3.2 ROI:1PP (modifier vs location) on the tray

In Figure 3.11 we show empirical logit on object TRAY IN THE BOWL at linguistic ROI
on the tray.
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3.4 Experiment 2: Intonational breaks in syntactic ambiguity resolution

Table 3.2: Experiment 2. Linguistic ROI NP direct object: the orange; on visual ROI: ORANGE.
Predicted LME coefficient estimates of predictors. Explanatory variables are centered around the mean.
Number of Referent: 1 Referent (-0.5), 2 Referent (0.5) and Intonational Break: NP-modifier (-0.5),
PP-modifier (0.5).

ORANGE

Predictor Coefficient p

Intercept -3.5422 0.0001

Referent 0.0489 0.1

Prosody 0.0313 0.2

Time 0.0008 0.2

Referent:Time 0.0066 0.0001

Referent:Prosody:Time 0.0087 0.01

Figure 3.11: Experiment 2. Empirical logit of fixations on target object TRAY IN BOWL at ROI:1PP on
the tray across conditions.
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3.4 Experiment 2: Intonational breaks in syntactic ambiguity resolution

At the onset of ROI looks do not differ significantly across conditions. However,
after the first 200ms, we observe an increase in looks, for PP-modifier, which is statisti-
cally significant only in interaction with 2 Referents (refer to Table 3.3 for coefficients).
The presence of a single ORANGE in the visual context (2 Referent), opens the read-
ing where the single orange could be moved on the TRAY IN THE BOWL, whereas on
the 1 Referent context, the orange is already on a supporting object, thus making this
reading less likely.

Table 3.3: Experiment 2. Linguistic ROI 1PP: on the tray; on the three Visual ROI: COMPOUND-
LOCATION, ORANGE ON TRAY, SINGLE-LOCATION. Predicted LME coefficient estimates of predic-
tors. Explanatory variables are centered around the mean: Number of Referent: 1 Referent (-0.5), 2
Referent (0.5) and Intonational Break: NP-modifier (-0.5), PP-modifier (0.5).

COMPOUND-LOCATION

Predictor Coefficient p

Intercept -3.4934 0.0001

Time 0.006 0.001

Prosody 0.0444 0.2

Referent 0.0406 0.1

Referent:Prosody:Time 0.0101 0.0001

ORANGE ON TRAY

Predictor Coefficient p

Intercept -3.1901 0.0001

Referent -0.0858 0.07

Prosody -0.0732 0.09

Time 0.0027 0.09

Prosody:Time -0.0138 0.0001

Referent:Prosody 0.0479 0.02

Referent:Time 0.0040 0.03

Referent:Prosody:Time 0.0085 0.02

SINGLE-LOCATION

Predictor Coefficient p

Intercept -3.6261 0.0001

Time 0.0015 0.3

Referent -0.0074 0.7

Prosody 0.0115 0.5

Time:Prosody 0.0073 0.0001

69



3.4 Experiment 2: Intonational breaks in syntactic ambiguity resolution

This result contrasts with Bailey & Ferreira 2007, who, instead, have found in-
creasing looks to TOWEL IN BOX only for one-referent context. The reason for this
difference might be that their visual competitor APPLE was depicted on a supporting
object TOWEL, whereas our competitor is depicted alone; and this had a negative in-
fluence on the plausibility of the reading where ’the apple that’s on a napkin has to be

moved on the towel that’s in the box’. Beside the effect of visual competition driven by
referential overlap 1, it seems that the compositional plausibility of the event integrated
also influences the way eye-movements are distributed across the objects, while mod-
ulating the effect of intonational breaks. In one-referent context, where only ORANGE

ON A TRAY is depicted, it can be more plausibly imagined to be combined with a goal
location BOWL as final destination of the action put, rather than with the compound
object TRAY IN BOWL. In a two-referent context instead, the presence of a single OR-
ANGE, which is not on any supporting object (unlike Bailey & Ferreira 2007), opens
also the possibility to be combined with the compound location TRAY IN BOWL, as
final destination of the action put. The semantic plausibility of the integrated event is
also implicitly connected by the structural plausibility of resulting sentence: a single
object is just an NP, whereas a compound-object is an NP modified by a PP; by com-
bining a single object with a compound object, we obtain a simpler and more plausible
structure, than combining two compound objects:

(6) a. [NP orange [PP on [N a tray]]] [PP in [N bowl]]
b. [NP orange [PP on [N a tray]]] [PP on [N a tray] [PP in [N a bowl]]]

We observe similar effects also on the other compound object ORANGE ON TRAY.
In Figure 3.12, again, we do not observe a main effect of Intonational breaks, how-

ever, over time, looks have an increasing trend for NP-modifier, especially when only
1 Referent is depicted, see Table 3.3. When 2 Referents are depicted, the referential
competition interferes with the effect of intonational break, while making looks more
sensible to time. Intonational breaks are used to put in focus the referent bounded by
the prosodic phrase. Crucially, however, the effect is dependent on time, over which
prosodic information unfolds, and modulated by referential competition: the more vi-
sual referents have to be evaluated, the weaker is the effect of the break.

1ORANGE ON TRAY and TRAY IN BOWL share object TRAY when the referring expression used is
on the tray.
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3.4 Experiment 2: Intonational breaks in syntactic ambiguity resolution

Figure 3.12: Experiment 2. Empirical logit of fixations on target object ORANGE ON TRAY at ROI:1PP
on the tray across conditions.

Finally, in figure 3.14 we show plot of fixations on target object BOWL.
Confirming previous findings, the effect of Intonational break, NP-modifier, is only

found in conjunction with time. Moreover, it is interesting to notice, how the effect re-
lates to NP-modifier, which favors the final reading where the orange that is on the tray
is put in the empty bowl. The semantic and structural plausibility of the event resulting
by the integration of linguistic and visual information seems to play an important role1.

3.4.3.3 ROI 2PP: in the bowl

In Figure 3.14, we show plots of observed and estimated looks on target object BOWL

during linguistic ROI in the bowl.
Similar to previous results, we observe no main effects but only interactions (see

1More research is needed to disentangle semantic and structural plausibility of the event.
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3.4 Experiment 2: Intonational breaks in syntactic ambiguity resolution

Figure 3.13: Experiment 2. Empirical logit of fixations on target object BOWL at ROI:1PP on the tray
across conditions.

Table 3.4 for coefficients). Especially prominent is the positive interaction between
NP-modifier and 2 Referents; where the effect of 2 Referents weakens over time. In
line with previous studies (Snedeker & Trueswell, 2003; Snedeker & Yuan, 2008), the
effect of Intonational breaks is to highlight the object in the visual context referenced
by the prosodic phrase. Thus for an NP-modifier break, in the bowl is mentioned within
a single prosodic phrase, which has a direct visual correspondence (BOWL).

This correspondence favors the referential integration between visual, e.g. BOWL

and linguistic information, e.g. the word over other potential candidates of integration,
e.g. TRAY IN BOWL with in the bowl. Moreover, the correspondence is modulated
by semantic and structural plausibility of the resulting integration. When there are 2
Referents, both allowing competing interpretations of the event, i.e. a single orange in
the bowl Vs an orange on the tray in the bowl, the target location BOWL receives more
looks than for 1 Referent, where only one continuation is possible, i.e. the orange on
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3.4 Experiment 2: Intonational breaks in syntactic ambiguity resolution

Figure 3.14: Experiment 2. Empirical logit of fixations on target object BOWL at ROI:2PP in the bowl
across conditions.

the tray in the bowl.

3.4.4 Discussion

The goal of this experiment was to test low-level linguistic information, Intonational-

break, on the resolution of syntactically ambiguous sentences, before investigating it
in interaction with visual saliency (Experiment 3). Intonational breaks are interrup-
tions of the linguistic stream marking the boundaries of a prosodic phrase. In our
experiment, a prosodic phrase, e.g. the orange on the tray visually corresponded to a
certain visual object, e.g. ORANGE ON TRAY. In line with previous studies (Bailey
& Ferreira, 2007; Snedeker & Trueswell, 2003; Snedeker & Yuan, 2008); we observe
that by changing the position of intonational breaks along the sentence, we change the
organization of prosodic phrases hence influencing the integration between linguistic
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3.4 Experiment 2: Intonational breaks in syntactic ambiguity resolution

Table 3.4: Experiment 2. Linguistic ROI 2PP: in the bowl; on Visual ROI: SINGLE-LOCATION. Pre-
dicted LME coefficient estimates of predictors. Explanatory variables are centered around the mean:
Number of Referent: 1 Referent (-0.5), 2 Referent (0.5) and Intonational Break: NP-modifier (-0.5),
PP-modifier (0.5).

SINGLE-LOCATION

Predictor Coefficient p

Intercept -3.5334 0.0001

Time 0.007 0.002

Prosody -0.0444 0.1

Referent 0.0296 0.3

Prosody:Referent -0.0704 0.0001

Time:Referent -0.0029 0.03

referents mentioned and visual objects attended. This effect is especially strong during
ambiguous regions, e.g. ROI:1PP on the tray, which trigger a wider range of readings.
The need for disambiguation gives prominence to the intonational break information.
However, all Intonational Break effects are found to be significant only in interaction
with the other factors, time and number of referents. The number of referents is a
fundamental trigger of visual competition: the more visual referents correspond to the
referring expression, the more competition; which has also a direct impact on time:
the more time is taken at each region by visual competition, the fewer readings of the
ambiguous sentence can be evaluated. Time is also related to prosodic information; as
prosodic information unfolds over time, eye-responses are conditioned from it. Fur-
thermore, we found that semantic and structural plausibility of the event, resulting by
the integration of linguistic and visual information, plays a critical role on visual re-
sponses. For example, if the visual context had 2 Referents for the direct object the

orange, we observed more looks on object BOWL during linguistic ROI in the bowl

compared to 1 Referent. In a 2 Referents context, both objects, SINGLE ORANGE and
ORANGE ON TRAY can be put in the goal location EMPTY BOWL, thus yielding higher
looks on target object.

With experiment 1 and 2, we have observed that both visual and linguistic, low-
level, information is used during situated language understanding to resolve syntactic
ambiguity. However, we do not know yet if the interaction between these two types
of information produces results, as independently observed in experiment 1 and 2, or
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3.5 Experiment 3: Interaction of visual saliency and intonational breaks

instead a different pattern emerges. Replicating results of experiment 1 and 2 would
suggest an highly interactive architecture of cognition, where visual and linguistic in-
formation, depending on the state of integration, is independently accessed and uti-
lized. On the other hand, finding a new pattern, e.g. only linguistic information is
used, would imply a more structured organization of cross-modal processing, where
certain information, e.g. linguistic information, takes precedence over the other, e.g.
visual information.

3.5 Experiment 3: Interaction of visual saliency and in-
tonational breaks

From previous experiments we have seen that the independent manipulation of
low-level visual (experiment 1, saliency) and linguistic (experiment 2, intonational
breaks) information, during comprehension of syntactically ambiguous sentences
situated in a fully ambiguous visual context (for details refer to section 3.3.3) resulted
into different patterns of visual resolution. In this last experiment, we test the
interaction (competition and cooperation) between visual and linguistic information
by bringing together within the same experimental design both types of information.
The goal is to discover the relation between visual and linguistic information during
synchronous processing. Three possible scenarios of interaction can be imagined: 1)
linguistic prominence: linguistic information overrides effects of visual information;
2) visual prominence: visual information overrides effect of linguistic information; 3)
full interaction: both types of information are used at different points of synchronous
processing, when needed.

3.5.1 Method

In a 2x2 eye-tracking experiment crossing Intonational-Breaks (NP-modifier/PP-
modifier) and Saliency (Single-Location/Compound-Location), similarly to experi-
ment 1 and 2, participants listened to PP-attachment ambiguous sentences, such as
the woman will put the orange on the tray in the bowl while concurrently presented
with a fully ambiguous visual context.
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3.5 Experiment 3: Interaction of visual saliency and intonational breaks

Figure 3.15: Experimental setting, four condition: a) Competition (Single-Location/NP-
modifier, Compound-Location/PP-modifier), Cooperation (Single-Location/PP-modifier, Compound-
Location/NP-modifier).

In order to have full interaction between saliency and intonational breaks (see Fig-
ure 3.15), we create conditions such that, they either point to the same resolving target
object (Cooperation), or they point to different ones (Competition). An example of
the Cooperative condition is (NP-modifier/Single-Location), where the intonational
break NP-modifier put in focus the phrase in the bowl by enclosing it within a single
prosodic phrase, while the salient object in the visual context is the Single-Location
BOWL. An example of the Competitive condition is (PP-modifier/Single-Location),
where the phrase in intonational focus is on the tray in the bowl, but the salient object
is the Single-Location BOWL, rather than TRAY IN BOWL.

3.5.1.1 Participants

Thirty two participants from the same population were each paid five pounds for taking
part in the experiment.
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3.5.1.2 Materials, design, procedure and analysis

The materials have been imported from previous experiments. From experiment 1, we
used the visual stimuli where saliency was manipulated; from experiment 2, instead,
we used the linguistic stimuli where the manipulation was on the intonational breaks.
From number of referents, we retain the condition where 2 Referents are depicted.
Regarding the previewing time condition, that was manipulated in experiment 1 (Long
and Short), we use a Long preview of 1000ms, which allows us to compare results
with the previous experiments. The analysis is done following the methods previously
adopted. Plots of fixation (empirical logit) have been used during the descriptive phase
of analysis, whereas for the inferential analysis, we use LME models. The predictors
for the models are: Intonational-Breaks, Saliency and Time; as random effects we
have Subjects and Trials. Our best model is selected using a step-wise forward model
approach.

3.5.2 Results

We consider the same ROI of previous experiments: NP direct object the orange,1PP
on the tray and 2PP in the bowl. As in previous experiments, we show plots of observed
fixation data and describe it together in the context of the LME coefficients found
significant after model selection.

3.5.2.1 ROI:NP direct object the orange

In experiment 1, we have seen anticipatory effects triggered by saliency at the begin-
ning and during ROI:NP direct object.

In Figure 3.16, we show the trend of looks, expressed in empirical logit, on target
object BOWL starting from onset of ROI direct object the orange along 800 ms tem-
poral window. Confirming experiment 1, we observe a strong anticipatory effect of
saliency on Single-Location, which now is nevertheless weakened by the interaction
with NP-modifier break (see Table 3.5).

Saliency is inferentially used to predict which visual objects are going to be men-
tioned. However, during an NP-modifier break, attention is shifted on both SINGLE
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Figure 3.16: Experiment 3. Empirical logit of fixations on target object BOWL at ROI:NP the orange
across conditions.

ORANGE and ORANGE ON TRAY compared to PP-modifier. The more referential com-
petition reduces the anticipatory impact of saliency.

On the contrary, when we look at Figure 3.17, even if the plot suggests an early
effect of saliency on object Compound-Location, this intuition is not confirmed in-
ferentially, where the coefficient doesn’t reach significance. Instead, we observe a
significant negative interaction of Compound-Location with Time, where the looks
on Compound-object decrease while the direct object the orange unfolds, shifting vi-
sual attention. Moreover, we observe a negative interaction between PP-modifier and
time on looks to Compound-Location. The early effect of saliency is weakened by the
prosodic information, which at this region, for PP-modifier points toward the SINGLE

ORANGE. Furthermore, the semantic and structural plausibility of target object might
have also played a role; a single-location can be more easily the goal location for a
direct object, compared to a compound-location.
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Table 3.5: Experiment 3. Linguistic ROI NP direct object: the orange; on the two Visual ROI: SINGLE-
LOCATION and COMPOUND-LOCATION. Predicted LME coefficient estimates of predictors. Explana-
tory variables are centered around the mean. Single Location (0.5), Compound Location (-0.5); NP-
modifier (-0.5), PP-modifier (0.5).

SINGLE-LOCATION

Predictor Coefficient p

Intercept -4.8772 0.0001

Saliency 0.1149 0.0001

Time -0.004 0.0001

Prosody -0.011 0.5

Saliency:Prosody 0.0399 0.0001

COMPOUND-LOCATION

Predictor Coefficient p

Intercept -4.7402 0.001

Saliency -0.0748 0.1

Time -0.0054 0.1

Prosody -0.0367 0.4

Saliency:Time 0.011 0.0001

Prosody:Time -0.0046 0.007

3.5.2.2 ROI 1PP: modifier/location on the tray

In this ROI, we replicate the intonational effects seen in Experiment 2.
In Figure 3.18 we show looks on TRAY IN BOWL. We find a main effect of PP-

modifier which strengthens over time (refer to Table 3.6 for coefficients). The intona-
tional break highlights the visual object enclosed within the prosodic phrase while it
unfolds over time.

In line with results of Experiment 1, we observe effects of Intonational-break also
on ORANGE ON TRAY.

In Figure 3.19, we observe initially higher looks to target object for PP-modifier,
but the trend changes over time. We find, in fact, a positive interaction between NP-
modifier and time. Again, the effect of intonational break is connected to the temporal
dimension of prosodic unfolding.

Both visual objects ORANGE ON TRAY and TRAY IN BOWL are referred by the
linguistic ROI on the tray, thus looks are expected to increase. However, as seen
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Figure 3.17: Experiment 3. Empirical logit of fixations on target object TRAY IN BOWL at ROI:NP the
orange

at ROI:NP (the orange), we might find anticipatory looks launched to other target
objects, e.g. BOWL, which are triggered by predictive processes such as saliency. We
test whether anticipatory looks are still found on BOWL.

In Figure 3.20 we observe a main effect of saliency Single-Location over the whole
time course, which positively interacts with break NP-modifier (refer to Table 3.6).
Saliency on a Single-Location plays still a predictive role. Participants rely on low-
level visual information to anticipate arguments of the sentence. Crucially, however,
the effect of saliency goes together with semantic and structural plausibility of the
event undergoing integration. An EMPTY BOWL could still serve the role of final goal
location, whereas for the compound object TRAY IN BOWL, it would be unlikely. This
intuition is confirmed by the absence of predictive saliency effects on TRAY IN BOWL at
this linguistic ROI. Moreover, we find evidence of cross-modal cooperation. If there is
an NP-modifier break, which suggests a final reading where the 2PP in the bowl is goal
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Figure 3.18: Experiment 3. Empirical logit of fixations on target object TRAY IN BOWL at ROI:1PP on
the tray

location for orange on the tray, and the object BOWL is salient (Single-Location), we
observe more looks. The interpretation of an event can be strengthen by the cooperative
convergence of cross-modal information (Evans & Treisman, 2010).

3.5.2.3 ROI:2PP in the bowl

On this last linguistic ROI, we have observed only the effects of intonational break in
experiment 2 limited to target object BOWL, with the NP-modifier break yielding more
looks. We didn’t find an effect of Saliency. However, saliency might show effects
when combined with intonational information. Confirming previous experiments, we
find effects only on BOWL, thus we report only results for it.

In Figure 3.21 we observe a significantly higher trend of looks when the target
object is salient (Single-Location) compared to the other condition of saliency. This
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Table 3.6: Experiment 3. Linguistic ROI 1PP: on the tray; on the three Visual ROI: SINGLE-
LOCATION, COMPOUND-LOCATION and ORANGE ON TRAY. Predicted LME coefficient estimates
of predictors. Explanatory variables are centered around the mean. Single Location (0.5), Compound
Location (-0.5); NP-modifier (-0.5), PP-modifier (0.5).

SINGLE-LOCATION

Predictor Coefficient p

Intercept -3.6261 0.0001

Saliency 0.0758 0.02

Time 0.0035 0.1

Prosody 0.041 0.2

Saliency:Prosody -0.0384 0.02

COMPOUND-LOCATION

Predictor Coefficient p

Intercept -4.6331 0.0001

Prosody 0.1668 0.0001

Time 0.0133 0.0001

Saliency 0.004 0.9

Prosody:Time 0.0126 0.0001

ORANGE ON TRAY

Predictor Coefficient p

Intercept -4.27 0.0001

Prosody -0.098 0.1

Time 0.005 0.2

Saliency 0.0008 0.9

Prosody:Time -0.0119 0.0001

positive trend of looks is strengthened by an interaction with NP-modifier break and
increase over time. Similar to experiment 2, the intonational break confirms its role of
highlighting the visual referent to be looked at, but this time, we also find it cooperating
with saliency information. When both visual and linguistic information point to the
same resolving object, their integration is strengthened.

3.5.3 Discussion

In experiment 1, we observed that at ROI:NP direct object, the orange, saliency is uti-
lized to predict upcoming linguistic information. In experiment 2, as expected from
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Figure 3.19: Experiment 3. Empirical logit of fixations on target object ORANGE ON TRAY at ROI:1PP
on the tray

Table 3.7: Experiment 3. Linguistic ROI 2PP in the bowl; on the Visual ROI SINGLE-LOCATION.
Predicted LME coefficient estimates of predictors. Explanatory variables are centered around the mean.
Single Location (0.5), Compound Location (-0.5); NP-modifier (-0.5), PP-modifier (0.5).

SINGLE-LOCATION

Predictor Coefficient p

Intercept -4.8772 0.0001

Saliency 0.08 0.05

Time 0.0065 0.008

Prosody -0.0606 0.1

Saliency:Prosody -0.0720 0.0009

Prosody:Time -0.0072 0.0001

Saliency:Time 0.0069 0.0002

Saliency:Prosody:Time -0.0087 0.01
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Figure 3.20: Experiment 3. Empirical logit of fixations on target object BOWL at ROI:1PP on the tray

previous studies (e.g. Snedeker & Trueswell 2003), we observed that intonational
breaks give prominence to the referent enclosed within the prosodic phrase, hence trig-
gering more looks to the corresponding visual object. In experiment 3, we tested the
interaction (competition/cooperation) between saliency and intonational breaks. We
find similar results as those independently observed in previous experiments. Saliency
has anticipatory effects probably generated at verb-site, whereby a salient object is
expected to appear as argument of the sentence. Intonational breaks modulate the
mapping between visual and linguistic referents by giving prominence to the referent
enclosed within the prosodic phrase. However, we also find instances of interaction,
mostly cooperation; which were dependent on semantic and structural plausibility of
the integrated event. In particular, we observed cooperation when saliency was on
Single-Location and intonational break structure was NP-modifier. An NP-modifier
break suggests a reading, where the orange on the tray is put in the goal location
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Figure 3.21: Experiment 3. Empirical logit of fixations on target object BOWL at ROI:2PP in the bowl

EMPTY BOWL. Thus, when saliency was on the Single-Location (EMPTY BOWL),
there was cross-modal cooperation, which resulted into higher looks compared to the
other conditions. Crucially, however, a similar effect was not found when cooperation
was between saliency on Compound-Location and PP-modifier break. The problem
relies on the visual complexity of the compound object, which indirectly also reflects
an inherent linguistic complexity. A single object has a larger and more flexible set
of events in which it can be imagined, whereas a compound object, beside being in
some occasions semantically implausible, has a stricter range of final events. Since
comprehension is incremental, for each new word processed, the set of possible con-
tinuations shrinks ruling out candidates which aren’t plausible. Thus at position 1PP
on the tray, BOWL can still appear encoded as goal location, whereas the compound ob-
ject TRAY IN BOWL is a less plausible goal location. This intuition is confirmed by the
only effect of competition found; where at ROI:NP (the orange) the effect of saliency
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on Compound-Location was challenged by PP-break information, which at this ROI is
giving focus to object ORANGE (see section 3.5.2.1 for details). The visual complexity
of the compound-object taken together with the competing intonational break has neu-
tralized the effect of saliency. Overall, we have found evidence of an highly interactive
architecture of cognition, where both visual and linguistic information is utilized on-
a-par, when needed during the task. Moreover, when visual and linguistic information
is pointing to the same resolving object, their cross-modal cooperation strengthens the
ongoing integration process.

3.6 General discussion

Sentence processing often occurs synchronously to other modalities, e.g. vision, and
this raises questions about their cross-modal interaction, and the mechanisms underly-
ing this integrated processing.

Previous work in psycholinguistics (e.g. Tanenhaus et al. 1995) has shown that
visual responses are influenced by the integration between linguistic information pro-
cessed and the identities of objects, i.e. the visual referents, forming the visual context.
Within this approach, visual responses play the marginal role of signaling which con-
textual object is currently under linguistic processing. However, there are active visual
mechanisms, e.g. saliency, which might also influence the allocation of visual attention
during situated language processing.

The first goal of this chapter was to explore whether image-based visual informa-
tion, i.e. saliency, is utilized during situated sentence understanding, and if yes, how.
The second was to investigate which pattern of integration arises when visual and lin-
guistic information are investigated in interaction.

In experiment 1, we tested the first issue in an eye-tracking language compre-
hension experiment, where participants listened to syntactically ambiguous sentences,
while concurrently viewing a visual context, where saliency of objects has been ma-
nipulated (for details refer to section 3.3). We found that saliency is utilized during
sentence processing, especially at beginning of direct object to predict upcoming lin-
guistic information. This finding interestingly contrasts with research in visual cogni-
tion showing that saliency is active only during free-viewing tasks (Henderson et al.,
2009a); where, differently from a visual search task, there is no goal to be achieved by
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the viewer. In a situated sentence comprehension task, we can identify two phases, an
initial phase of free-viewing and a second phase of incremental sentence comprehen-
sion. During the first phase, the participant has no precise goals, but rather expecta-
tions1 on the type of sentences that might be listened to. In the second phase, the goals
are defined through the understanding of the sentence, which is incrementally built
during linguistic unfolding. Obviously, at the beginning of the sentence, e.g. at verb
site, the linguistic information processed is not sufficient to generate a full prediction
of upcoming arguments, thus low-level visual information is utilized to fill in this gap.

This finding of interaction between saliency and sentence processing raises an in-
triguing question about the relation between visual and linguistic information during
synchronous processing. Especially, we asked whether there is any preferential way
of accessing visual or linguistic information, or instead they are used rather indepen-
dently. In order to test this hypothesis, in experiment 2, we manipulate intonational
break information, which can be considered low-level linguistic information2, on the
same task and material. We needed to observe the independent effect of intonational
breaks before investigating it in interaction with saliency.

In line with previous research (e.g. Snedeker & Trueswell 2003), we find that the
visual object, e.g. ORANGE, corresponding to a linguistic referent enclosed by the in-
tonational breaks, e.g. PP-modifier, is looked at more, compared to other conditions
of intonation (see section 3.4 for details). The intonational breaks are responsible for
temporally organizing the mapping between linguistic and visual referents. Moreover,
the plausibility of the event resulting from the integration of visual and linguistic infor-
mation modulates the effect of intonational break. Thus, a PP-modifier break, which
puts in focus the Compound-Object TRAY IN BOWL, has overall less effect than a
NP-modifier break, which instead focuses more on Single-Object EMPTY BOWL. A
compound-object is, in fact, has less possibility to be combined into a plausible event,
than a single-object.

Finally in experiment 3, we test the interaction betwen saliency and intonational
breaks by reusing material from the previous two experiments, and designing it such
that saliency and intonational breaks either cooperate, i.e., both kinds of information
point to the same target object, or compete, i.e. they point at different target objects.

1These expectations are probably reinforced during the course of the experiment
2It doesn’t carry explicit semantic information.
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We find similar results to experiment 1 and 2, when visual and linguistic information
were tested independently. However, we also observe cases of cooperation, where the
integrated contribution of both type of information resulted into higher looks to resolv-
ing object (for details refer to section 3.5). Moreover, again, we find that plausibility
of the event undergoing integration plays a key role. In fact, effects of cooperation are
found only when saliency is on a single-object (Single Location) and the intonational
break puts it into focus (NP-modifier).

Overall in this chapter, we have shown that visual information must be taken into
account when investigated concurrently with sentence processing; and that the inter-
action between visual and linguistic information doesn’t present a preferential pattern,
i.e. linguistic information overrides effects of visual information, but rather both types
of information are utilized depending on the state of the task, e.g. at ROI:NP compared
to ROI:1PP, during which cross-modal integration is observed.

3.7 Conclusions

An important message of studies on situated language processing is that on referents,
visual and linguistic, we can investigate the interaction between sentence processing
and visual attention. However, the classic experimental setup utilized presupposes
a specific type of manipulated linguistic material, e.g. syntactically ambiguous sen-
tences, which is contextualized in a rather simple visual context, e.g. object arrays,
where visual responses are restricted to a finite and small number of disconnected ob-
jects. In real world scenarios, instead, sentences are generated or understood on the
basis of a task being performed, e.g. scene description, and very rarely have structures
of the type investigated in psycholinguistic research, e.g. PP-attachment ambiguity.
Moreover, visual objects referred to by a sentence are usually contextualized within a
naturalistic setting; in which they have a precise semantic function, e.g. a MUG is used
for drinking, and co-occur with other objects of the scene, e.g. a MUG is usually found
on a TABLE or a kitchen COUNTER.

In Chapter 4, we explore how sentences are generated from photo-realistic scenes,
which visual and linguistic factors are involved, while beginning to unravel mecha-
nisms of cross-modal referentiality.
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Chapter 4

Object-Based Factors in Cross-Modal
Referentiality during Situated
Language Production

4.1 Introduction

In linguistics, a referent is the thing in the world that a word or phrase denotes or
stands for (Saeed, 2008). In the larger context of cognition, a referent is a cognitive
entity bridging together the multi-modal perception of a real-world counterpart with a
linguistic identifier. During tasks demanding the synchronous interaction of different
cognitive modalities, e.g. situated language processing, mechanisms of cross-modal
referentiality are activated to coordinate such multi-modal processing.

When describing a scene, for example, visual attention retrieves referential infor-
mation about objects, e.g. MUG, while sentence processing creates linguistic denota-
tions e.g. the mug referring to their visual identity. It follows that the visual context
constrains the interpretation of the linguistic material, and vice versa. Thus, if we are
in a kitchen, and somebody asks us to take a mug, visual information about the scene,
e.g. a MUG is usually on a COUNTER, is integrated with the linguistic information
given, making synchronous processing more efficient and less ambiguous. Obviously,
however, the complexity of integration is increased when the scene contains referen-
tial ambiguity. If there are many different MUGS on the COUNTER then more visual
information, e.g. color, is needed to create an unambiguous referential identity RED
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MUG. And this additional information increases complexity of linguistic encoding: do

you want the red mug?.
In this chapter, we focus on the visual and linguistic factors implicated in the for-

mation and maintenance of a shared referential interface, while exploring the pattern of
visual responses emerging during referential integration, i.e. before and after a certain
visual referent is linguistically mentioned. Our hypothesis is that semantic properties
of visual objects, e.g. animacy, together with the density of visual information, e.g.
clutter, influence linguistic encoding. Moreover, we expect these factors, together with
referential ambiguity, to modulate the latency between fixating a visual entity with
respect to its linguistic mention, i.e. eye-voice span.

Overall, by studying how referential scene information is visually inspected during
linguistic encoding, we lay the foundations for a theoretical understanding of syn-
chronous visual and linguistic processing, while gathering empirical data on which
predictions can be tested.

4.2 Background

A realistic theory of the formation and maintenance of reference across modalities has
to treat visual information on a par with linguistic information. Such a theory must
explain how mechanisms known to operate independently in both the linguistic and
the visual modality cooperate in the process of referent assignment. In the previous
chapter, we have found that saliency influences the resolution of prepositional phrase
(PP) attachment ambiguities in language comprehension. Saliency is used to predict
which visual objects can be encoded as post-verbal arguments in a given sentence;
therefore, specific mechanisms of visual attention actively interact during sentence
processing.

However, it is important to note that low-level visual features such as saliency are
not referential per-se; they are properties of image regions, not of objects (Henderson
et al., 2009a). It is therefore necessary to focus on top-down visual properties, which
are object-based and found to be actively implicated during goal oriented tasks, e.g.
search1 (Castelhano et al., 2009; Malcolm & Henderson, 2010; Nuthmann & Hender-

1Find cued target object in the scene.
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son, 2010; Oliva et al., 2003; Schmidt & Zelinsky, 2009). Categorical information
about the cued target is combined with contextual scene information to actively guide
visual attention allocation (Torralba et al., 2006). An object-based approach of active
visual perception strongly implicates processing of referential information; in fact, the
objects of a scene are referents which can be linguistically mentioned. Thus, it seems
likely that during sentence processing, situated in naturalistic scenes, visual and lin-
guistic referentiality is established upon object-based information, and influenced by
its factors.

In this chapter, we investigate the influence of object-based factors during situ-
ated language production in naturalistic scenes with referential ambiguity. We decided
to move from situated language comprehension (Chapter 3) to production, in order to
investigate more naturally the association between objects fixated and descriptions pro-
duced. During situated language comprehension, the sentences that participants have
to listen to are chosen by the experimenter. In practice, this reduces the active contribu-
tion of visual attention during sentence processing; as it is mainly expected to respond
to the linguistic material parsed. During situated language production, on the other
hand, the referential information of objects in the scene has to be visually retrieved first,
before being linguistically encoded. Therefore, by looking at production, we expect
the visual factors of the scene and its objects to modulate the linguistic output gener-
ated, while making sentence processing more directly dependent on the visual context
inspected. Moreover, the aim of investigating more realistically the relation between
visual and linguistic processing is further supported by the use of a photo-realistic ref-
erentially ambiguous visual context, in place of the commonly adopted object-arrays.
The use of naturalistic scenes give us more realistic visual responses; while referential
ambiguity helps us to explore the different strategies of disambiguation used to resolve
it.

To the best of our knowledge, there have been only few attempts to investigate
language production concurrently with a visual context (Griffin & Bock, 2000; Qu &
Chai, 2008).

In Griffin & Bock 2000, participants were eye tracked while they described pic-
tures containing two actors (depicted alternatively as Agent or Patient of the event;
see Figure 4.1 for example trial and results). The goal of the study was to investigate
the relation between visual entities fixated and the sequential order in which they are
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Figure 4.1: In the left panel, we show an example of b/w image (top-left) used in the description task by
Griffin & Bock 2000; and proportion of fixation on the two objects (bottom-left), before and after the
subject of the transitive action depicted, i.e. MOUSE is mentioned. In the right panel, we show the 3D
rendered scene used for the dialogue task by Qu & Chai 2008 with raw fixation over-plotted (top-right);
and trend of temporal alignment between gaze on object and linguistic mention (bottom-right).

produced. A key observation is the eye-voice span: a visual object is fixated around
900ms before it is named. This observation has been further confirmed in other studies
where similar trends of eye-voice spans have been reported (Qu & Chai, 2008, 2010),
see Figure 4.1 to visualize their results. However, both studies have shortcomings
which might have exaggerated the eye-voice span effects. In Griffin & Bock 2000,
the eye-voice span might be due to the simplicity of the visual material utilized, i.e.
b/w drawings depicting only two visual referents. Beside the fact that there is a 50%
chance to look at either referent, the visual information retrieved in support of sentence
production can only be found on the visual referent undergoing mention, as there is no
contextual scene information. This limitation is further exacerbated by the absence
of referential ambiguity, which simplifies even more which visual referent has to be
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looked at. Qu & Chai 2008 use a more complex 3D pseudo-scene 1, containing 28
contextually related objects, some of which are ambiguous, e.g. CHAIR. However,
participants had to answer to automatically generated questions regarding the objects
in the scene, e.g. describe the left wall. We believe that the nature of the task forced
attention to be focused on the target of the question; thus triggering serial responses,
i.e. look and name.

In this chapter, we investigate the referential effects of top-down (object-based)
visual properties, during cued descriptions of photo-realistic, referentially ambiguous,
scenes. Our hypothesis is that the selection of referents and the type of structural en-
coding (e.g. active vs passive) depends on both the visual information of the scene (i.e.
clutter), quantifiable as density (Rosenholtz et al., 2007), and the semantic properties
of the visual object to be described, the most general being: animate vs inanimate2

(Branigan et al., 2008). Thus, we expect sentence encoding to be dependent on the se-
mantics of the cue and scene information and these effects are also expected to emerge
on the corresponding eye-movements records.

In Experiment 4, we get a first glimpse of visually grounded descriptions by de-
signing a web experiment where participants are asked to write descriptions of photo-
realistic scenes, which differ by the density of visual information and number of an-
imate actors, after being prompted with a cue word, either referring to an animate or
inanimate object depicted. We investigate the reaction times of visual apprehension
and sentence encoding, while exploring in detail the structure of the generated sen-
tences.
Contrary to findings in visual search studies, where clutter had a negative impact on
search performance, we expect clutter to impact positively on sentence production.
In fact, the more visual information there is, the more linguistic encodings are possi-
ble, thus boosting both visual retrieval and sentence encoding. In line with language
production literature, we expect animate referents to facilitate encoding compared to
inanimate referents. Moreover, we assume this effect to be cumulative; thus the more
animate referents are depicted, the more conceptual material is available to source sen-
tence encoding.

1The same scene is used for all subjects.
2More details about the experimental factors can be found in the next section.
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In Experiment 5, we move one step forward by investigating how eye-movement
patterns are linked to the type of sentences produced. The experimental design is
similar, the main difference being that participants are now eye-tracked, and thus de-
scriptions are spoken rather than written. Here, we focus on the phase of referential
integration, i.e. the time around the mention of the cued target. In particular, we test the
eye-voice span hypothesis by looking at the frequency of fixations on the referenced
visual target before its mention. A naturalistic referentially ambiguous setting is ex-
pected to modulate the eye-voice span: in such a scene there are more objects that can
be looked at. Furthermore, the ambiguous visual referents are expected to compete on
visual attentional resources (see Chapter 3). Both factors are expected to modulate the
serial gaze-to-name eye-voice span relation. Moreover, we explore the impact of our
experimental factors (animacy and clutter) on visual attention during mention of the
referent (before and after). In line with visual cognition research, animate referents are
expected to receive more attention than inanimate referents, especially when a scene
has a low density of visual information. During sentence production, more visual in-
formation implies more referential information to be used during encoding, thus in a
low density scene, most of referential information relies upon the animate referent.

The main goal of this chapter is to investigate cross-modal referential information
processing, while providing an empirical ground to explore the underlying mechanisms
of synchronous processing.

4.3 Experiment 4: Clutter and animacy on scene de-
scription

In a web-experiment we investigate the impact of visual referential information during
description of photo-realistic scenes. In contrast to previous studies (Griffin & Bock,
2000), the language generation task is situated in photo-realistic scenes with referen-
tial ambiguity, i.e., two depicted CLIPBOARDS correspond to the cued word clipboard.
Moreover, global visual information, i.e., clutter, semantic properties of the cued tar-
get, i.e., animacy, and of the scene, i.e., the number of animate actors, are manipulated.
Our hypothesis is that both semantics and the density of visual referential informa-
tion available directly impact timing and strategies of sentence encoding. Especially,
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the description of animate targets is expected to be easier than of inanimate ones, in
particular when the scene has richer visual information density, i.e. more referential
information to be used during encoding.

Before going into the technical details of the experimental design and the results
obtained, we briefly discuss the implications of our visual and linguistic manipulations
and their role for referentiality and sentence encoding.

Clutter A way to define referentiality in vision is to look for a global measure of
visual information. Measures of visual information in vision have always been diffi-
cult to derive and have often been connected to the notion of set size. The bigger the
set of visual objects displayed during a visual search task, the slower RT to respond.
Hence, the number of countable visual objects was assumed to give a direct measure
of visual information (Wolfe, 1998). However, this notion of visual information has
recently been criticized (Rosenholtz et al., 2007) especially when correlated to natural-
istic scenes where it becomes extremely difficult, if not impossible, to define and count
each single object composing the scene1. The alternative notion of visual information
proposed is clutter (Rosenholtz et al., 2007), see Figure 4.2 to visualize clutter.

Clutter is defined as the state (organization, representation) of visual information
in which visual search performances start to degrade, and it has been statistically mod-
eled and quantified using the feature congestion method (for further details refer to
Rosenholtz et al. (2005)). In our study, we use the Clutter measure to investigate the
correlation between amount of visual information and sentence encoding focusing on
the retrieval of referential information. Moreover, we adopt clutter in place of the pre-
viously used saliency (Chapter 3), because it takes into account the edge of objects,
which is an important feature to recognize and relevant to quantify their presence in
the scene. Contrary to findings for visual search tasks (Henderson et al., 2009a), we
expect clutter to facilitate sentence processing: more referential information can be
used during linguistic encoding.

1The reasoning holds also when we think at the relation between linguistic referents and visual
information. For the same object CUP, we can use different linguistic labels highlighting diverse aspects
of the same entity. We can use, for example, the cup referring to the whole object, or the handle if we
refer to a detail of the object.
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Figure 4.2: On the left, we show an example of a naturalistic scene used by Henderson et al. 2009b. On
the right, the same scene is displayed after the feature congestion algorithm is applied to measure its
visual information. The red color reflects the density.

Number of actors and animacy A crucial classification between types of world-
entities is given by the feature of Animacy. The importance of Animacy has been long
discussed especially in connection to the assignment of grammatical functions and
word order distribution (McDonald et al., 1993). Animate entities are conceptually
more accessible than those inanimate (Levelt et al., 1999) and are therefore privileged
during syntactic processes of production. This privilege reflects into an Animate entity
being encoded with the grammatical function of ‘subject‘ whereas Inanimate occurs
mostly with the function of ‘object‘. Moreover, recent findings claim that animacy
influences also the word order of sentence structure (Branigan et al., 2008). The effect
of Animacy has also been observed in a preferential-looking task1 (Fletcher-Watson
et al., 2008). A scene containing an animate visual referent is preferred to the one
without, with faces attracting the majority of fixations. Animate referents carry con-
ceptual information, which is crucial both during linguistic and visual processing.

In this study we took a broader view of the feature animacy; animacy is not only
a linguistic notion, but it is also visually encoded. We therefore manipulated animacy
in both the linguistic and the visual modality. Visually, we introduce different degrees

1Participants were presented with two identical scenes: one with an animate referent, the other
without.
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of animacy by changing the number of actors depicted in the scene. Linguistically, we
either gave an animate or an inanimate noun as the cue for sentence production.

In line with language production studies (Branigan et al., 2008), animate entities
are expected to boost a larger activation of conceptual structures, thus reducing pro-
cessing cost, i.e. faster reaction time, compared to inanimate entities.

4.3.1 Design

In this experiment, participants had to describe a naturalistic scene, after being
prompted by a single word (the description cue). As dependent variables we recorded
Looking Time, i.e. the time that elapsed before the onset of the response, Description
Time, i.e., the time taken to complete the response, and we also investigated the syn-
tactic structure of the response produced. The design of the experiment manipulated
both visual and linguistic referential information. We varied the total amount of visual
information present in the scene in the factor Clutter (Minimal vs. Cluttered). We also
manipulated the number of animate objects present in the scene in the factor Actors
(One vs. Two). On the linguistic side, we varied the prompt given to participants for
their description in the factor Cue, which could refer either to an animate or an inan-
imate object in the scene (Animate vs. Inanimate). The scenes were designed such
that they always contained at least one animate object and two identical inanimate ob-
jects, so as to introduce systematic visual referential ambiguity. As an example, see
Figure 4.3, where the clipboard is the ambiguous inanimate object. Note that the an-
imate objects are referentially unambiguous, even in the Two-Actors condition (man
and woman in the example stimulus).

The null hypothesis for this experiment is that visual and linguistic factors do not
interact in language processing. This would mean that Clutter and Actors should only
influence Looking Time in a way that is compatible with behavior in standard visual
search tasks: we expect longer Looking Time in the Cluttered condition, as more ob-
jects have to be searched, and longer Looking time also in the Two-Actors condition,
which contains an additional object. Our experimental hypothesis is that visual infor-
mation has an impact on language production, which means that we expect an inter-
action between the visual factors Clutter and Actor and the linguistic factor Cue (in
addition to effects that may be caused by standard visual search processes).
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Figure 4.3: Example of the experimental trial. Four visual conditions and linguistic cues.

4.3.2 Method

The experimental design crossed three factors, each with two levels. The two visual
factors were number of Actors in the scene (One or Two) and the degree of visual Clut-
ter (Minimal or Cluttered). The linguistic factor was the Cue given to the participants
to prompt their sentence production (Animate or Inanimate).

As stimuli, we created a set of 24 photo-realistic scenes using Photoshop by cutting
and pasting visual objects from a set of pre-existing photographs. Differences in lu-
minosity, contrast and color balance between the different photographs were adjusted
through an accurate use of layers, luminosity masks and color balancing. In order to
(1) control for the semantic variability across visual scenes and (2) ground language
production in a restricted semantic domain, all pictures were created using six different
interior environments: bathroom, bedroom, dining room, entrance, kitchen, and office.
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Each interior was represented by four different scenes. For each scene, we created four
variants manipulating Clutter and Actors, as illustrated in Figure 4.3. The scenes were
designed such that the inanimate object was referentially ambiguous, i.e. there were
two instances of it in the picture, while the animate one was unambiguous, even in the
Two-Actors condition.

In the experiment, participants were first presented with a set of instructions ex-
plaining the task and a set of examples. After a practice phase, they saw one visual
stimulus at a time, together with the linguistic cue. They were instructed to provide
a written description of the stimulus using the cue. The total of 192 different items
were distributed over four lists using a Latin square design. Each subject saw one of
the lists, i.e., 48 stimuli in total (each of the 24 scenes was presented twice: once with
an animate cue, and in another occasion with an inanimate cue). The stimuli were
randomized for each participant, and presented without fillers. The experiment took
about 15 minutes in total.

The experiment was realized using the WebExp software package for conducting
psychological experiments over the web. WebExp is able to measure reaction times
with accuracy comparable to that of lab-based experiments, as shown by (Keller et al.,
2009) for self-paced reading data.

Participation was open to both native and non-native speakers of English (this was
included as a factor in the analysis). The sample included 32 participants, including
16 native speakers and 16 non-native speakers.

4.3.3 Results and Discussion

We analyzed two response time measures. The first one is Looking Time, i.e., the
time participants spent scanning the image before starting to type. It is calculated from
the onset of the trial until participants pressed for the first key on the keyboard. The
second response time measure, Description Time, is the time participants took to type
their response. It is calculated from the first key press until Enter is hit to move on to
the next trial.

We also analyzed the syntactic patterns in the responses produced by participants.
For this, we tagged each sentence produced using an automatic part-of-speech tagger,
viz. (Ratnaparkhi, 1996) maximum entropy tagger, which performs with an accuracy

99



4.3 Experiment 4: Clutter and animacy on scene description

of 96.6%. The tagger uses the Penn Treebank tagset to assign syntactic categories to
words. We collapsed the various tags for nouns in the tagset (e.g., NNS, NNP) and
verbs (e.g., VBD, VBN) to two general categories (NN, VB). For each sentence, we
recorded the frequency of these two categories, as well as the occurrence of existential
there and clause coordinator and. We also identified and counted the number of passive
constructions (for this the full tag set was used, which marks passive verb morphology).

The statistical analyses were carried out using linear mixed-effect models (Jaeger,
2008) to determine the effect of the categorical predictor variables on both reaction
times and syntactic frequency. We chose mixed models for their ability to capture both
fixed and random effects (Baayen et al., 2008). We included the following predictors
in our analysis: Actors (One or Two), Clutter (Minimal, Cluttered), Cue (Animate,
Inanimate) and Language (Native, NonNative). The mixed models were built and
evaluated following a forward step-wise procedure, where nested models are evaluated
on the basis of the log-likelihood fit improvement (see Chapter 2 for details).

Reaction Times Table 4.1 presents the coefficients and p-values of the mixed model
for Looking Time. The model intercept represents the response time in the baseline
condition in milliseconds, and coefficients indicate the effect a given predictor has on
Looking Time (again in milliseconds). We find significantly shorter Looking Time
when Cue is animate compared to when inanimate. This can be explained in terms of
visual search behavior, as our stimuli contain more inanimate than animate cues, thus
making it easier to discriminate animate objects, leading to reduced search time. In
addition, the cued animate object was always unambiguous, while the cued inanimate
object was always present twice in the scene, creating referential ambiguity, and thus
increasing visual search time. There may also be an explanation in linguistic terms:
As mentioned above, animate entities are conceptually more accessible than inanimate
ones, with gives them a privileged status during syntactic encoding.

We find that participants are faster to scan the pictures when the scene has a mini-
mal density compared to when is cluttered; nevertheless the effect doesn’t reach signif-
icance. This finding challenges results observed during visual search tasks, where the
more clutter, the more difficult was target identification (Henderson et al., 2009b). In
a description task, once the object is identified, visual information has to be retrieved
according to the demands of sentence encoding. The looking time of a description task
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Table 4.1: LME coefficient estimates of Looking Time and Description Time. The centered predictors
are Clutter (Minimal, 0.5; Cluttered, -0.5), Cue (Animate, 0.5; Inanimate, -0.5), Language (Native, -0.5,
NonNative, 0.5), Actors (One, -0.5; Two, 0.5).

Looking Time

Predictor Coefficient p

Intercept 3666.3 0.0001

Cue -1036.1 0.01

Language 1123.7 0.03

Actors 239.7 0.06

Clutter -200.5 0.1

Clutter:Cue 591.2 0.01

Actors:Cue -470.5 0.05

Description Time

Predictor Coefficient p

Intercept 12461 0.0001

Cue -1777.2 0.0001

Actors 993.1 0.001

Language 1970.9 0.05

does not just indicate how fast participants are to locate the object, but it also informs
about the time of visual retrieval prior to sentence encoding.

We also found that in the condition Language-NonNative, participants take longer
to scan the picture. This can be explained by the fact that non-native speakers presum-
ably take longer to decode the cue and to plan their utterance.

Turning to the interactions, we found that Clutter significantly interacts with Cue:
participants look longer to respond to animate prompts in the minimal clutter condi-
tion. Confirming our explanation about the absence of a main effect of Clutter, this
interaction suggests that visual attention is not performing a search behavior. A de-
scription of an animate object embedded in a minimal scene is a condition with the
fewest competing objects to consider; visual search should therefore be particularly
fast, and the interaction should be absent or have a negative coefficient. The fact that
we find a positive interaction indicates that a linguistic process is at work. In a visual
scene with few objects it is more difficult to retrieve enough information about actions
that a potential actor can perform. Thus, participants spend more time scanning the
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scene and planning their utterance before sentence encoding starts.
There is also a significant negative interaction of Actors and Cue; Looking Time is

reduced when two actors are depicted and the description task is cued with an animate
referent. Again, this cannot be explained purely in visual terms; the presence of two
actors cued by the animate cue should lead to longer search times, as two objects need
to be considered instead of one. Instead, we find a negative coefficient for this inter-
action. Presumably, the conceptual accessibility of animacy is a cumulative property.
The more animate entities the scene contains, the more conceptual structures are acti-
vated. The step of selecting a conceptual structure to encode is thus facilitated by the
larger set of possibilities. Moreover, the unambiguous visual reference of animate ob-
jects may boost the selection of those conceptual structures that are related to the actor
cued, decreasing looking time. This interpretation is supported also by our syntactic
analysis (see next section) in which two actors and animate cue positively correlate
with the use of nouns and verbs. Participants produce longer sentence structures, often
encoding both Actors.

Table 4.1 also presents the mixed model coefficients for Description Time. The
results overlap with those for Looking Time. For condition Cue-Animate, participants
were faster to generate a sentence compared to Cue-Inanimate. As for Looking Time,
this result can be explained by the fact that animate entities are more accessible in
language production, and that visual search is faster, as there is only at most one other
animate object in the scene. We also find significantly increased Description Time
when two actors are depicted. An inspection of the responses (see below) shows that
participants tend to encode both actors in their descriptions of the scene, which explains
why encoding takes longer in these conditions, compared to the Actor-One condition,
in which only one actor is encoded. Again, non-native participants show a longer
response time than native ones, presumably because sentence production is slower in
non-native speakers.

Syntactic Categories Table 4.2 present the results for the syntactic analysis of the
picture descriptions generated by the participants. We fitted separate mixed models
to predict the number of nouns and the number of verbs included in the responses.
The intercept represents the noun or verb frequency in the baseline condition, and the
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Table 4.2: LME coefficient estimates of Noun and Verb. The centered predictors are Clutter (Minimal,
0.5; Cluttered, -0.5), Cue (Animate, 0.5; Inanimate, -0.5), Language (Native, -0.5, NonNative, 0.5),
Actors (One, -0.5; Two, 0.5).

Noun

Predictor Coefficient p

Intercept 2.2676 0.0001

Cue -0.217 0.01

Actors 0.1461 0.01

Actors:Cue 0.2272 0.02

Verb

Predictor Coefficient p

Intercept 1.821 0.0001

Cue 0.2307 0.002

Actors 0.1063 0.03

Clutter 0.0824 0.1

Clutter:Cue -0.2267 0.005

Actors:Cue 0.1628 0.03

coefficients indicate how this frequency increases or decreases under the influence of
the relevant predictor.

The results indicate that significantly fewer nouns are produced when participants
are cued with an animate referent. This condition was visually unambiguous, and
thus required less elaborate descriptions compared to the Cue-Inanimate condition,
for which participants generated longer sentences in order to unambiguously pick out
one of the two visual referents available in this condition. Moreover, the competition
between the two visual objects for the inanimate cue was often resolved by encoding
both visual referents within the same sentence structure. An example of a sentence
produced in this condition is The mug is beside the man, another is on top of the files,

both mugs have pencils in them. Except for the referring expression itself, all nouns
are used in combination with spatial prepositions to unambiguously differentiate each
visual referent.

When two actors are depicted, and especially if the cue is animate, participants pro-
duced significantly more nouns. This correlates with the shorter Looking Times found
for the same interaction. Participants often encoded referentially both visual actors
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within the same sentence structure. An example is A man stands behind a counter in

a hotel while a customer writes on a piece of paper. Even though the cue given (here,
the man) refers only to one actor and is visually unambiguous, the participant encoded
also the second actor.

Turning now to the analysis of the number of verbs produced, we again find a
significant effect of Cue-Animate, but with a positive coefficient, which means that
participants generated more verbs than in the Cue-Inanimate condition. This under-
lines the connection between the feature Animacy and the semantics of verbs. As
verbs encode actions, they are less likely to occur in descriptions of inanimate entities.
The latter tend to activate verbs that describe static, mostly spatial, relations like lie or
place, whereas animate entities can be related to a broader range of events, both static
and dynamic, resulting in a wider range of verbs generated.

An interaction between Actor-Two and Cue-Animate is also present, which is con-
sistent with the main effect of Cue-Animate. The more animate entities are presented
in the visual scene, the more verbs are used to relate them with the event that is being
encoded. An example description is A woman drinks from a cup while a man prepares

a chicken to be cooked.
A significant negative interaction is observed also between Clutter and Cue. The

minimal amount of visual information available in the Clutter-Minimal scenes makes it
more difficult to select and encode the actions performed by the actor (Cue-Animate),
resulting in the generation of fewer verbs. This result is in line with the longer Looking
Time for the same interaction. We can assume that the greater number of verbs found
in Clutter-Minimal can be attributed to Cue-Inanimate, in which the ambiguous visual
reference leads to more elaborate descriptions. An example description that illustrates
this interpretation is An open book is sitting on the counter and there is another one

sitting on the table.

Syntactic Constructions We also selectively analyzed a number of syntactic con-
structions contained in the responses generated by the participants.

Such constructions provide information about the sentence structures employed
to describe the pictures. We counted how often participants employed the existential
there construction. The results show that this construction occurred less frequently in

104



4.4 Discussion

the Cue-Animate condition (βAnimate = −0.2153; p < 0.05). This indicates that par-
ticipants were less likely to give static spatial descriptions of animate visual referents,
compared to inanimate ones.

We also find that and is used less frequently in the Cue-Animate condition
(βAnimate = −0.0868; p < 0.05). This result can be attributed to the ambiguous visual
reference of Cue-Inanimate. The use of and marks a strategy of ambiguity resolution
when both visual referents for Cue-Inanimate are linguistically encoded. The connec-
tion between referents is established by combining clauses through coordination.

When we analyzed the number of passive constructions, we again found a signif-
icant negative effect of Cue-Animate (βAnimate = −0.0436; p < 0.05). This is in line
with standard findings in the sentence production literature: animate entities are more
likely to be realized as subjects of active constructions, while inanimate tend to be re-
alized as subjects of passive constructions (assuming that the cued entity is typically
realized as a subject). An example of a production that contains the use of both coordi-
nation and passive is A teddy is being hugged by the girl sitting on the bed and another

teddy is sitting on the floor at the corner of the bed.

4.4 Discussion

In Experiment 4 we investigated how visual factors influence sentence encoding during
a web-based experiment, where participants are asked to write a description of a photo-
realistic scene, after being prompted with a cue word. We assumed visual and linguistic
processing to interact on-a-par over a shared referential interface, hence enabling cross-
modal synchronous processing. Thus, we hypothesized that by changing the referential
information in one modality, i.e. vision, we influence the processing of the other one,
i.e. language. We manipulated visual reference such as visual clutter and the number
of potential actors, and the animacy of the cue word used for sentence production.
Moreover, we systematically introduced visual referential ambiguity for the inanimate
cue in order to investigate the strategies of ambiguity resolution adopted.

The analysis of Looking Time showed significant effects of the visual factors such
as Clutter and Actors: the more clutter or actors, the longer the time the participants
spent before starting to type the sentence. The Animacy of the cue was also significant:
an inanimate cue resulted in longer Looking Time, mainly because of visual referential

105



4.4 Discussion

ambiguity. However, more interesting were the interactions between the visual factors
and Animacy. If we assumed independence between visual and linguistic processing,
we would expect response latencies typical of standard visual search tasks, based on
the referential properties of the cue and influenced only by the visual properties of the
stimulus. Instead, we found a clear interaction of visual information and Animacy. A
visual scene with minimal clutter means that the set of actions that can be used to relate
animate actors is impoverished. Thus, longer visual search is required to integrate the
animate cues with information of the scene, the opposite of what is predicted under an
explanation in terms of visual search alone. On the other hand, two actors in a scene
mean a larger set of conceptual structures is available to relate to the animate cue. This
interpretation meshes with the results we obtained for the syntactic analysis of the
responses produced by participants. For the Actors-Two and Cue-Animate conditions,
we found that longer sentences were produced (containing more nouns and verbs),
often encoding both actors. Such results can only be explained by an account where
linguistic and visual processing interact closely.

We also analyzed Description Time and the syntactic structure of the responses and
found that these are strongly influenced by the Animacy of the cue and the presence of
visual referential ambiguity. When the cue was inanimate, participants spent more time
resolving the visual ambiguity. The sentences produced in this condition contained
more nouns, which were used to spatially disambiguate between the two competing
visual objects. Moreover, the disambiguation often occurred together with the use of
the conjunction and. In line with previous research on language production, the use of
passives and existential there was also correlated with the inanimacy of the cue. An
inanimate cue is more likely to be a subject of a passive clause and in fact, correlated
with static spatial descriptions by our participants.

With experiment 4, we gathered convincing evidence for the active impact of vi-
sual factors during sentence production. However, a web-experiment can only give
us a coarse and indirect representation of how visual attention is actively retrieving
information in support of sentence production. In experiment 5, we design a similar
experiment, but this time participants are eye-tracked. The goal is to investigate how
visual attention is influenced by the referential information of scene, i.e. clutter, and
target, i.e., animacy, during sentence production. Moreover, we explore the different
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ambiguity resolution strategies emerging when visual and linguistic referential infor-
mation is integrated, i.e., during mention of the linguistic referent.

4.5 Experiment 5: Object-based information on situ-
ated language production

In experiment 5, we investigate how scene clutter and the animacy of cued targets in-
fluence visual attention during descriptions of photo-realistic, referentially ambiguous
scenes. The density of visual information (clutter, Rosenholtz et al. 2007) is expected
to negatively correlate with visual search performance: the more cluttered the scene
is, the less efficient the identification of target object (Henderson et al., 2009b). In
experiment 4, on the contrary, we observed clutter to facilitate sentence production,
especially for animate referents, whereas an opposite effect was found with minimal
scenes.
Visual density can be seen as a coarse measure of referential information: the more
visual information there is, the more linguistic material can be retrieved; thus, in line
with experiment 4, we expect a positive correlation between scene information and
sentence encoding. On the visual responses, this expectation should be reflected by
more inspections on the visual referent before its mention when the scene is cluttered.
While the action of mentioning is taking place, visual attention is contextualizing the
mentioned referent within the scene while helping the resolution of referential ambi-
guity.
Moreover, in experiment 4 we have observed that object-specific information, i.e. an-
imacy, triggers different types of sentence encoding. In experiment 5, we expect this
effect to emerge also on the visual responses. In particular, animate referents, which
are associated with larger conceptual structures and expected to facilitate both linguis-
tic (Branigan et al., 2008) and visual (Fletcher-Watson et al., 2008) processing, should
be inspected more than inanimate referents, especially when the scene has minimal
clutter. A minimal scene has overall less referential information to be used during
sentence encoding; thus animate referents, which carry crucial action information, are
more thoroughly inspected.
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Finally, this experiment makes it possible to investigate the effect of referential ambi-
guity on the eye-voice span. In previous work, the relationship between linguistic and
visual referents was unambiguous: looks to the visual referent always preceded nam-
ing (Griffin & Bock, 2000) and this trend exponentially increases towards its linguistic
mention (Qu & Chai, 2008). In our setting, we expect a more complex gaze-to-name
relationship caused by a process of visual disambiguation that arises both before and
after the intended referent is mentioned.

4.5.1 Method

The experimental design used is similar to experiment 4. The major difference is
a simplification on the number of conditions. We removed Number of Actors and
made both linguistic Cue (Animate, e.g. man; Inanimate, e.g. clipboard), visually
ambiguous: two MEN and two CLIPBOARDS are depicted in the scene1. The facto-
rial design used crossed the two factors Clutter (Minimal/Cluttered) and Cue (An-
imate/Inanimate). Participants’ eye-movements were recorded while they described
photo-realistic scenes after being prompted with a cue word, which ambiguously cor-
responded to two visual referents in the scene (see Figure 6.1).

We use the same 24 scenes of experiment 4, but now in each scene together with the
two referentially ambiguous inanimate objects, we inserted two ambiguous animate
objects using Photoshop; Clutter was either added or removed. In addition to the
24 experimental items there were 48 fillers, in which we vary the number of visual
referents corresponding to the cue: either 1 or 3.

Twenty-four native speakers of English, all students of the University of Edin-
burgh, were each paid five pounds for taking part in the experiment. They each saw
72 items randomized and distributed in a Latin square design that made sure that each
participant only saw one condition per scene.

An EyeLink II head-mounted eye-tracker was used to monitor participants’ eye-
movements with a sampling rate of 500 Hz. Images were presented on a 21” multiscan
monitor at a resolution of 1024 x 768 pixels; participants’ speech was recorded with
a lapel microphone. Only the dominant eye was tracked. A cue word appeared for
750 ms at the center of the screen, after which the scene followed and sound recording

1In experiment 4, only Inanimate Cue, e.g. clipboard, was visually ambiguous.
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Figure 4.4: Example of an experimental trial, with visual region of interest considered for analysis.
PRIMARY indicates that the ANIMATE and INANIMATE visual objects are spatially close and seman-
tically connected (e.g., the MAN is doing an action using the CLIPBOARD). SECONDARY is used to
indicate the remaining referent of the ambiguous pair. BACKGROUND and CLUTTER are defined in
opposition: BACKGROUND is everything other than CLUTTER.

was activated. Drift correction was performed at the beginning and between each trial.
There was no time limit for the trial duration and to pass to the next trail participants
pressed a button on the response pad. The experimental task was explained using
written instructions and took approximately 30 minutes to complete.

4.5.2 Data Analysis

We defined regions of interest (ROIs) both for the visual and the linguistic
data. The visual data was aggregated into six different regions: PRIMARY and
SECONDARY ANIMATE, PRIMARY and SECONDARY INANIMATE, BACKGROUND,
and CLUTTER (see Figure 6.1).
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For the linguistic data, we made a general division between time windows Before

and During production. This allows us to capture the overall trend of the two main
phases of a trial. For the analysis of eye-voice span, we consider a window of 2000 ms
before the referent was mentioned, similar to Qu & Chai 2008. The resolution of visual
ambiguity is analyzed using a window of 1600 ms (divided into 40 time slices of 40 ms
each): 800 ms before and after the mention of Cue. This makes it possible to explore
how the linguistic referent is visually located before being mentioned and just after.

In order to unambiguously analyze fixated and named referents, we aggregate eye-
movements responses in four blocks (Primary, Secondary, Ambiguous and Both) by
manually checking which referent was mentioned in each sentence. The distinction
between Primary and Secondary is based on the spatial proximity and semantic re-
lationship holding the cued objects. PRIMARY means that the Primary Animate or
Inanimate is mentioned, and they are spatially and semantically related (e.g., The man

is writing on the clipboard). SECONDARY is used when the Secondary Animate or
Inanimate is mentioned (e.g., The man is reading a letter), and they are unrelated, i.e.
man and clipboard are spatially and semantically independent1. A result emerging
from this visual difference between Primary and Secondary is that across the whole set
of sentences, Secondary objects are encoded only 14.23% of the time, in contrast to
the 41.66% for Primary objects2. We introduced referential ambiguity as predictor in
the inferential model described below to investigate how looks to the mentioned object
differ from those to its competitor. We present analysis for the Primary and Secondary

objects mentioned. The effect of mention on eye-movements’ pattern is evaluated by
comparing Primary with Secondary objects. Thus, for example, when Primary An-
imate is mentioned, more looks are expected on the man writing on the clipboard,
whereas if Secondary Animate is mentioned, the other man should receive more looks
(see Figure 6.1 to visualize).

As an initial exploration of our data, we investigate the overall trend of fixations Be-

fore and During production. Production is a task with large between-participant vari-

1AMBIGUOUS is used when is unclear which one is referred to (e.g., the man is sitting on the couch).
BOTH indicates that both referents are mentioned (e.g., the man is writing on a clipboard while the other
man reads a newspaper).

2In section 4.5.3.3, we see that this result carries important consequences for the visual responses
observed.
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ability, e.g., one participant will spend 2000 ms Before and 1000 ms During produc-
tion, whereas another one will show the opposite pattern. Normalizing the production
data is therefore crucial, in particular as we want to interpret eye-movements in relation
to phases of linguistic processing. We normalize each sequence Si

old of eye-movements
by mapping it onto a normalized time-course of fixed length Si

new. The length of Si
new

is set on the basis of the shortest eye-movement sequence mini[length(Si
old)] found be-

tween Before and During production, across all participants.1 For each sequence Si
old,

we obtain the number of old time-points ki corresponding to a new time-unit u, as
ki = length(Si

old)/length(Si
new). Proportions are then calculated over ki old time-points

and subsequently mapped into the corresponding unit u of the normalized time-course.
In the Results section, we show plots of normalized proportions for Primary and Sec-

ondary (Animate and Inanimate) across conditions over the two regions Before and
During production, 30 bins of normalized time each.

To explore the eye-voice span hypothesis, we compute the number of fixations
to the mentioned object compared to the competitor. We also look at latencies, i.e.,
the onset of the last fixation to the referent or competitor before the mention, and
gaze duration as a function of latencies, i.e., the time spent looking at the referent or
competitor for the different latencies.

We also report inferential statistics for the referent region (for the time windows
previously described). The dependent measure is the empirical logit (Barr, 2008), cal-
culated as emplog(φ) = ln 0.5+φ

0.5+(1−φ) , where φ is the number of fixations on the region of
interest. The analysis is performed using the framework of linear-mixed effect (LME)
models as implemented by the R-package lme4 (Baayen et al., 2008). The predictors
included were Animacy, Clutter, Time and Object. The random factors were Partici-

pant and Item. To reduce co-linearity, factors were centered.
The model selection followed a conservative stepwise forward procedure that tests

the model fit based on a log-likelihood test comparing models each time a new param-
eter is included. If the fit improves the likelihood, we accept the new model, otherwise
we keep the old one. We include predictors, random intercepts and slopes ordered by

1We remove outliers that are two standard deviations away from the mean, after having log-
transformed our data. The data are not normally distributed, due to right skewness. The log-
transformation helps us to reduce the skew.
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their log-likelihood impact on the model fit. We iterate until there is no more improve-
ment on the fit leaving us with the best model. In the results section, we report and
interpret the LME coefficient estimates of the predictors retained after model selection
for Primary and Secondary mentions, fitted in separate models.

4.5.3 Results and Discussion

4.5.3.1 Before and During Production

We first look at how fixations are distributed when we collapse the two main phases
of the experiment: Before and During production. This analysis does not distinguish
whether the Primary or Secondary referent was mentioned. Figure 4.5 shows normal-
ized proportions of looks on the competitor visual objects corresponding to the Cue

(Animate/Inanimate).
The first thing to note is that for the visual ROI corresponding to the Primary

referent, the pattern of fixations is more complex than for the ROI of the Secondary

referent. The spatial proximity and semantic relatedness of the two Primary referents
result in a more complex pattern of interaction. The clearest effect is found in relation
with the animacy of Cue; we observe more fixations to the animate referent when
the cue is also animate. When looking at the Primary ROI, the effect is seen at the
beginning of both the Before and the During region. At the beginning of the trial, the
visual system retrieves information about the cued objects; when production starts, the
referents are fixated again, probably before being mentioned. For the Secondary ROIs,
the relation with the Cue is stronger, probably reinforced by the referential competition.
Moreover, the pattern of looks is much clearer than for the Primary ROI. This confirms
that spatial proximity and semantic relatedness increase the interaction between visual
referents. Clutter does not have a strong effect, though there is a small increase of
looks when the scene is minimal and the animacy of the target matches that of the cue.

4.5.3.2 Eye-Voice Span

We analyzed eye-voice span to investigate the gaze-to-name relation for the mentioned
referent and its competitor. Table 4.3 shows percentages of looks to referent or com-
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Figure 4.5: Normalized proportions of looks (60 bins) across the four conditions, Before and During
production, for the different visual ROIs. The colors are used to indicate the animacy of Cue (red -
Animate; blue - Inanimate); the line type instead indicates Clutter (open - Minimal; closed - Cluttered).
The purple dashed vertical line indicates Before (to the left) and During (to the right) production.

petitor with mean latencies and gaze durations.1

There is a preference for looks to the referent over looks to the competitor, with a
latency of about one second, confirming previous findings (Griffin & Bock, 2000). In a
minority of cases, participants only look at the referent (36.44%); competition between
the two ambiguous visual referents is the norm (71.65%). Moreover, we notice that
the competitor is fixated earlier than the referent and the duration is shorter for the
Including condition (which includes trials in which both referents have been fixated).

1The measures are calculated only when the Primary and Secondary referent are mentioned; thus,
we exclude the Both and Ambiguous cases, for which it was not possible to establish unambiguous
eye-voice span relation.
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Table 4.3: Eye-voice span statistics. Excluding indicates that the percentage is calculated consider-
ing only those cases in which either the referent or competitor have been fixated, Including takes into
account also cases where both have been fixated.

Measure Referent Competitor

Percentage of looks Including 71.65 43.30

Excluding 36.44 8.09

Mean Latency Including 1032 ms 1203 ms

Excluding 1012 ms 1325 ms

Gaze Duration Including 489 ms 432 ms

Excluding 568 ms 623 ms

This may indicate that the final decision on which referent is mentioned is made after
discarding the competitor.

Figure 4.6(a) shows frequencies of Latencies at different temporal blocks (200 ms
each) within a total window of two seconds. We find that latency frequency decreases
towards the mention for both the referent and the competitor. This finding contrasts
with Qu & Chai (2008) who found the opposite trend, i.e., the closer to the mention,
the more gazes are associated with the referent object. Note also that this effect cannot
only be due to the presence of a competitor, e.g. comparative looks before mention, as
these present a similar decreasing trend.

In Figure 4.6(b) we show mean gaze duration as a function of the different laten-
cies. Again, a decreasing trend is clearly visible: the closer the latency to the men-
tion, the shorter the gaze duration. Interestingly there is a peak of gaze duration at
1600/1400 ms. The higher duration found at this latency might be an indicator of
referential selection (gaze-to-name binding). We also find evidence of competition at
600/400 ms, where the competitor receives longer gazes compared to referent. A last
visual check on the competitor is probably performed before referentiality is encoded
linguistically.

4.5.3.3 Inferential Analysis

We now analyze the pattern of eye-movements before and after the mention of the cue
word. We focus on the case where the Primary visual object is mentioned, and briefly
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(a) Frequencies of latencies at different temporal blocks (from two seconds to mention):
red is the referent, blue the competitor. The latency measures the time elapsed from the
beginning of the last fixation to the object (referent or competitor) until it is mentioned.

(b) Mean gaze duration as a function of latency. The mean of gaze duration is calculated
for the different blocks of latencies. We analyze only cases where gaze duration is shorter
than latency, thus avoiding cases where fixations spill over into the region after mention.

Figure 4.6: Eye Voice Span statistics.
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discuss results where the Secondary visual object is mentioned. Based on the eye-voice
span analysis, we expect to find a decreasing trend of looks before the referent is men-
tioned, and the presence of competition should weaken the gaze-to-name relationship.
Recall that our experiment had two factors (Cue: animate/inanimate; Clutter: min-
imal/cluttered); we also include the object fixated (Object: primary/secondary) and
Time (in 40 ms slices, see Data Analysis above) in the analysis.

Primary Mentioned In Table 4.4 we report LME coefficients estimates for the pre-
dictors retained after selection of four separate models: Animate and Inanimate ob-
jects, Before and After mention1.

Beginning with the animate visual objects, we expect the Primary Animate to re-
ceive more looks than the Secondary Animate, and the number of looks should in-
crease. We observe a preference for looks to Primary Animate, but the difference is
not statistically significant.

However, we find a main effect of Cue: an animate cue facilitates looks to Animate
visual objects. When looking at the time course, we find a general decreasing trend,
partly compensated by a three-way interaction of Animacy, Object, and Time. More-
over, we observe a two-way interaction of Clutter and Time: a minimal scene makes
it difficult to retrieve disambiguating information for the animate referent, forcing the
visual system to look for this information on the referent itself. It is also conceiv-
able that the minimality of the scene makes visual responses similar to those found
for line drawings (Griffin & Bock, 2000), thereby explaining the increasing trend. In
a cluttered environment, instead, there are more ways to relate the referent to the sur-
rounding context, hence helping language production to disambiguate. This explains
the decreasing trend of fixations on the referent in the cluttered condition.

After mention, we observe interactions of Cue with Clutter and Object, confirming
both the facilitation of the cued referent and the preference for referent information
when scenes are minimal. In contrast with previous findings, we observe increasing
looks to the referent after mention. This effect could be due to referential ambiguity:
the visual system is connecting disambiguating material retrieved before mention to the
referent just uttered. For the Secondary Animate, we find an increasing trend of looks

1The intercepts for Before and During are different because they are calculated over distinct time
intervals.
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Table 4.4: LME coefficients of Animate Referents; Before and After Primary object is mentioned;
Contrast coding: Object: Primary (-0.47), Secondary (0.53); Cue: Animate (-0.53), Inanimate (0.47);
Clutter: Cluttered (-0.52); Minimal (0.48)

Region-Before

Predictor Coefficient p

Intercept -3.5100 0.0001

Cue -0.1011 0.02

Time -0.0046 0.01

Object -0.0538 0.3

Clutter 0.0241 0.5

Cue:Time 0.061 0.0003

Cue:Clutter 0.0441 0.07

Clutter:Time 0.043 0.007

Object:Time 0.045 0.004

Cue:Object:Time 0.098 0.001

Region-After

Predictor Coefficient p

Intercept -3.4956 0.0006

Object -0.0647 0.1

Clutter 0.0271 0.5

Cue -0.0790 0.2

Time 0.0005 0.7

Clutter:Time -0.002 0.2

Object:Time -0.056 0.0002

Object:Clutter 0.0674 0.0005

Clutter:Cue -0.0632 0.01

Object:Cue 0.0551 0.008

Cue:Time -0.0016 0.3

when Cue is Inanimate and especially for minimal scenes. The minimality of the scene
gives prominence to animate referents; probably the spatial and semantic proximity of
one of Primary Inanimate and the Primary Animate also trigger comparative looks to
Secondary Animate, i.e., participants check whether it can also be contextually related
to the cue.

After the referent is mentioned (Primary in this case), looks to the Secondary An-
imate decrease over time in all conditions. Competition is triggered by visual am-
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biguity, but once the association of the visual with the linguistic referent has been
established (i.e., after the mention), participants look back to the referent mentioned,
presumably finalizing the choice made.

Looking at inanimate referents, we observe a statistically significant preference for
looks to the Primary Inanimate; refer to Table 4.5 for full list of coefficients. This
preference could be due to the spatial proximity and the semantic relation with the
primary animate, which makes the primary inanimate more likely to be encoded either
as a direct object or as subject of the description. As a consequence, we find an in-
teraction with the animacy of the Cue but not a main effect. In contrast with standard
visual search task, where performance degrades as a function of clutter, here we ob-
serve instead a positive interaction of Clutter and Cue on the target, which increases
over time. The visual system is not performing a search task, rather it is sourcing in-
formation to ground language processing. In a cluttered scene, an inanimate referent
could be spatially related to many other different objects, whereas a minimal scene has
fewer points to anchor the referent. The visual system therefore needs to select among
the different spatial relations to find one that optimally situates the object within the
contextual information.

For the secondary inanimate, there is a negative relationship between the animacy
of Cue and the minimality of Clutter; the proximity and relatedness of the primary
inanimate and the primary animate is highlighted when visual information is minimal,
which results in the secondary inanimate referent being fixated less. We don’t find any
significant effect after mention.

Secondary Mentioned As explained in section 4.5.2, Secondary objects have a less
prominent role in the scene than Primary objects, which is due to the absence of any
semantic or spatial relationship linking the two Secondary objects. This implies less
looks and more independent looks on the Secondary objects (see Figure 4.5 to visualize
the global pattern), as their visual ROI are distinctly depicted in the scene (refer to
example of ROI 6.1).

When looking at the Secondary Animate mentioned, we find a main effect of Ob-

ject, in that the Secondary receives overall more looks compared to the Primary, which
increase in time the closer to mention and it is positively influenced by visual density
and animacy of cue (see Table 4.6, for list of coefficients). As expected, compared to

118



4.5 Experiment 5: Object-based information on situated language production

Table 4.5: LME coefficients of Inanimate Referents; Before. Primary object is mentioned; Contrast
coding: Object: Primary (-0.34), Secondary (0.65); Cue: Animate (-0.6), Inanimate (0.4); Clutter:
Cluttered (-0.54); Minimal (0.45)

Region-Before

Predictor Coefficient p

Intercept -3.4800 0.0001

Object -0.1786 0.03

Cue 0.0465 0.6

Clutter -0.0325 0.6

Time -0.0018 0.5

Object:Cue 0.0724 0.03

Cue:Clutter -0.0874 0.03

Clutter:Time -0.05 0.01

Cue:Object:Clutter 0.3955 0.001

Object:Cue:Time -0.082 0.05

Cue:Clutter:Time -0.131 0.001

Object:Clutter:Time 0.0048 0.2

primary animate, a secondary animate is more clearly inspected before its mention and
this effect is due to the absence of semantic and spatial interaction with other ROI. We
observe a positive interaction of Secondary Animate with Clutter, but only when the
object is not cued. When the object is cued and situated in a cluttered scene, we observe
less looks, which decrease over the time of mentioning. The scene context is a source
of referential information visually accessed to support sentence encoding. Similarly
to what was observed for the Primary Animate, before a referent is mentioned, sen-
tence processing demands visual attention to retrieve referential information, in order
to resolve referential ambiguity while continuing the process of encoding.

After mention, again, we find a main effect of Object and Cue, especially when
the object is mentioned, and the scene is cluttered, which shows an increasing trend.
Similar to what observed when Primary Animate is mentioned, scene information re-
trieved before mentioning is visually linked to the referent just after the act of mention-
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Table 4.6: LME coefficient estimates. Animate Referents: Before and After Secondary object is men-
tioned. Contrast coding: Object: Primary (-0.53), Secondary (0.47); Cue: Animate (-0.46), Inanimate
(0.54); Clutter: Cluttered (-0.53); Minimal (0.47)

Region-Before

Predictor Coefficient p

Intercept -3.4891 0.0001

Object 0.2121 0.001

Cue -0.0572 0.02

Clutter 0.0533 0.008

Object:Cue -0.2975 0.001

Object:Clutter -0.1836 0.001

Clutter:Time 0.107 0.002

Object:Time 0.079 0.006

Object:Cue:Clutter -0.1666 0.001

Cue:Clutter:Time -0.1620 0.001

Object:Clutter:Time 0.1050 0.04

Region-After

Predictor Coefficient p

Intercept -3.4910 0.0001

Object 0.2413 0.001

Cue -0.1204 0.001

Clutter 0.0465 0.01

Time -0.031 0.02

Object:Clutter -0.1881 0.0001

Cue:Time -0.0135 0.0001

Clutter:Time -0.133 0.0001

Object:Cue -0.1149 0.0001

Object:Time 0.079 0.0001

Object:Cue:Time 0.1450 0.01

Object:Clutter:Time -0.1320 0.01

ing starts; and this is in contrast with previous findings regarding the eye-voice span,
where looks to the visual referent are found abruptly decreased after its mention (see
Figure 4.1 for a comparison).

Turning to the inanimate referents, before mention, the Secondary object receives
more looks than Primary, especially when the scene is cluttered, see Table 4.7 for the
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Table 4.7: LME coefficients of Inanimate Referents; Before and After Secondary object is mentioned;
Contrast coding: Object: Primary (-0.46), Secondary (0.54); Cue: Animate (-0.67), Inanimate (0.33);
Clutter: Cluttered (-0.6); Minimal (0.4)

Region-Before

Predictor Coefficient p

Intercept -3.5141 0.0001

Object 0.2229 0.001

Time -0.0070 0.001

Cue 0.0719 0.1

Object:Clutter -0.3077 0.001

Cue:Clutter 0.2522 0.001

Object:Time -0.079 0.01

Region-After

Predictor Coefficient p

Intercept -3.5172 0.001

Object -0.0433 0.1

Cue -0.0078 0.9

Object:Cue -0.3515 0.001

Cue:Clutter 0.2475 0.001

Object:Clutter -0.1245 0.01

Cue:Time 0.095 0.0001

full list of coefficients. In line with visual search studies, inanimate referents are more
easily identified when a scene is minimal. However during description, visual atten-
tion focuses on the information of the mentioned object to spatially locate it within
the scene. This process is especially important in cluttered scenes, where more loca-
tions can be spatially related with the target object. Regarding the eye-voice span, we
confirm our findings of decreasing looks, especially when the object is mentioned.

After mention, we find interactions similar to those found before mention. Inan-
imate referents are more easily identified in minimal scenes. However, during de-
scription, a cluttered scene makes visual attention focus more on the mentioned object.
Moreover, looks tend to increase on inanimate referents after mention, but significantly
less for the mentioned object. The referential ambiguity drives visual comparison be-
tween the mentioned referent (Secondary) and its unselected competitor (Primary).

121



4.6 Discussion

4.6 Discussion

In an eye-tracking experiment, we have investigated the impact of visual information
density, i.e. clutter of the scene, and target semantics, i.e. animacy of the target object,
on visual attention during a cued language generation task situated in referentially
ambiguous, photo-realistic scenes. Our hypothesis, supported by evidence gathered in
experiment 4, is that visual factors have a direct influence on sentence encoding. Here,
we tested how this influence is reflected on the patterns of visual attention emerging
during referential integration, i.e. when the visual referent is linguistically mentioned.
Previous accounts investigating the gaze-to-name relation, i.e. eye-voice span, have
found that a visual object is looked at just before being mentioned (Griffin & Bock,
2000; Qu & Chai, 2008). Here, we go beyond these results by initially testing the eye-
voice span relation, but situated in naturalistic referentially ambiguous scene. Then
we analyze the influence of visual factors on visual responses to the mentioned target,
before and after its linguistic mention.

We expected clutter to facilitate processes of sentence production, especially during
the resolution of referential ambiguity. In fact, the more visual information there is, the
more linguistic material is available to solve referential ambiguity. From experiment 4,
we also expected the conceptual properties of visual target, i.e. animacy, to influence
sentence encoding and interact with visual information density.

The results of our fifth experiment showed that the animacy of the cue facilitates
looks to animate objects, especially at the beginning of two main phases of linguistic
production: before and during the mention of the referent. The data therefore indi-
cate that a visual search is performed to localize the objects matching the cue word
(Malcolm & Henderson, 2009). But our results also contrasted interestingly with find-
ings for visual search, where clutter decreases search performance (Henderson et al.,
2009b). In cases in which an animate referent is mentioned, we found that there were
fewer fixations to the target object in the cluttered condition compared to the unclut-
tered one. In other words, clutter makes language production easier, not harder: the
visual system is not just searching for the target object, but it is also retrieving visual
information that can be used to linguistically anchor it (e.g., for disambiguation). The
more clutter there is, the easier this process becomes, explaining the reduced number
of fixations in the cluttered condition.
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Turning to the relation between fixating and naming an object (the eye-voice span),
previous work found that referents are fixated shortly before being mentioned (Grif-
fin & Bock, 2000). It has also been observed that fixation probability increases with
decreasing distance to the mention (Qu & Chai, 2008). In our data, we found and
quantified a preference for looks to the mentioned referent over looks to the competi-
tor, but this preference was not confirmed in the inferential analysis (see Table 4.4).
Only if the primary inanimate was mentioned, it received significantly more fixations
than the secondary inanimate. This preference is likely due to the proximity, spa-
tial and semantic, between the primary animate and inanimate. Moreover, we found
that fixation probability decreased with decreasing distance to the mention, contrary to
previous results, in particular when the scene was cluttered and the mentioned referent
was animate. The competition between visual referents seems to override the standard
eye-voice span effect. Interestingly, we also observed an increasing trend of fixation
to the referent object after its mention. Once production has started, the visual system
needs to retrieve contextual information to produce disambiguating linguistic material,
resulting in an increase in the number of looks after mention.

4.7 General discussion

When sentence processing and scene understanding interact in situated language pro-
cessing tasks, cross-modal mechanisms are activated. In Chapter 3, we have seen how
image-based, i.e. saliency, visual information is exploited by the sentence processor to
make predictions of upcoming arguments during situated understanding. Image-based
information, however, is not referential, whilst both scene understanding and sentence
processing are known to highly rely on reference and its factors. Thus, in this chapter
we investigated how the object-based factors of clutter, a measure of scene informa-
tion density (Rosenholtz et al., 2007), and animacy, a conceptual property of individual
objects (Branigan et al., 2008), modulate the cross-modal interaction of visual and lin-
guistic processing in a situated language production task. We decided for a production
task, instead of comprehension, in order to observe how scene information, actively
retrieved by visual attention, is naturally associated with different types of sentence
encoding.
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In experiment 4 (web scene description), we tested how clutter and animacy influ-
ence reactions times for the different phases of sentence production, while exploring
the descriptions generated by looking at their syntactic information. The results show
that descriptions of animate referents are positively correlated with scene information:
when description is situated in a minimal scene, we find slower reaction times and
shorter descriptions. Moreover, in line with language production studies (Branigan
et al., 2008), animate referents are more quickly encoded and this effect cumulates
over the number of actors depicted: the more actors, the larger the number of concep-
tual structures available for description.

In experiment 5 (eye-tracking), we looked at the impact of clutter and animacy on
eye-movement responses during the phase of referential integration, i.e. before and af-
ter the cued linguistic referent is mentioned. In contrast with previous studies (Griffin
& Bock, 2000), we show that looks decrease before a referent is mentioned, especially
when the scene is cluttered and the visual referent encoded is animate. Visual attention
is retrieving disambiguating visual material to support sentence production. For inan-
imate referents, looks are positively correlated with clutter both before and after men-
tion. This interaction is unexpected from visual search studies, where clutter is found
negatively correlated with search performance (Henderson et al., 2009b). We find that
an inanimate referent is usually described in spatial relation with another object. A
cluttered scene has overall more spatial locations in relation to which the inanimate
referent can be described. Thus, visual attention focuses more on the visual referent
during referential integration to evaluate which spatial relation best contextualizes it
within the scene.

Clutter (Rosenholtz et al., 2007) is a measure of visual information density, which
differently from saliency (Itti & Koch, 2000b) considers objects’ edges, thus making
it a better indicator of referential scene information. In the visual cognition literature,
clutter has been found negatively correlated with search performance: the more clut-
ter, the more difficult is the identification of target objects (Henderson et al., 2009b).
However, in a language generation task, the density of visual information has an op-
posite and rather beneficial effect. In fact, the more referential information is visually
available, the easier the process of sentence encoding becomes.

Animacy is a conceptual property of referents, which has important implications
for both linguistic and visual processing. In line with previous literature, we find ani-
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mate objects to boost sentence encoding (e.g. Levelt et al. 1999) and facilitate visual
retrieval (Fletcher-Watson et al., 2008). However, the animacy of the object described
shows important interactions with the surrounding scene information. In particular,
during mention of an animate object, participants inspect the scene to retrieve refer-
ential information to support encoding. Thus, when there is more clutter, more visual
material can be used to source the ongoing description. During mention of inanimate
objects, instead, when the clutter is large, a higher specificity is required in the selec-
tion of spatial information to anchor the described object.

Regarding the mechanics underlying the association between visual and linguistic
referents, our study demonstrates a more complex pattern of gaze-to-name relation
than that previously shown (Griffin & Bock, 2000; Qu & Chai, 2008). In particular, an
object is gazed at either before or after its mention, and this relation is modulated by
its referential ambiguity, animacy, and the density of the surrounding scene.

Taken together, our results indicate that visual factors such as clutter interact with
conceptual factors such as animacy in language production. The simple view according
to which referents are fixated in the order in which they are mentioned, with a fixed
eye-voice span between fixation and mention, does not seem to generalize to more
realistic settings in which speakers describe naturalistic scenes that involve referential
ambiguity.

4.8 Conclusions

During description of naturalistic scenes, visual referential information is actively
sourced by visual attention to drive sentence encoding. During this cross-modal in-
teraction of referential information, different visual factors have a direct impact on the
type of sentences produced and on the patterns of corresponding visual responses.

This finding suggests a close relationship between linguistic descriptions and vi-
sual responses, triggered by the cross-modal interaction of scene and object properties,
which implies a general mechanism of cross-modal referential coordination.

In Chapter 5, we explore the association between visual and linguistic referential
information by quantifying their cross-modal coordination. The hypothesis we test
is that the more similar two sentences are, the more similar the associated visual re-
sponses (scan patterns) will be. Moreover, if the cross-modal coordination is based on
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the referential identity shared between objects and words, rather than on visual prop-
erties of the scene per-se, we predict this coordination to hold across different scenes.
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Chapter 5

Cross-Modal Coordination between
Scan Patterns and Sentence
Production

5.1 Introduction

The majority of everyday tasks demands a range of cognitive modalities to be actively
involved; and this raises the question to which extent these modalities are coordinated.
During cross-modal synchronous interaction of vision and language, e.g. a scene de-
scription task, visual attention and sentence processing have to be coordinated in their
referential choices. If, for example, we are in a kitchen about to describe a MUG on a
COUNTER, visual attention retrieves referential scene information, e.g. looks to MUG

or COUNTER, according to the sentence processing output, e.g. the mug is on the

counter next to the toaster. In a nutshell, what we are looking at, has to be associated
with the description synchronously generated.

Coordination is a fundamental mechanism guiding cross-modal interaction during
synchronous processing, which is expected to emerge similarly across different peo-
ple over different contexts. In fact, if two different people are similarly performing
the same cross-modal task, the output of modalities involved has also to be similar.
Thus, in a description task, if two participants give a similar description of a scene,
e.g. the mug is on the counter vs the yellow mug on the counter, we expect also the
corresponding scan patterns to be similar. Furthermore, if the referential information is
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similar across scenes, e.g. different kitchens, we should still be able to observe cross-
modal coordination: i.e. similar sentences generated on different scenes, should still
be associated with similar scan patterns.

In this chapter, we investigate the cross-modal coordination between linguis-
tic structures (sentences) and visual attention (scan patterns) during descriptions of
naturalistic scenes1. Our main hypothesis is that similar scan patterns are associ-
ated with similar sentences. Our results show evidence of cross-modal coordination,
which is consistently found across different phases of the generation task (visual plan-
ning, visuo-linguistic encoding and linguistic production); and for within-scene and
between-scene analyses.

Moreover, when we include temporal information on scan-patterns, we find that
coordination is strengthened when linguistic processing is actively involved. When
linguistic processing acts directly on visual attention (encoding and production), the
cross-modal referential integration demands modalities to be temporally coordinated.
Finally, in line with findings in Chapter 4, an analysis of the factors, animacy and clut-
ter, involved during cross-modal coordination, reveals that animate targets, e.g. man,
trigger higher cross-modal similarity than inanimate targets; especially in low density
scenes, where coordination is overall higher. However, when time is included, the tar-
get is inanimate, and linguistic processing is directly implicated, i.e. during production,
we observe higher coordination for cluttered scenes. During linguistic production, the
inanimate referents, e.g. CLIPBOARD, have to be spatially situated in the scene, thus
once the ground referent, e.g. TABLE, is selected, the two modalities coordinate to un-
ambiguously point at the intended referent. Thus, the more referential information is
available in the context, the more specific coordination has to be, in order to precisely
associate the visual information retrieved with the associated linguistic description.

5.2 Background

Cognition arises through the integrated contribution of several modalities, which con-
stantly interact on a wide variety of everyday tasks. A simple task like making a tea
requires, for example, the joint interaction between visual attention, e.g. informing

1We use the same dataset obtained in experiment 5.

128



5.2 Background

about the position of the tea-pot, and motor-actions, e.g. grasping the handle. This
multi-modal flow of information generated during the task, however, has to be coordi-
nated, i.e. looking at the tea-pot before moving the arm, in order to correctly perform
the action. Understanding the coordinative mechanisms allowing cross-modal interac-
tion is crucial to formulating a unified theory of cognition.

Research on eye-movements during daily actions (Land, 2006) has shown that
scan-patterns, i.e. eye fixations across spatial locations in temporal order (Noton &
Stark, 1971) as well as the sequence of motor actions, are similarly coordinated across
participants. Despite the high variability of scan patterns (Henderson, 2003); in tasks
requiring active allocation of attention (Findlay & Gilchrist, 2001; Henderson, 2007;
Neider & Zelinsky, 2006), top-down, object-based1, information guides the deploy-
ment of visual attentional resources (Brockmole & Henderson, 2006; Torralba et al.,
2006). The cognitive control imposed on visual attention is driven by the combined
interaction of contextual expectations (Castelhano & Heaven, 2010; Malcolm & Hen-
derson, 2010) and tasks’ goals (Castelhano et al., 2009).

Contextual expectations about a scene are generated within the first fixation (gist)
(Potter, 1976; Vo & Henderson, 2010). Immediately after, visual attention is driven to
those scene’s locations relevant to the task. During visual search, for example, con-
textual expectations are combined with referential information about the cued target
to identify it (Malcolm & Henderson, 2009; Yang & Zelinsky, 2009). Moreover, the
localization and identification of cued targets is boosted by linguistic referential infor-
mation, available prior to the task (Schmidt & Zelinsky, 2009). Linguistic information,
e.g. on the left corner, can narrow the space of visual search to precise regions of the
scene. The contextual expectations are built on the referential relationship, both visual
and linguistic, occurring among the objects composing the scene. Objects, e.g. MUG

and COUNTER, which tend to co-occur within the same scene context, e.g. kitchen,
are expected to be contextually related, e.g. a mug is usually on a kitchen counter.
The guiding effect of contextual information is observed also in other visual tasks,
e.g. memorization (Humphrey & Underwood, 2008; Hwang et al., 2009), where scene
layout information and semantic relationship between individual objects is found pre-
dictive of similarity across scan patterns of different participants.

1In the context of a kitchen, for example, we expect to find a knife on a counter rather than on the
floor.
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In goal directed tasks, the co-occurrence of scene referential information modu-
lates endogenous allocation of visual attention, while providing a referential interface
where modalities can coordinate. Each task, however, follows specific goals which di-
rectly influence the allocation of attention (Castelhano et al., 2009; Henderson, 2007).
Therefore, the referential information in the scene is accessed and utilized according to
the type of task performed. Moreover, tasks differ on how modalities are involved, and
on the type of interaction occurring among them. In a search task, for example, only
the visual system is actively involved; whereas in a scene description, beside vision
there is the intervention of language. Here, we want to make clear what we define as
similarity within the same modality, and what instead is coordination across modalities
(cross-modal similarity).

Similarity within a unique modality has been observed, for example, across par-
ticipants in a memorization task, where scan patterns were found to be more similar
on the same scene than on different scenes (Humphrey & Underwood, 2008). Here,
similarity, driven by referential scene information, is limited to the visual modality. In
tasks demanding synchronous cross-modal interaction, e.g. making a tea, instead, co-
ordination emerges as a result of cross-modal similarity. In this case, top-down control
is activated to integrate referential information across modalities: where the output of
one modality, e.g. looks to handle of the tea-pot, modulates the processing of another
modality, e.g. arm movements.

The coordination of cross-modal information, e.g. auditory and visual, has been
observed to strengthen the detection of objects and events, as reflected by the integra-
tion time (Evans & Treisman, 2010; Iordanescu et al., 2010). During a recognition
task, Zelinsky & Murphy (2000) observed that objects with longer names, e.g., heli-

copter, are fixated longer than objects with shorter names, e.g., man. The linguistic
sub-vocalization of visual referents directly controlled visual attention on the object.
Visual and linguistic entities are temporally coordinated on the referential object iden-
tity.

Evidence of the referential relation between visual and linguistic entities comes
also from a psycholinguistic eye-tracking paradigm of studies (VWP, Tanenhaus et al.

1995), which has investigated language processing concurrently with a visual con-
text. Research in this field has demonstrated clear links between the processing of
certain linguistic constructions and access to visual contextual information (Knoeferle
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& Crocker, 2006). The main finding regards the time-locked relation between lin-
guistic material processed (understood or produced) and visual responses observed.
Such a temporal relation is established as an interaction between different aspects of
linguistic information processed, e.g. the prosodic phrasing of a sentence (Snedeker
& Trueswell, 2003), and the referential information expressed in the visual context,
e.g. edible vs non-edible objects depicted in association with the verb eat (Altmann
& Kamide, 1999). Overall, these results suggest the existence of a general cognitive
mechanism, underlying the cross-modal organization of visual and linguistic process-
ing, which allows responses to be coordinated.

In this chapter, we bring together findings from the visual cognition and situated
language processing literature by investigating the coordination of vision and language.
Active visual attention has to utilize referential scene information to perform several
different tasks. Likewise, during situated language processing, visual attention is me-
diated by the interaction between referential information of scene and sentence. It
follows that during tasks demanding synchronous cross-modal processing visual atten-
tion and sentence processing are expected to be coordinated on the referential interface:
their referential outputs, sentences and scan patterns, should be mutually associated.
For example, if two different people say the mug is on the counter, their scan pattern
should also be similar, e.g. looks to MUG and COUNTER, and this coordination should
hold across different scenes, as long as the referential information contained overlaps,
e.g. two different scenes containing at least a MUG and a TABLE. By quantifying the
coordination of vision and language, we deepen our understanding of cross-modal pro-
cessing, and this allows us to make predictions across different modalities, e.g. given
a sentence, we can predict which scan pattern could be possibly associated.

5.3 Experiment 6: Cross-modal coordination of vision
and language

In Experiment 6, we test the hypothesis that similarity of scan patterns is associated
with the similarity of corresponding sentences. We assume similarity to be driven by
a shared referential interface on which visual and linguistic processing are cross-
modally coordinated. The referential interface modulates the top-down, object-based,
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allocation of visual attention during goal directed tasks, i.e. only regions contextu-
ally and semantically related to the goals are observed (Henderson, 2007). For tasks
demanding synchronous processing, viz., scene description in a visual context, the
endogenous access to referential information has to be coordinated, viz. if two tri-
als involve similar scan patterns, then the sentences produced in these two trials will
also be similar. As seen in Chapter 4, referential information has general visual, e.g
clutter, and linguistic, e.g. animacy, properties directly influencing the behavioral re-
sponses observed, e.g., visual attention, during descriptions of naturalistic scenes. In
line with previous literature, animate targets are, for example, found facilitating lin-
guistic production compared to inanimate targets (e.g., Branigan et al. 2008) whereas
low clutter favors identification of targets (e.g., Henderson et al. 2009b), refer to Chap-
ter 4 for details. However, beside these expected effects, we find several interactions
between visual density and animacy of targets. Especially, during mention of an an-
imate referent, scene context is widely inspected to source referential information in
support of sentence encoding. Thus, the denser the scene is, the more referential in-
formation can be used to describe the target. For inanimate referents, which are often
described using spatial relations, e.g. the clipboard is on the table, a higher visual den-
sity means more locations to spatially ground the object. Thus, once a spatial ground
is selected, e.g. TABLE, visual attention focuses on the target object during its mention
to unambiguously establish its spatial location. We expect cross-modal coordination
to be modulated by these factors in line with what was observed in Chapter 4. Thus,
higher coordination is expected for animate targets, especially when situated in mini-
mal scenes. However, when visual and linguistic processing are more tightly coupled,
e.g. during production, we expect coordination to increase in cluttered scenes, espe-
cially for inanimate targets. The more referential information there is, the more spatial
locations can be used to locate inanimate referents; thus coordination tightens to un-
ambiguously integrate the visual referential information about the target object to its
linguistic realization.

In the next sections, we first summarize how the data was collected and processed,
and explain how we computed the measures of scan pattern and linguistic similarity.
Then, we investigate the coordination of vision and language by looking at the corre-
lation between linguistic and visual similarity measures, across different phases of the
language generation task, computed over the whole data set (global), and selecting a
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subset of it where similarities are aggregated by scenes1 (local). Moreover, in order
to examine the role played by visual and linguistic factors, we explore the impact of
target animacy and scene clutter, already examined in Chapter 4, on the cross-modal
similarity, i.e., an aggregated measure of coordination.

5.3.1 Data Collection and Pre-processing

In an eye-tracking language production experiment (Coco & Keller, 2010b), discussed
in Chapter 4, we asked participants to describe photo-realistic indoor scenes after be-
ing prompted with cue words which referred to visual objects in the scenes (refer to
Chapter 4 for details).

We collected a total of 576 sentences produced for 24 scenes which were drawn
from six different scenarios (e.g., bedroom, entrance). The sentences were manually
transcribed and paired with the scan patterns that participants followed while generat-
ing them. We removed two pairs because the sentences were missing. Each scene has
been fully annotated using the LabelMe toolbox (Russell et al., 2008) which allows
the drawing of bounding boxes around the regions of interest in the scene (see Fig-
ure 6.1), and the labelling of them using words. Notice that objects can be embedded
into other objects, e.g. HEAD is part of the BODY (HEAD < BODY). Setting the granu-
larity of embedding influences the mapping of eye-movements. A coarse level assigns
eye-movements to the object with larger area, e.g. BODY, whereas a fine level assigns
eye-movements to the object with smaller area, e.g. HEAD. A finer level has more
objects, thus there is a higher variability for each scan pattern. In our eye-movement
analysis, we consider the highest level of embedding favoring always the mapping on
objects with smaller area. The polygons are used to map the x-y fixation coordinates
into the corresponding labels.

Across all set of images, we have a mean number of objects labeled of 28.65 with a
standard deviation of 11.30. More than one object can be labeled with the same linguis-
tic referent, e.g. man. We make a distinction for the ambiguous visual referents cor-
responding to the cue given in production 2 (MAN-L vs MAN-R). Then, a scan pattern

1Only similarities between sentences and scan pattern generated within the same scene are consid-
ered.

2By distinguishing ambiguous referents, we introduce more variability on the sequence alignment.
The more labels the less likely it is to find matching during alignment.
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5.3 Experiment 6: Cross-modal coordination of vision and language

Figure 5.1: Example of scene and cues used as stimuli for the description task. Each scene has been
fully segmented into polygons, drawn around visual objects, using the LabelMe toolbox (Russell et al.,
2008). Then, each polygon has been annotated with the corresponding linguistic label.

is represented as a discrete sequence of temporally ordered fixated labeled objects (see
Figure 5.2). The data varies across participants and scenes both in terms of the com-
plexity of the sentences (i.e., one man waits for another man to fill out the registration

form for a hotel vs. the man is checking in for Figure 6.1) and in the length of the scan
patterns produced both in preparation for production (min= 800 ms; max= 10205 ms)
and during production (min = 2052 ms; max = 18361 ms). This variability is taken
into account by using metrics for sentence and scan pattern similarity which do not
need the sequences to be normalized on their length. Moreover, we explicitly test the
effect of time for the scan pattern data by including it in one of the measures used to
compute similarity.
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Figure 5.2: Each scan pattern is represented as a sequence of temporally ordered fixated objects. The
fixation coordinates are mapped into the corresponding objects by using the labeled polygons.

5.3.2 Similarity Measures

Before quantifying the association between scan patterns and sentence productions, we
measure similarity within each modality. We defined two similarities for both modal-
ities. Applying more than one measure makes it less likely that our results will be
an artifact of the type of measure used. The similarity measures are calculated using
sequence analysis, i.e., Longest Common Subsequence (LCS, Gusfield 1997). More-
over, for sentences only we use Latent Semantic Analysis (LSA, Landauer et al. 1998)
a measure of semantic distance based on vector representation. We begin summariz-
ing the measures of sequence analysis applied to calculate similarity both in sentences
and scan-patterns, which are extensively explained in Chapter 2; and finish the section
discussing how LSA is calculated on sentences.

5.3.2.1 Sequence Analysis

Both sentences (words) and scan patterns (fixated objects) are sequential data. Sim-
ilarity between sequences can be found by looking at the information shared when
aligned (Durbin et al., 2003). We implement two simple measures of sequence anal-
ysis, Longest Common Subsequence (LCS, Gusfield 1997) and Ordered Sequence
Similarity (OSS, Gomez & Valls 2009), which allow us to compute similarity between
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sequences of different lengths while taking into account relative distance between com-
mon elements. A recent application of sequence analysis (Needleman-Wunsch) to eye-
movement data, which similarly tackles the issues described above, has been proposed
by Cristino et al. (2010) and implemented as a Matlab toolbox (ScanMatch); see Chap-
ter 2 for a more detailed discussion. Since we found high correlation between results
obtained using LCS compared to those found with ScanMatch (ρ ≈ 0.98; p < 0.001),
we restrict the discussion of our results to the simpler method LCS.

In LCS, we search the longest subsequence common to two sequences by iter-
atively exploring the space of all possible subsequences. Once we find the longest
subsequence, we calculate the similarity score as the ratio between the length of the
LCS and the geometric mean of the two sequences.

The second method used is Ordered Sequence Similarity OSS which is based on
two aspects of sequential data: the elements the sequence is composed of and their
positions (Gomez & Valls, 2009). We calculate the relative distance on the elements
shared by the two sequences compared, and integrate this result with the number of
uncommon elements. Finally, we normalize the obtained measure on the basis of se-
quence lengths (refer to Chapter 2 for more details).

5.3.2.2 Compositional model of semantics: LSA

A computational approach widely used to calculate lexical meaning of individual
words is LSA (Landauer et al., 1998). LSA measures the similarity between words
based on the co-occurrence of content words within a collection of documents (in our
case the British National Corpus). It indicates how likely two words are to occur in
the same document. Different from Hwang et al. (2009) where LSA is calculated be-
tween individual words, we implemented a version of LSA generalized to compute the
similarity of sentences (Mitchell & Lapata, 2009). In this approach, the meaning of a
sentence is represented as the composition of the individual words forming it. We com-
pute an LSA vector for each content word in the sentence (context window of size five;
low frequency words are removed) and then combine these vectors using addition to
obtain a sentence vector (an alternative discussed by Mitchell & Lapata 2009 would be
vector multiplication). Similarity between sentence vectors is measured using cosine
distance. It is important to stress that we use an implementation of LSA that does not
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5.3 Experiment 6: Cross-modal coordination of vision and language

Figure 5.3: Encoding information about fixation duration into scan pattern.

take into account the order of words in the sentence1, which makes it a non-sequential
similarity measure.

5.3.2.3 Measures

Sequence analysis (LCS and OSS) has been applied to both scan pattern and sentence
data. Especially, LCS was used on sentences (LCS.L) where low frequency words are
removed, and on scan patterns without time information (LCS.V). OSS has been used
only on scan-patterns including time information (OSS-TIME). Time was included,
in slices of 50ms, by re-labeling the objects along the duration of fixation with an
increasing numerical index. For example, if MAN was fixated for 150ms, we spread
the object in three different slots, 50ms each, re-labeling it with an increasing index
(man-1,man-2,man-3; see Figure 5.3 to visualize it). OSS has also been tested without
temporal information on scan patterns and words, giving similar results of LCS. In
order to simplify the discussion, however, we only report results with OSS-Time2.
LSA was computed only on sentences.

1In Mitchell & Lapata 2008 is suggested how to include sequentiality of words in the LSA measure.
2LCS has also been tested on scan patterns enriched with temporal information. Nevertheless,

we preferred to report OSS, because it includes relative distance between common elements, hence
accounting more precisely for temporal difference in the scan patterns.
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5.4 Analysis

To analyze the coordination between sentences and scan patterns, we divide the data
into three regions, which correspond to the different phases of the language generation
task: Planning, Encoding and Production. The Planning region considers from the on-
set of the image until the target is found, and it captures the endogenous control taking
place during visual search. The Encoding region considers from the first fixation to the
target object until description begins, and it describes the visual information retrieved
in support to sentence encoding. Finally, the Production region is from beginning to
end of the description, and it refers to cross-modal integration, when linguistic and vi-
sual information are combined. For each region of analysis, all measures of similarity
are computed pairwise, i.e., every trial (sentence and scan pattern) is paired with every
other trial. This resulted in a total of 382,973 pairs.

We perform two types of analysis: descriptive and inferential. In the descriptive
analysis, we investigate the data at two levels: (1) globally, by performing comparisons
between all pairs of trials in the full data set, and (2) locally, by comparing only the
trials that pertain to a given scene (24 in total). These two forms of analysis make it
possible to test whether the coordination between sentences and scan patterns is scene
specific. For comparison, we also report a baseline correlation (Humphrey & Under-
wood, 2008) that is obtained by pairing sentences and scan patterns randomly (rather
than pairing the scan patterns with the sentences they belong to). We quantify the
strength of the correspondence between similarity measures by computing Spearman’s
ρ for all pairs of measures. We do not report coefficients for the baselines, as they are
not significant across all combined measures: ρ ≈ 0.002; p > 0.1. The distinction we
made between global and local similarity has implications for the nature of coordina-
tion. A correlation found globally (across all scenes) would imply that scan patterns
are partially independent from the precise spatial configuration of the scene, e.g. posi-
tion or size of the objects, as these factors varied across scenes, but rather dependent
on the referential structure shared, i.e. the visual referents common across scenes. A
correlation found at the local level would be consistent with well-known scene-based
effects, both bottom-up and top-down, which guide visual attention (Humphrey & Un-
derwood, 2008; Itti & Koch, 2000b).
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Global and local coordination are further explored by looking at the density distri-
bution of cross-modal similarity, which is an aggregated measure obtained summing
visual (e.g., LCS.V) and linguistic (e.g., LCS.L) similarities, and normalizing it to
range between 0 and 1. We compare the distributions of cross-modal similarity on two
groups: within scene and between scenes. Notice, this is a slightly different way to
divide the data. Global contained all comparisons between and within scenes; whereas
with local we select only comparisons on the same scene. Here, we separately consider
all the between and within comparisons. In the within scene analysis, we only consider
similarities of sentences and scan patterns generated in the same scene; whereas for the
between scene analysis, only similarities between different scenes. We focus on two
cross-modal similarity measures, one based on sequential similarity only (LCS.V +
LCS.L; acronym: CROSSSEQ), and the other one combining LSA on sentences and
OSS-Time on scan pattern with temporal information (acronym: CROSSTIME). For
analysis involving cross-modal similarity we only consider pairs with a similarity score
greater than 0, thus excluding those sentence/scan pattern pairs which were completely
dissimilar. It is important to notice that we find completely dissimilar pairs only on
the sequential cross-modal similarity (43%). The main reason is that LSA, in our set
of sentences, gives always similarity scores that are greater than 0 (min = 0.0346).
Moreover, the inclusion of time on scan pattern hugely increases the chance of finding
alignments compared to when time is not included1. Cross-modal similarities are ex-
pected to have higher mean within the same scene compared to across scenes. Within
the same scene the referential information is identical, i.e. the same objects are present,
and there is more chance that similar sentences or scan patterns are generated. Across
different scenes, the referential overlaps sensibly vary, e.g. a kitchen and a bathroom
have fewer objects in common than two kitchens, thus there is less chance that similar
sentences or scan patterns are generated.

In order to unravel the role played by visual and linguistic factors on the coordi-
nation, we analyze the impact of animacy of target referent and clutter, extensively
explored in Chapter 4, on the cross-modal similarity measures. Since our similar-
ity scores are calculated pairwise, for each explanatory variable with two-levels (e.g.

1OSS-Time gives a similarity score of 0 only 0.0002% across all pairwise comparison, whereas for
the LCS.V we observe a striking 49% of zero cases.
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Cue: Animate/Inanimate), we can have three different cases of pairwise combina-
tion: in two cases both trials have the same level (e.g. Animate/Animate or Inani-
mate/Inanimate), and a third case where the trials compared have different levels (e.g.
Animate/Inanimate or Inanimate/Animate). We use a simple contrast coding to define
these three cases both for Cue and Clutter. We contrast same levels, e.g. Ani/Ani, with
different levels 1, e.g. Ani/Ina.

In the inferential analysis, we apply linear mixed effects modeling (LME) (Baayen
et al., 2008). In the first set of models, we assess the relation between the different
measures of sentence and scan pattern similarity across the three phases of the task. We
use sentence similarity as the dependent variable (fitting a separate model for LCS.L
and LSA). Scan-pattern similarity (LCS.V and OSS-Time) and task phases 2 (planning,
encoding or during) are the predictors. In the second set of models, we evaluate the
impact of the explanatory variables, animacy and clutter, on cross-modal similarity
across the different phases of the task. We use cross-modal similarity as the dependent
variable (fitting a separate model for CrossSeq and CrossTime), Cue, Clutter and task’s
phases as predictors. For both sets of models, we included participants and trials as
random effects 3.

All fixed factors were centered to reduce collinearity. The models are built follow-
ing a forward step-wise procedure. We start with an empty model, then we add the ran-
dom effects. Once all random effects have been evaluated, we proceed by adding the
predictors. The parameters are added one at time, and ordered by their log-likelihood
improvement of model fit: the best parameter goes in first. Every time we add a new
parameter to the model (fixed or random), we compare its log-likelihood against the
previous model. We retain the additional predictor if the log-likelihood fit improves
significantly (p < 0.05). The final model is therefore the one that maximizes the fit
with the minimal number of predictors (see Chapter 2 for details).

1We don’t make any distinction on whether the different levels of the pair are Inanimate/Animate
or Animate/Inanimate as this difference does not have theoretical implications.

2We use a simple contrast coding for the phases, where encoding and during are contrasted with
planning, which is then incorporated at the intercept.

3Similarity is calculated pairwise. Thus, we need to include, as random variables, two participants
and two trials for each pair.
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5.5 Results and Discussion

The first section of results is dedicated to the discussion of observed data. We show
plots, means and confidence intervals of visual similarities measures binned 1 as a
function of linguistic similarity. In this context, we discuss the correlation coefficients
obtained across all combined measures of visual and linguistic similarity. We also
analyze how the strength of cross-modal coordination changes whether similarities are
calculated between different scenes or within the same one. In the second section,
we report inferential LME analysis testing the relation between linguistic and visual
similarities across the different phases of analysis. Moreover, we examine the impact
of clutter and animacy on cross-modal similarity, across the task’s phases.

5.5.1 Descriptive analysis

In this section, we explore the relation between visual and linguistic similarity by
showing plots of observed data and reporting coefficients of their correlation at two
levels of analysis: global, i.e., across all sets of comparisons, and local, i.e., only com-
parisons belonging to the same scene.

Global analysis Figure 5.4 plots the linguistic similarity measures LCS.L and LSA
against the scan pattern similarity measure LCS.V and OSS-Time, computed globally,
i.e. across all scenes. We bin the data on the x-axis and include 95% confidence
intervals. The plots also include the random baseline.

For both types of linguistic similarity (LCS.L, LSA) we observe a clear trend
between sentence and scan pattern: when LCS.L or LSA similarity increases, scan
pattern similarity (LCS.V) also increases. Even including temporal information (fix-
ation duration) on the scan-pattern similarity (OSS-Time), we observe the same trend,
i.e. visual similarity increases along with the increase of linguistic similarity. This
effect is consistently observed across all different regions (Planning, Encoding, Pro-
duction), but not in the random baselines. However, the strength of correlation varies
across regions and combination of metrics used.

1Ten bins in intervals of 0.1.
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Figure 5.4: Correlation between linguistic (LSA, LCS.L) and visual similarity (LCS.V, OSS-Time)

Similarities computed using sequence analysis, both on visual and linguistic infor-
mation, give the strongest correlations (RegionPlanning : ρLCS.V/LCS.L = 0.48; p < 0.05)
compared to a combination of metrics (RegionPlanning : ρLCS.V/LSA = 0.1; p < 0.05);
see Table 5.1 for the complete list of global correlations. When comparing the mean
coordination across the different regions, we observe that the more linguistic pro-
cessing is involved the less coordination occurs, i.e., Planning has overall the high-
est similarity, and strongest correlation coefficient. Probably, at the beginning of
trial, a target search is launched (Planning) and the visual system is uniquely con-
trolled by object-based allocation of visual attention (Henderson, 2007; Malcolm &
Henderson, 2010). When, however, linguistic processing begins to select the vi-
sual referents forming the sentence (Encoding), the allocation of visual attention nar-
rows around the visual information crucial to build the sentence. When production
starts (Production), visual attention integrates the information retrieved to the ongo-
ing linguistic production. When time is included on scan-pattern similarity (OSS-
Time) and it is paired to the sequential similarity of linguistic information (LCS.L),
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Table 5.1: Correlations (Spearman ρ) between the different similarity measures across regions of anal-
ysis: Planning, Encoding and Production

Measures LCS.V OSS-Time LSA

Plan Enc Prod Plan Enc Prod Plan Enc Prod

OSS-Time 0.82 0.80 0.77

LSA 0.1 0.11 0.13 0 0.11 0.22

LCS.L 0.48 0.47 0.38 0.34 0.39 0.35 0.36 0.35 0.38

we still find a positive correlation1 with a similar coefficient across all different re-
gions (RegionPlanning : ρOSS−Time/LCS.L = 0.34; p < 0.05). However, when the corre-
lation is obtained by pairing OSS-Time and LSA, the strength of coefficient varies
across the different regions of analysis. Especially, it seems to increase along the
involvement of linguistic processing: from absence of correlation during Planning
(RegionPlanning : ρOSS−Time/LSA = 0; p > 0.1) to a weak correlation during Production
(RegionProduction : ρOSS−Time/LSA = 0.22; p < 0.05). LSA is based on lexical statis-
tics about the words composing the sentence. LCS instead, more generally, focuses
on sequential co-presence, thus disregarding any relational information among words.
When scan-pattern includes temporal information, we enforce similarity to be time-
locked; this constraint makes LSA be correlated only when the scan-pattern similarity
temporally refers to it, that is during Production. The same effect does not emerge
when linguistic similarity is sequential (LCS). In such a case, the similarity between
two sentences is driven by the simple co-presence of referents (e.g. woman), which
can be easily shared in the corresponding scan patterns.

Local analysis Figure 5.5 plots local similarity values, i.e., values computed sep-
arately for each scene (LCS.V against LCS.L)2. Generally, the trend previously ob-
served at the global level is confirmed, across all regions, though we observe varia-
tion in the strength of correlation between scan patterns and linguistic similarity across

1The coefficients are slightly weaker.
2For conciseness, we show only one pair of combined measures, LCS.V/LCS.L. However, we ob-

serve a similar trend for all the other pairs.
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Figure 5.5: Scan pattern similarity (LCS.V) as a function of the Linguistic Similarity (LCS.L) across all
24 scenes

scenes. Moreover, also locally, the more linguistic processing (Production) is involved,
the less overall similarity emerges.

Table 5.2: Mean and standard deviation of correlations (Spearman ρ) across scenes between similarity
measures for the different regions of analysis

Measures LCS.V OSS-Time LSA

Plan Enc Prod Plan Enc Prod Plan Enc Prod

OSS-Time 0.81±0.05 0.79±0.07 0.77±0.1

LSA 0.09±0.1 0.1 ±0.14 0.08±0.1 0.03±0.13 0.07±0.17 0.11±0.13

LCS.L 0.47±0.1 0.46±0.17 0.34±0.11 0.33±0.1 0.39±0.16 0.31±0.11 0.35±0.11 0.36±0.13 0.35±0.1

In Table 5.2, we show mean± standard deviation of the correlation coefficients for
similarity measures observed locally, i.e. aggregated by scene. As expected from the
plots in Figure 5.5, correlation coefficients vary across scenes for all pairs of measures.
The context of the individual scenes modulates the coordination between scan patterns
and linguistic productions. In line with the results observed at the global level, co-
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ordination based on sequential similarity (LCS.V/LCS.L) reaches highest correlation
compared to combination of metrics (LCS.V/LSA). Moreover, when time is included
(OSS-Time), and it is correlated with the linguistic similarity based on vector seman-
tics (LSA), coordination is observed during linguistic production, where it reaches the
maximum correlation.

Cross-modal Similarity: Between Vs Within scenes The coordination between vi-
sual and linguistic similarity is found both at a global, i.e. across all comparisons, and
a local level, only within scene comparison. However, we don’t know yet how impor-
tant it is for the coordination to be exactly within the same scene compared to being
between scenes1. In order to have a unique measure of cross-modal similarity, we sum
and normalize the similarity scores obtained independently by the visual and linguistic
measure. Since, during the descriptive analysis, we have observed that the correlation
changes according to the combination of similarity measures considered, and whether
temporal information was included or not, we calculate two measures of cross-modal
similarity. One purely sequential (CrossSeq), which it is obtained by summing2 and
normalizing LCS.L and LCS.V, and the other one (CrossTime), instead, obtained by
combining LSA and OSS-Time. Here we have finer temporal information on the scan
pattern, and a more lexicalized measure of sentence similarity.

In Figure 5.6, we plot the density of cross-modal similarities aggregated within,
i.e. only trials from the same scene, and between scenes, i.e. only trials from differ-
ent scenes. In the upper panel (CrossSeq), we observe that within scene cross-modal
similarity is likely to be normally distributed with an overall higher mean (≈ 0.3) than
between scenes (≈ 0.1), which instead presents a right skewed distribution. It is inter-
esting to notice how the distribution changes, especially for the between case, when the
other cross-modal similarity measure (CrossTime) is observed. Now we observe a nor-
mal distribution rather than right skewed also for the between case. Probably, the finer
temporal and lexical resolution of the measures used in CrossTime allows us to cap-
ture more sensibly the differences between sentences and scan patterns. Regardless of
the measure used, we notice that within the same scene we have a higher cross-modal

1Notice, global contained both between and within scene analysis.
2An alternative way to calculate cross-modal similarity would be the harmonic mean, which better

account for the relative contribution of each similarity.
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Figure 5.6: Density plot of cross-modal similarity. Cross-modal similarity is computed by summing
the similarity scores obtained separately for the linguistic and visual measure and normalized to range
between 0 and 1. In the upper panel, we show cross-modal similarity obtained aggregating the sequential
similarity measures of LCS.L and LCS.V; whereas in the bottom panel we aggregate LSA and OSS-
Time. The red line indicates cross-modal similarity within the same scene, whereas the blue line between
different scenes.

similarity, compared to different scenes. Obviously, the more referential overlap there
is, the more probable it is that similar sentences and scan patterns are generated. An
interesting continuation for future research would be to look at the region of the distri-
bution where cross-similarity between and within scenes overlaps. By investigating the
referential information able to coordinate vision and language across different scenes,
we should be able to ’rank’ relevance of scene and sentence information.
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Figure 5.7: Hexagonal binning plots of predicted values of the linear mixed effects model: linguistic
similarity predicted by scan pattern similarity and phases of the task. On the left panel, our dependent
linguistic measure is LCS.L, and the scan pattern predictor is LCS.V; whereas on the right panel, the
dependent measure is LSA, predicted by OSS-Time. The plot shows the observed data binned into
hexagons. The colour of the hexagon reflects the frequency of observations within it: the more observa-
tions, the darker is the color. The solid lines overlaid represent the grand mean intercept for the different
phases: Planning (orange), Encoding (green), Production (red).

5.5.2 Inferential analysis

In the first part of inferential analysis, we examine more closely, using linear mixed
effect modeling, the global correlation between visual and linguistic similarities across
the different phases of the task. In the second part, we explore the role played by
clutter and animacy on cross-modal similarity, again across the different phases of the
language generation task.

Patterns of global coordination Turning now to the inferential analysis, Figure 5.7
shows two plots of LME predicted values calculated globally for the sequential mea-
sures LCS.V/LCS.L (left panel) and combined measures LSA/OSS-Time (for the full
list of LME coefficients refer to Table 5.3). We show plots for only these two pairs
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of measures, as they represent the two most different combinations of similarity mea-
sures used. Both models closely follow the empirical patterns in Figure 5.4 with the
observations being distributed in the expected positive direction: when visual sim-
ilarity increases linguistic similarity also increases. However, when comparing the
scatter obtained by using different measures, we observe some important differences.
The first difference is that when only sequential measures without time (left panel) are
combined, we find overall less similarity with most of the observations falling between
0 and 0.2 in the linguistic similarity (x-axis) and 0.1 in the visual similarity (y-axis).
Instead, when LSA is used for sentences, and the scan patterns similarity measure in-
cludes temporal information (OSS-Time), we observe most of the observations falling
around 0.4 on the x-axis and 0.5 on the y-axis. These results are consistent with Fig-
ure 5.6, where cross-modal similarity seems to have a higher mean, both within and
between scenes, when LSA and OSS-Time were combined, compared to the other
combination of measures.

In Table 5.3, we list the coefficients of the mixed models; as expected from Fig-
ure 5.7, we find a significant main effect of scan pattern similarity for both LCS.V and
OSS-Time, for both the LCS.L and the LSA model. Moreover, confirming the cor-
relation analysis, we observe a main effect of task’s phase which is modulated by the
inclusion of time, and the type of metrics combined. When time is not included and we
are looking at sequential measures only, we find that, during Planning, sentence sim-
ilarity is more strongly related to scan pattern similarity, compared to both Encoding

and Production regions. By including time, instead, the coordination is strengthened
during Production, especially when combined with LSA. Time seems to have a neg-
ative impact on coordination during Planning, compared to Encoding. When LSA is
combined with LCS.V, we observe the same trend, but with smaller coefficients.

Furthermore, we observe interactions between region of analysis and scan-pattern
similarity, which go along with the results observed for the main effects. When looking
at sequential measures only, for the Planning region, the similarity between sentence
and scan pattern has a steeper change, compared to Encoding and Production, where
instead we observe a negative interaction. The inclusion of time favors Production,
where similarity between sentences increases along with scan-pattern similarity, espe-
cially when LSA is the dependent measure used (see Figure 5.7 to visualize).
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Table 5.3: LME coefficients. The dependent measures are: LCS.L and LSA.The predictors are: Region
(Planning; Production; Encoding, which is expressed at the intercept.) and the Scan Pattern (SP) LCS.V
or OSS-Time. Each column shows which linguistic/scan patterns similarity measure is compared. n.i.
stands for not included during model selection.

Predictor LCS.L/LCS.V LCS.L /OSS-Time LSA/LCS.V LSA/OSS-Time

Intercept 0.111∗∗∗ 0.059∗∗∗ 0.541∗∗∗ 0.486∗∗∗

SP 0.311∗∗∗ 0.433∗∗∗ 0.087∗∗∗ 0.135∗∗∗

Reg-Planning −0.006∗∗∗ 0.04∗∗∗ −0.006∗∗∗ n.i

Reg-During −0.004∗∗∗ −0.08∗∗∗ −0.016∗∗∗ −0.100∗∗∗

SP:Reg-Planning 0.011∗∗∗ −0.089∗∗∗ 0.018∗∗∗ −0.089∗∗∗

SP:Reg-During −0.022∗∗ 0.104∗∗∗ 0.017∗∗∗ 0.172∗∗∗

To summarize, it seems that coordination depends on the phase of task we are in,
on the inclusion of temporal information, and partially on the combination of met-
rics used to quantify it. During each phase of the task, the interaction between vision
and language is expected to change. In Planning, the visual system performs a search
of the cued target object, by combining target properties and referential scene infor-
mation (Castelhano & Heaven, 2010; Malcolm & Henderson, 2010). Here, sentence
encoding hasn’t started yet and visual attention is strongly driven by endogenous vi-
sual control. Thus, even if the scan patterns followed during the inspection of the scene
contain similar sequences of visual referents to those found in the corresponding simi-
lar sentences, they vary on the temporal dimension. The visual material retrieved does
not need yet to be integrated with linguistic processing. Thus, coordination is on the
sequence of referents looked at, but it temporally varies across different participants.
Once the target object has been identified, the linguistic processing begins controlling
the visual system to retrieve visual material to be used during production. In Encoding,
in fact, the referential information of the scene has to be integrated with the linguis-
tic referents selected as arguments of the sentence. Coordination now depends more
on the choices of linguistic processing, and visual endogenous control has to be in-
tegrated with linguistic control. Finally, in Production, the visual processor performs
specialized routines of visual information retrieval uniquely based on the demands of
sentence encoding. Here, linguistic control takes over the endogenous allocation of
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visual attention. During this phase, time is crucial, as the linguistic material mentioned
is time-locked with the visual referents scanned. In such a region, the combination
of a linguistic measure of sentence similarity based on vector semantics (LSA) and
a temporally informed measure of scan pattern similarity (OSS-Time) gives the best
coordination, compared to the other regions.

Visual and linguistic factors on cross-modal similarity In Chapter 4, we explored
the role of animacy and clutter during sentence production. We focused on the in-
fluence of these factors on the type of description generated (Experiment 4), and on
the pattern of eye-movements observed during referential integration (Experiment 5),
i.e. before and after the cued target object is mentioned. In line with previous psy-
cholinguistic and visual cognition literature, we found that animate referents facili-
tate sentence production (Branigan et al., 2008) and are inspected more frequently
and more easily than inanimate referents (Fletcher-Watson et al., 2008). Moreover,
minimal visual information density facilitates target identification (Henderson et al.,
2009a). However, we also found several other interactions between visual informa-
tion density and animacy of target. Especially, we observed that cluttered scenes are
inspected during mentions of animate entities to support sentence encoding with con-
textually relevant visual referential information. Such a finding contrasts with previous
accounts of the eye-voice span (Griffin & Bock, 2000), refer to Chapter 4 for details.
Moreover, in contrast with visual search studies, where it has been found that the more
cluttered a scene is, the more difficult is target identification, we find that inanimate
targets are looked at more in cluttered scenes than in minimal scenes before they are
mentioned. Here, we extend these results by looking at the impact that these factors
have on cross-modal similarity, i.e., a measure to quantify the strength of referential
association between pairs of sentences/scan patterns.

In Table 5.4 we report the LME coefficients estimates of two separate models for
the cross-modal similarity measures, seen in section 5.5.1 (CROSSSEQ, CROSSTIME),
as predicted by animacy, clutter, and phases of the task.

For both cross-modal similarity measures, we observe a main effect of animacy,
where animate targets trigger more coordination than inanimate targets. Moreover, in
minimal scenes we observe a better coordination than in cluttered scenes. When we
look at the task phases, we find better coordination during the linguistic encoding in
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Table 5.4: LME coefficients. The dependent measures are: CrossSeq (LCS.V/LCS.L) and CrossTime.
The predictors are: Region (Production and Encoding are contrast coded with Planning, ex-
pressed at the intercept.); Cue (Animate/Animate, Inanimate/Inanimate are contrast coded with An-
imate/Inanimate—Inimate/Animate, expressed at the intercept); Clutter (Minimal/Minimal, Clut-
tered/Cluttered are contrast coded with Minimal/Cluttered—Cluttered/Minimal, expressed at the in-
tercept); Each column shows which cross-modal similarity measure is used as dependent measure. n.i
stands for not included during model selection.

Predictor CrossSeq CrossTime

Intercept 0.226∗∗∗ 0.456∗∗∗

Animate 0.145∗∗∗ 0.070∗∗∗

During −0.054∗∗∗ 0.009∗∗∗

Inanimate −0.09∗∗∗ −0.045∗∗∗

Encoding 0.021∗∗∗ 0.022∗∗∗

Minimal 0.023∗∗∗ 0.011∗∗∗

Cluttered −0.035∗∗∗ −0.016∗∗∗

Encoding:Minimal −0.043∗∗∗ −0.052∗∗∗

Encoding:Cluttered 0.061∗∗ 0.072∗∗∗

Animate:During −0.11∗∗∗ −0.023∗∗∗

Animate:Encoding −0.056∗∗∗ −0.013∗∗∗

Animate:Minimal n.i 0.046∗∗∗

Animate:Cluttered n.i −0.065∗∗∗

During:Inanimate 0.073∗∗∗ 0.007∗∗∗

Inanimate:Encoding 0.033∗∗∗ n.i

Inanimate:Minimal n.i −0.042∗∗∗

Inanimate:Cluttered n.i 0.055∗∗∗

both measures. However, confirming what observed in section 5.5.1, during produc-
tion we find that only CrossTime has positive coefficient. In fact, this measure includes
temporal information (OSS-Time) and evaluates more precisely the semantics of sen-
tences (LSA). During linguistic processing, visual attention and sentence processing
are better coordinated.

When looking at the interactions, we find that during linguistic processing, i.e.
encoding and production, there is more coordination in a cluttered scene than in a
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minimal scene; especially when the target is inanimate. Moreover, comparing the two
cross-similarity measures we find that we are able only with CrossTime to capture
interactions between animacy of targets and visual density. Especially, we find that
animate targets in cluttered scenes are less coordinated than inanimate targets, which
instead show a positive relation with it. An animate target has to be contextualized
within the scene, e.g. the man is signing in, thus the more referential information there
is, i.e. high clutter, the more information can be inspected and utilized to describe such
animate referent. An inanimate target, instead, has to be spatially located, e.g. the

suitcase is on the table next to the man, and this requires a stricter and more precise
selection of referential information to be integrated. Thus, the more visual information
there is, the more precise coordination has to be to unambiguously situate the inanimate
object within the scene.

5.6 General Discussion

A range of cognitive modalities are involved in everyday tasks, which raises the ques-
tions to which extent these modalities are coordinated. In chapter 4, we have seen that
visual and linguistic factors of referential information have important influences on the
way cross-modal information is integrated. In general, our hypothesis was that during
task demanding synchronous processing, e.g. scene description, visual attention and
sentence processing interact on a shared referential interface. This interaction has to
be coordinated, i.e. visual attention retrieves referential information which has to be
strongly associated with the sentence processing output.

In this chapter, we investigated the extent to which vision and language are coordi-
nated, and how the visual, i.e. clutter, and linguistic, i.e. animacy, factors influence this
coordination. In particular, we asked how visual attention (scan patterns) and linguistic
processing (sentences) coordinate during description of naturalistic scenes. Our main
hypothesis is that referential information about the scene, expressed as sequences of
labels (words and objects), shared by vision and language, drives coordination. The
main condition to observe coordination is to let the two modalities synchronously in-
teract on a shared task: scene description. During interaction, the modalities have to
be coordinated to allow integration between referential cross-modal information. We
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can observe and quantify coordination by looking at cross-modal similarity: the more
similar two sentences are, the more similar the corresponding scan patterns will be.

We tested this hypothesis using the dataset collected during the eye-tracking ex-
periment (experiment 5) reported in chapter 4, in which participants had to describe
photo-realistic scenes. Each sentence generated during the cued description of a scene
is paired with the scan pattern that followed. Sentences and scan-patterns are sequen-
tial data, which develops over time. We used a simple method for biological sequence
analysis (Longest Common Subsequence, LCS), to calculate similarity between sen-
tences (LCS.L) and scan patterns (LCS.V). Time has been encoded in the scan pattern
(fixation duration on objects), and similarity computed using a categorical measure of
similarity (Order Sequence Similarity, OSS). Moreover, the similarity of sentences has
been calculated using a compositional measure of vector semantics (Latent Semantic
Analysis, LSA). Similarity is computed pairwise, i.e. each trial with every other trial.

Coordination has been analyzed over three task phases: planning (from scene onset
until the cued target is found), encoding (from first fixation on target until beginning
of utterance) and production (from start to end of scene description). Both descriptive
and inferential analysis confirmed our hypothesis: if two trials involve similar scan
patterns, then the sentences produced in these two trials are also similar, and vice-
versa. This was true for all pairs of linguistic and scan pattern similarity measures,
across all different region of analysis, at both global (across scenes) and local level of
analysis (within the same scene). Significant correlations were found in both cases,
which suggests that the coordination between sentences and scan patterns cannot be
solely due to the referential information shared between an individual scene (objects)
and the sentences (words) mentioned within it; but rather more global factors (visual
and linguistic) shared across different scenes, are responsible for modulating the co-
ordination. This conclusion is confirmed at the level of individual scenes, where the
variability observed suggests that coordination can’t be uniquely due to referential
scene identity.

An important point that emerged during our analysis regarded the interaction be-
tween phases of task, temporal information and the methods used to calculate similar-
ity. We found that sequential analysis on both vision and language (LCS.L, LCS.V) had
the highest similarity correlation; getting smaller going from planning to production.
During Planning, visual attention is purely driven by combined top-down information
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of scene and target to predict the position of target. As visual attention is not yet
synchronized with sentence processing, the time spent on individual objects can vary
across different participants. This variability is not captured when the information of
fixation duration is not included into the scan pattern representation. This explains the
higher correlation of LCS.L and LCS.V found during planning, compared to LCS.L
and OSS-Time. During Production, instead, temporal integration of cross-modal ref-
erential information is needed to synchronize the two modalities. In fact, we observe
that when temporal information is included on the scan pattern (OSS-Time), produc-
tion has a higher correlation and a steeper slope of change compared to planning. This
is especially evident when OSS-Time is combined with LSA, i.e. a measure specifi-
cally designed to evaluate the semantic similarity of sentences; hence more suitable to
capture a correlation during the act of sentence generation.

When looking at the impact of factors on cross-modal similarity, we found results
in line with what was observed in experiment 5. Animate referents trigger more coor-
dination than inanimate referents, especially when description is situated in a minimal
scene. Moreover, the density of visual information shows significant interactions with
the animacy of the target. When the target is animate, the denser the scene is, the more
referential information can be used to contextualize the target within the scene. There-
fore, cross-modal similarity is lower than in a minimal scene, as there are more ways
to relate an animate referent with the surrounding context. However, when a target
is inanimate, we observe an opposite effect. A cluttered scene triggers higher cross-
modal similarity. An inanimate referent has to be spatially located, e.g. the suitcase

is on the counter next to the man, therefore coordination has to be more precise on
the referential information integrated, in order to unambiguously situate the inanimate
object within the scene.

A limitation of the study is that it fails to explore more specifically how the co-
occurrence of visual referential information, e.g. a mug is usually on counters, is asso-
ciated with the corresponding sentence encoding. Moreover, a more stringent analysis
of the aspects, syntactic, semantic, or contextual, involved in cross-modal similarity is
needed.

Theories of active visual perception have provided significant evidence about en-
dogenous top-down mechanisms guiding the allocation of visual attention during goal
directed tasks. In this approach, the knowledge of a scene can be viewed in terms of
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semantic relations between objects’ references (e.g. mug, cup...). Referents have also
a linguistic identity, which is found to be tightly coupled to the associated visual iden-
tity, when linguistic processing is situated in a visual context. We have unified these
findings by showing that the endogenous allocation of visual attention (scan-patterns)
is coordinated to linguistic processing (sentences). When vision and language interact
on a task requiring cross-modal integration, i.e. scene description, they coordinate pro-
cessing over a shared referential interface. Coordination is the key mechanism under-
lying the broader problem of multi-modal synchronous processing. By investigating it,
we aim to discover more general cognitive mechanisms shared across modalities (e.g.
vision and language), while beginning to explain cognition as a unified and integrated
system.

5.7 Conclusion

During tasks demanding synchronous processing, vision and language have to be co-
ordinated. It clearly emerges that the type of task, in which participants are engaged,
plays a major role in the way modalities interact. In fact, depending on the type of
task, we expect different levels of interaction between modalities. A visual search
task, for example, requires contextual knowledge of the scene in order to quickly lo-
cate the target object, but once the target is found, no further processing is needed;
whereas in a scene description task, once the target is found, visual attention and sen-
tence processing have to tightly cooperate, in order to appropriately situate the target
object in the context of the scene. Moreover, even across different situated sentence
processing tasks, there might be sensible differences in the way cross-modal referential
information is integrated. In a situated language comprehension task, there is a begin-
ning phase of free viewing, where participants scan the scene trying to predict which
objects are going to be mentioned, followed by a utterance mediated phase, where lin-
guistic information is mapped against the referential information of the visual context.
In a situated language production task, instead, visual attention has to actively retrieve
referential information before sentence encoding can start.

In the next chapter, we explore how different tasks influence the pattern of cross-
modal integration observed. Especially, we compare a visual search task, where par-
ticipants are asked to find and count a cued target object in the scene, with the scene
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description experiment previously reported. Our expectation is that the fewer modal-
ities have to be synchronized, e.g. visual search, the less cross-modal interaction is
observed. Moreover, we investigate how situated language production differ from com-
prehension. Here, we give participants a set of descriptions drawn from the production
experiment, in order to allow a direct comparison between production and comprehen-
sion. We will be looking at the temporal differences found on the scan patterns when
a sentence is mentioned compared to when is listened.
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Chapter 6

The Influence of Task on Visual
Attention: A Comparison of Visual
Search, Object Naming, and Scene
Description.

6.1 Introduction

The nature of the task defines the way cross-modal interaction is established. Each task
entails different sub-goals, which determine the cognitive modalities engaged, and the
pattern of their interaction. The task of grasping a mug, for example, implies the syn-
chronous processing of visual attention and motor-action. Visual attention performs a
search task to identify the MUG in the scene, while motor-actions are activated to direct
the grasping action. Both modalities have to utilize top-down referential information
to perform the task: scene information is used to predict the expected target location,
while physical properties of the object, e.g. the MUG is full or empty, are used to plan
the act of grasping.

Tasks can be distinguished by the degree of cross-modal interactivity required to
perform them, that in turn directly relates to the way referential information is accessed
and utilized. If we are just looking for a MUG but we have no intention of picking it up,
there will be no interaction between motor-actions and visual attention. The absence of
cross-modal interaction directly modulates the way referential information is utilized.
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In fact, after the MUG is found, no further visual processing is needed to instruct motor
actions.

In previous chapters, we have investigated situated language processing tasks, ob-
serving cross-modal interaction between visual attention and sentence processing. We
found that a description, e.g. the pen is on the table, is generated by integrating infor-
mation about the visual referents retrieved with the associated linguistic referents to
be encoded. Referential information about scene (clutter) and objects (animacy) had
direct implications on the patterns of visual attention and types of linguistic encoding
observed.

We expect, however, a different pattern of referential information processing to
emerge during single modality tasks, such as a visual search, where the goal is to find
a cued target object embedded into a naturalistic scene. During search, visual attention
utilizes referential information about the scene and target to build expectations about
the locations where the target object is more likely to be found. The task ends when the
target is found. During description instead, after the target is found, visual informa-
tion is selected according to the underlying choices of sentence processor to produce
a referring sentence. Search and description differ in the goals to be achieved, which
in turn directly influence the access to referential information and its cross-modal in-
tegration.

To the best of our knowledge, it is yet unclear how the mechanisms of cross-modal
interactivity modulate visual responses when purely visual, and linguistically driven
tasks are performed. Thus, in this chapter we compare three different tasks (visual
search, object naming and scene description), which vary in their degree of cross-
modal interaction.

A search task implies only a shallow access to referential information, e.g. seman-
tic relations between objects; thus the only possible interaction with sentence process-
ing occurs at the level of scene context. Object naming and scene description, instead,
demand a deeper cross-modal interaction on the visual and linguistic, referential infor-
mation shared. In an object naming task, the scene is widely inspected to localize and
name those visual referents which have also linguistic relevance; thus, it is a search
task, but ‘weighted‘ by both visual and linguistic factors. And in scene description,
only visual referents relevant to the sentence synchronously processed are going to be
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observed; thus, visual attention and sentence processing have to tightly coordinate over
the referential information selected to generate the description.

We hypothesize that in a task involving cross-modal interaction, i.e., scene descrip-
tion, participants should coordinate more on the way visual information is accessed,
i.e. higher scan patterns similarity, compared to a search task. Moreover, such tasks
should trigger a more complex visual processing, e.g. longer fixation duration, as vi-
sual referential information of the object fixated has to be integrated with the associated
linguistic encoding.

This hypothesis is investigated in the context of the factors animacy and clutter al-
ready explored in previous chapters. We expect animate referents to be fixated longer
when sentence processing is involved, as they carry a larger set conceptual structures
than inanimate referents, and this boosts linguistic encoding. Moreover, an interaction
is expected between clutter and tasks. In search and object naming, more clutter im-
plies more difficult target identification, and more visual referents to name; whereas
for description, clutter is a source of contextual information that facililates sentence
encoding.

6.2 Background

The visual system is actively employed in many tasks of our daily life to support
ongoing cognitive processes to achieve specific goals: e.g. finding a mug in a kitchen
(Castelhano et al., 2009; Findlay & Gilchrist, 2001; Henderson, 2003).

The active allocation of visual attention is driven by top-down knowledge-based
information processing, which in this thesis has been more specifically discussed in
terms of referential information processing. Thus, for example, a referent context
KITCHEN usually includes other referents such as TABLE, PLATE, MUGS, etc. The re-
lations, spatial, semantic or statistical, connecting referential information are assumed
to guide visual attention, especially in goal directed tasks. In fact, only when precise
goals have to be achieved, referential information has to be utilized.

During a search task, for example, referential information about target and scene is
combined to predict the location of a cued target (Malcolm & Henderson, 2009; Neider
& Zelinsky, 2006). If the target object is a MUG, and the scene context is a kitchen;
expectations about related referents TABLE or COUNTER are activated to efficiently
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allocate attentional resources (Brockmole & Henderson, 2006; Malcolm & Henderson,
2010; Torralba et al., 2006). When a task doesn’t entail any specific goal instead, e.g.
free-viewing, bottom-up processes, which are based on the stimuli per se, e.g. saliency
(Itti & Koch, 2000b), are more likely to steer attentional mechanisms. In the absence
of goals, attention is captured by more general image-based information, rather than
specific object-based referential information (Nuthmann & Henderson, 2010).

It is important to note that when referential information is accessed during a vi-
sual goal-directed task (e.g. search), only visual processing will be actively engaged.
However, in previous chapters, we have observed that during situated language pro-
cessing tasks, e.g. description, visual attention and sentence processing interact over
a shared cross-modal referential interface; i.e. visual attention sources referential in-
formation about the scene according to the linguistic choices of encoding. In such a
case, the access and integration of top-down referential information is mediated by the
cross-modal interaction of vision and language, which have to synchronously cooper-
ate during the course of the task. Obviously, cross-modal tasks are expected to have a
different impact on referential information processing, compared to tasks where such
cross-modal interaction is not present.

Research in visual cognition has compared visual tasks, finding that they differ on
several eye-movement measures (Castelhano et al., 2009). In Castelhano et al. 2009,
search and memorization (memorize the scene in preparation for a recall phase) were
compared. The authors found clear differences on spatial measures, e.g. total area
of a scene inspected; but unclear evidence on the temporal measures, where they find
longer total fixation duration during memorization than search (more time inspecting
the scene across trials), but a similar mean gaze duration on the individual objects in-
spected, which indicates an overall similar temporal processing of object information.

In order to understand the reasons behind this difference, we contextualize the
interpretation of eye-movement measures within two components of visual attention:
spatial and temporal.

At the spatial component, we observe operations of referential inspection, i.e.
which objects form the scene; and it is quantified by measures of spatial fixation dis-
tribution, e.g. the number of regions inspected in a scene. In relation to the task: the
more the task requires a broad access to scene information, the more the spread of fix-
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ation across the scene, i.e. more regions are fixated1. In memorization, more objects
are inspected, compared to search where attention is allocated only on regions relevant
to the cued target (Castelhano et al., 2009).

Regarding the temporal component, instead, we can observe operations of referen-
tial integration, i.e. how much information is accessed on each object; this is quanti-
fied by measures of fixation duration. In memorization, during the first fixation visual
and linguistic features 2 of the object fixated have to be accessed and memorized;
whereas in search, the objects are fixated to verify their identity with respect to the
cued target (Malcolm & Henderson, 2010). Therefore, the first fixation is found to be
longer in memorization than search (Castelhano et al., 2009).

Both memorization and search involve only visual attention. Thus, after the target
is visually processed, e.g. memorized or verified, no further processing is needed; and
this might explain the similarity of mean gaze duration found between memorization
and search (Castelhano et al., 2009): all fixations launched to target objects, after the
first fixation, did not require any further processing of visual information. However,
when the task demands cross-modal interaction, e.g. scene description, visual atten-
tion synchronously interacts with sentence processing, and this interaction modulates
its spatial and temporal allocation; i.e. target objects are fixated in relation to the un-
derlying linguistic processing, which changes during the course of the trial.

In chapter 4 and 5, we have investigated the cross-modal interaction of vision and
language during a scene description task. We have shown that the pattern of fixation
to the visual referents mentioned in the sentence are influenced by non-linguistic prop-
erties of the target, i.e. animacy, and scene, i.e. clutter. Furthermore, more generally,
we have shown that cross-modal referential information is coordinated, i.e. similar
sentences are associated with similar scan patterns. In order to complete our investi-
gation on cross-modal referentiality, we explore how its activation varies across tasks
demanding different degrees of cross-modal interaction.

In this chapter, we compare three different tasks, search, naming and description,
which vary by the cross-modal interactivity required to perform them; with (1) search,

1Spatial access can also be measured by looking at the spread of eye-movement distribution over
the scene (Pomplun et al., 1996); more details in section 6.3.3.2.

2Especially if the recall phase was done on a word identifying the target object, rather than its visual
appearance.
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expected to activate only visual attention, (2) naming, demanding also a partial activa-
tion of sentence processing, and (3) description, requiring visual attention and sentence
processing to be highly synchronized, as visual retrieval sources information for lin-
guistic encoding. Our main hypothesis is that the more referential information has
to be integrated across modalities, the more visual processing is needed (leading to,
e.g., longer fixation durations). The cross-modal interactivity is expected to impact
both spatial and temporal components of visual processing; with an emphasis on the
temporal measures after the first fixation, e.g. mean gaze duration.

In particular, in the spatial component, we expect wider spatial distibution of fix-
ations in search and naming compared to description. In description, visual attention
focuses on the objects to the description; whereas in search, fixations are launched to
find as many objects as possible corresponding to the cue, and in naming the linguistic
relevance of most of objects forming the scene has to be evaluated, in order to select the
most relevant targets to be named. On the temporal component, we expect longer fix-
ation duration when visual attention interacts with sentence processing, as referential
information has to be integrated across modalities.

We divide our analysis in two different experiments (7 and 8). In experiment 7, we
compare search and description, where beside animacy and clutter, we also investigate
the impact of number of targets (1,2,3). In experiment 8, we compare naming, with
a subset of the data collected in search and description. We keep the conditions of
animacy and clutter, but we focus on cases where the number of targets is two across
all scenes.

6.3 Experiment 7: Visual search and scene description

In experiment 7, we compare the influence of cross-modal interaction on two tasks,
Search and Description. We observe how spatial and temporal components of visual
attention are influenced by the cross-modal interactivity of the task, and how it interacts
with properties of the target and the scene. Our main hypothesis is that the cross-modal
interactivity of a description task would trigger more visual processing, e.g. longer
fixation duration, compared to search, where only visual attention is actively engaged.
Especially, description should demand more inspections and longer fixations compared
to search. Moreover, in line with previous literature, animate targets should facilitate
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search, e.g. shorter fixation (Fletcher-Watson et al., 2008); but it would require more
processing during description, e.g. longer fixation, to integrate referential information
across modalities. The clutter of the scene is expected to impair search and interact
with animacy of the target (Henderson et al., 2009b), e.g. inanimate objects would be
more difficult to locate than animate ones, especially if the scene contains only one
target.

6.3.1 Design and Material

The experimental setting, identically designed for both experiments, crossed three fac-
tors: Cue (Animate/Inanimate), Target (1,2,3) and Clutter (Low/High) (see Figure 6.1).

Each scene contained either 1, 2 or 3 visual Targets corresponding to the cue. The
Cue was either Animate, i.e. person, or Inanimate, i.e. laptop, and for more than 1
Target, it was referentially ambiguous in respect with the scene, i.e. three PERSON

depicted. Moreover, we computed the Feature Congestion (Rosenholtz et al., 2007)
(Clutter) visual density measure, and used it to divide the scenes in two density classes
(Low/High). We created 72 experimental items using photo-realistic scenes drawn
from 18 different scenarios (four scenes per scenario): 9 indoor (e.g., Bathroom, Bed-
room), 9 outdoor (e.g. Street, Mountain). In each scene, we inserted the objects (an-
imate and inanimate), which correspond to the two Cue conditions, for the different
Target condition (1,2,3) using Photoshop.

6.3.2 Method and Procedure

In both search and description, we cued participants with a word corresponding to the
target object, i.e. laptop, and we asked them to describe (see Figure 6.1 for an example
of a sentence, and refer to chapter 2 for details) the target in the context of the scene
(description), or count how many instances of the target were in the scene (search).
Forty-eight (24 per task) native speakers of English, all students of the University of
Edinburgh, were each paid five pounds for taking part in the experiment. Each partic-
ipant saw a randomized list of the 72 trials. An EyeLink II head-mounted eye-tracker
was used to monitor participants eye-movements with a sampling rate of 500 Hz. Im-
ages were presented on a 21” multiscan monitor at a resolution of 1024 x 768 pixels.
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Figure 6.1: On the upper row, an example of scene and cues used as stimuli for the visual search and
production task. On the bottom row, density maps of corresponding scenes are computed using feature
congestion (Rosenholtz et al., 2007): Low and High clutter.

Participants sat between 60 and 70 centimeters from the computer screen, which sub-
tend a region ≈ 20 degree of visual angles. Only the dominant eye was tracked. A cue
word appeared for 750 ms at the center of the screen, after which the scene followed
and the search or description task began1. A 9 points randomized calibration was done
at the beginning of the experiment, and repeated every ≈ 24 trials. Drift correction
was performed at the beginning and between each trial. Once every four trials, during
the Search task, a comprehension question about the number of target objects present
in the scene was asked. Participants had to respond by pressing a button on the con-
trol pad which corresponded to the number of targets (1, 2 or 3). At the beginning of

1In description, a lapel microphone was activated to record the descriptions generated.
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each experiment, there were four practice trials to familiarize the participants with the
task. There was no time limit for the trial duration and to pass to the next trial partici-
pants pressed a button on the response pad. The experimental task was explained using
written instructions and took ≈ 30 minutes to complete.

6.3.3 Data Analysis

We compare tasks using standard eye-movement measures, which have been exten-
sively applied in the visual cognition literature. Eye-movement behavior is analyzed
both on the temporal, e.g. first pass fixation duration, and spatial component, e.g. to-
tal number of inspected objects. We perform both a descriptive analysis of observed
data to show the empirical trend, and inferential analysis based on linear mixed effect
models (LME) (Baayen et al., 2008) to quantify the effects of design factors.

6.3.3.1 Pre-processing

As a pre-processing step, each scene has been fully annotated with labelled polygons
drawn around the objects of the scene (Russell et al., 2008). We divided the scenes
into two groups, according to their level of Feature Congestion (FC) (Rosenholtz et al.,
2007) clutter1 (Low, High).
On a side note, we expected a positive relation between number of objects and level
of clutter: i.e. the higher the clutter, the more the objects. Instead, we observe par-
tial independence between clutter and number of objects. Low cluttered scenes had
a mean density of 3.10± 0.22 and mean number of objects 27.42± 9.93; whereas
in high cluttered scenes, the mean density is 3.90± 0.24, and the number of objects
28.65± 11.30. It seems that the density of a scene does not directly inform on the
number of referents contained. Probably, on one hand, objects differ by their visual
density, and on the other hand not all objects can be labeled. This trade off between
labels and density makes the relation between clutter and referents partially indepen-
dent.

1We compute Feature Congestion on each scene to calculate its clutter. Then, we use the mean
value of clutter to divide the different scenes into two classes: Low, i.e. lower than the mean, and High,
i.e. higher than the mean.
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6.3.3.2 Measures of eye-movement behavior

We define the target objects (1, 2 or 3) by their relative Position in the scene following
a left-to-right order (Left, Middle, Right). We report percentage of misses (the target
has not been fixated during the trial), and position of first target fixated. Outliers that
were 2 s.d. from the mean, and first fixation after onset of scene, are removed. In
order to evaluate the role of object area on fixation duration, we compare description
and search by looking at mean fixation duration as a function of area, which we bin in
blocks of increasing size.
Following Malcolm & Henderson 2010, we define three task phases during the first
pass on the target object: initiation, scanning and verification. Initiation is the time
spent before generating the first eye-movement. Scanning is the number of objects
inspected before landing on the target1, we include in the count also re-fixation on the
same object. Verification is the fixation duration on the first target object, during the
first pass. We also report total measures of verification and scanning. Total verification
is the sum of fixations over all target objects during the whole trial. Total scanning,
instead, is the sum of all inspections between passes on target objects. In each phase,
we compare search and description on the factors Cue and Target, for the two levels of
Clutter. Research in visual search has focused on single target objects; in our design,
instead, we have up to three target objects, which allows us to test the impact of fixation
Order (First, Second and Third) during scanning and verification. We look at the
impact of order of fixation on scanning and verification during the first pass on target
objects.

In order to quantify the spatial distribution of eye-movements, we compute at-
tentional landscapes for each scene (Pomplun et al., 1996), to compare search and
description. Notice that the frequency of inspected objects and spatial distribution of
fixations do not represent the same measure. In fact, the same few objects can be in-
spected multiple times (narrow spatial distribution), or many different objects can be
inspected only once (wide spatial distribution). The landscapes are created by generat-
ing 2D Gaussians on the x-y coordinates for each fixation, with the height of gaussian

1In Malcolm & Henderson 2010, the scanning period is based on fixation duration, from the first
saccade after beginning of target until first fixation on target. We will test this version of scanning in
experiment 8.
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weighted by fixation duration, and radius of 1 degree of visual angle (roughly 27 pix-
els), to approximate the size of the fovea. A fixation map is generated for each subject.
Then, all maps obtained on the same scene, across all subjects, are summed, and nor-
malized to be a probability distribution. We use the attentional landscapes to quantify
the difference in spatial distribution between Search and Description. On the land-
scape, we compute Entropy1 which conceptually represents the spread of information,
i.e. the more entropy, the more spread fixations are on the scene. The entropy is calcu-
lated on each map:

∑
x,y

p(Lx,y) log2 p(Lx,y) (6.1)

where p(Lx,y) reflects the normalized probability of fixation at a point x,y in the
landscape L. We also compute the Jenson-Shannon (JS) divergence (Dagan et al.,
1997), a symmetric version of the Kullback-Leibler divergence (MacKay, 2003), used
to measure the distance between two probability distributions. We use JS to calculate
how distant are two different tasks in their fixation landscape. JS is calculated using
the following formula:

JS(pA||pB) =
1
2
(KL(pA||pavg)+KL(pB||pavg)) (6.2)

where pA and pB, are the probability maps of fixation for the two tasks compared,
pavg = (pA + pB)/2 is a point-wise average of pA and pB and KL(.) is the Kullback-
Leibler divergence, calculate as following:

∑
x,y
(p(Ax,y)log(p(Ax,y)/p(Bx,y)) (6.3)

where p(Ax,y) is the probability of fixation at point x,y in task A, and
log(p(Ax,y)/p(Bx,y)) is the log-ratio between the two distributions (A and B). With
entropy, we capture the distribution of visual attention and we can test whether search
is more narrow than production or they show a similar distribution. With JS, we can
test how similar are fixation landscapes across different tasks. We report JS results in
the next experiment only, section 6.5.2.3, where the three different tasks are compared.

1An application of entropy measure for eye-movement data could be found in Frank et al. 2009
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6.3.3.3 Inferential analysis

As in previous chapters, we inferentially analyze our observed data using Linear Mixed
Effect Modeling (Baayen et al., 2008), and report the coefficients of those experimental
factors retained after model selection. Each eye-movement measure is fit in a separate
model. The centered predictors used are Cue (Animate/Inanimate), Clutter (continu-
ous variable) and Target (1,2,3), which is orthogonal coded (target 3 as reference level).
The random effects are Subjects, Trials and Positions 1. To control for effects of object
area on our eye-movement measure, we residualize its effect on our eye-movement
measures in a simple linear regression model, e.g. depM ∼ Area, and we take the
residuals obtained as dependent measure for the LME modeling. When order of fix-
ation is a predictor for the first pass measures of scanning and verification, we cross
Order and Target in the random effects, as the levels of order are directly associated to
the number of targets. We select our best model following a step-wise forward proce-
dure based on log-likelihood comparison of nested models (for details refer to chapter
Methodology)

6.3.4 Results and Discussion

We begin by showing descriptive statistics of target search accuracy for search and
description. Moreover, we investigate whether there any unexpected effects, which we
have to control for during our LME analysis. In particular, we focus on whether the
position of the target is predictive of specific routines of visual inspection, e.g. left to
right scanning; and if the object area influences fixation duration. These results are
supported by LME analysis which we discuss in the text.

In Table 6.1, we show percentages of missed targets comparing the two tasks. A
miss is counted when no target object has been fixated during the trial. So, for 2 or 3
Targets, it means that none of the targets has been fixated. When 3 Targets were present
in the scene, right and left target were roughly equidistant from the middle target. We
find a main effect of Task (βSearch = 0.03; p < 0.05); more targets are missed in search
compared to description. The description task forces participants to be more accurate
during their visual inspection, therefore less trials are skipped compared to search. If

1Position indicates the location of the target (Left, Middle, Right)
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Table 6.1: Percentage of target missed, comparing Task, divided by number of Target(columns), and
Cue (rows).

Task Cue 1 Target 2 Targets 3 Targets Total

Description Animate 2.61 0.44 0.90

Inanimate 6.44 5.44 4.11

19.56

Search Animate 4.08 0.63 0.50

Inanimate 7.19 7.07 4.11

23.13

we break down the percentages by the number of Targets and Cue type, we find that
more targets are missed when Cue is Inanimate1 (βInanimate = 0.28; p< 0.05) and when
1 Target is in the scene (βTarget1 = 0.18; p < 0.05). Animate targets are located more
easily than Inanimate. Also, the more targets in the scene, the more likely it is that at
least one target is found. In order to unravel the influence of target position on visual
attention when more than one target was present in the scene (2 and 3 Target), we
calculate how many times (in percentage) a target is fixated on the different positions
(Left, Middle, Right) for the first time. If participants follow a reading-like behavior
of picture scanning, we should see a preference of starting from the leftmost target.

In Table 6.2, we observe that when 2 Targets are present in the scene, there is a
preference of looking at the leftmost first (βLeft = 0.05; p < 0.05), more prominently
when the Cue is Inanimate (βLeft:Inanimate = 0.07; p < 0.05). However, we do not find
a main effect of Task. When 3 targets are present, there is a preference for looks at
the center of the screen (βMiddle = 0.15; p < 0.05). Moreover, we find an interaction
between Task and Position (βLeft:Search = 0.15; p < 0.05), with a preference of starting
from the leftmost target during a Search task. A search task triggers a more automatic,
left to right routine of visual inspection, compared to description where the target has
to be found and linguistically contextualized in the scene.

1 Since we do not include a table for this data, in order to simplify the interpretation, we report the
value of coefficient uncentered for the factor we want to discuss.
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Table 6.2: Percentage of first looks on target given its position, comparing Task by the number of Target
(2,3)

Number of Targets Position Production Search

2 Targets Left 54.04 56.27

Right 45.95 43.72

3 Targets Left 25.91 29.98

Middle 51.06 45.16

Right 23.01 24.85

Turning to the effect of object area, we investigate it as a function of fixation dura-
tion, see Figure 6.2.

We observe an effect of task, description has longer fixation duration than search,
but there is no interaction with the area. We correlate fixation duration with area using
Spearman ρ to quantify the direction trend. We find a significant negative correlation
in both tasks ρSearch =−0.044;(p < 0.05) and ρDescription =−0.054;(p < 0.05). The
bigger the area of the object, the shorter the duration on it. Nevertheless, the strength
of the correlation is very small.
Two interesting points arise from this analysis: 1) Production demands more visual
processing than Search, with longer fixation duration on objects1, and 2) objects are
not fixated proportionally to the space they occupy in the scene, but rather according
to the referential information they carry. Since object area is marginal to the issues
discussed in the current study, we residualized it on all measures of Scanning and
Verification, prior to LME modeling.

6.3.4.1 First Pass: Initiation, Scanning, Verification

We divide the first pass, which is the time elapsed from the onset of the trial to the end
of first fixation on the first target, into three phases: initiation, scanning, and verifica-
tion (Malcolm & Henderson, 2010).

1This issues is explored further in the next sections
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Figure 6.2: Fixation Duration as a function of object area. Comparing search and description. The green
solid line represents description. The aquamarine dotted line instead is search.

In Figure 6.3, we show the results for the initiation phase. We find only a significant
effect of Targets, initiation is slightly faster when there are 2 Targets compared to 3
Targets (refer to Table 6.3). Probably, the fact that less targets are identified during
gisting might boost initiation of visual processing.

In Figure 6.4(a), we show results for the scanning phase. We find a main effect
of task: in description more objects are inspected compared to search. A description,
compared to search, requires the target object to be linguistically contextualized in the
scene, thus more inspections are needed to retrieve visual material situating it1. We
also observe a main effect of Targets. In particular, more objects are inspected when

1Notice that number of consecutive inspections does not imply more objects inspected: the same
objects could be re-fixated. We will come back to this point when analyzing the spatial distribution.
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Figure 6.3: Initiation: the time spent to program the first saccadic movement. On the left panel, we plot
results from low cluttered scenes (Minimal), on the right panel for high cluttered scenes (Cluttered).
The Targets (1,2,3) are displayed on the x-axis. The colors represent the two factors of Cue: red is
animate, blue is inanimate. The line and point types represent the 4 different condition compared to
help visualization.

only 1 Target is in the scene, thus less likely to be fixated compared to 2 or 3 targets;
and this difficulty increases when the object is Inanimate. Animate targets are more
quickly detected than Inanimate targets, especially when only 1 Target is present. 2
Targets are easier to locate but, interestingly, when the Cue is Animate, we observe
more inspections prior to target identification compared to 3 Targets. It seems that 2
Targets have a special status, compared to 3 Targets, which might due to the fact that 2
Targets are found more in connection with Indoor scenes, than the Outdoor ones1. In
contrast with visual search studies, where an inanimate object is more difficult to find
in a cluttered scene (Henderson et al., 2009b), we do not find a main effect of clutter.
Probably, an interaction could be found between clutter and target-one, however the
model selection adopted discards all possible interactions of a factor which is not found

1The search experiment is designed as a follow up of the description one, where the targets were all
depicted in Indoor scenes.
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(a) Scanning: the number of objects inspected before landing the first time on the
target object.

(b) Verification: the fixation duration during the first pass on the first target object.

Figure 6.4: Measures of First Pass. On the left panel, we plot results from low cluttered scenes (Min-
imal), on the right panel for high cluttered scenes (Cluttered). The Targets (1,2,3) are displayed on the
x-axis. The colors represent the two factors of Cue: red is animate, blue is inanimate. The line and point
types represent the 4 different conditions compared to help visualization.
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Table 6.3: LME coefficients. The dependent measures are: Initiation, Scanning and Verification.The
predictors are: Target (1;2;3), target 3 is expressed at the intercept, Cue (Animate -0.4, vs Inanimate 0.6),
Task (Search 0.5, vs Description -0.5), and Clutter.

Initiation

Predictor Coefficient p

Intercept 360.14 0.0001

Target 2 −16.58 0.02

Scanning

Predictor Coefficient p

Intercept 0.66 0.1

Task −0.82 0.001

Target 1 4.86 0.001

Cue 4.01 0.0001

Target 2 −2.16 0.01

Cue:Target 2 −7.84 0.0001

Task:Cue −0.82 0.01

Target 1:Cue 11.22 0.01

Verification

Predictor Coefficient p

Intercept 6.233 0.1

Task −33.12 0.001

Target 1 41.22 0.01

Target 2 −25.67 0.01

as main effect (see Chapter 2 for details).
In Figure 6.4(b), we show results for the verification phase. Similar to scanning,

we observe a main effect of Task: in description, the first fixation is longer than in
search (see Table 6.3 for coefficients). A description task requires more interaction
between visual and linguistic processing compared to a search task. In fact, the cross-
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modal integration between visual and linguistic referential information demands longer
fixations. In search instead, once the object is found, it does not need to be further in-
tegrated with other ongoing cognitive processes. We also find a main effect of number
of targets. When only 1 Target is in the scene, it is fixated longer. Since no other target
objects are competing for visual attention, the verification phase takes longer. On the
contrary, for 2 Targets, we find shorter fixation duration compared to 3 Targets. The
verification time is decreased by the referential competition of 2 targets. Probably, 2
targets generate more competition than 3 targets, as fixations are more tightly launched
to discriminate the pair of competitors. This issue is discussed in more details in the
next section.

6.3.4.2 Total

In order to have a picture of eye-movement behavior during the whole trial, we analyze
total verification and scanning1. Total verification is the sum of fixation duration on
the target objects across the whole trial. Total scanning is the frequency of inspected
objects between passes on the target objects, across the whole trial.

In Figure 6.5(a), we show frequency of total inspections. We find a main effect of
Task, whereby during description there are more inspections compared to search (refer
to Table 6.4 for coefficients).

During linguistic processing, the target object has to be visually contextualized in
the ongoing description, thus objects are fixated/re-fixated in order to clearly establish
associations between the observed visual referents with the linguistic referents men-
tioned. For search, instead, visual processing stops once the object has been found.
We confirm the main effect of Cue, where Inanimate cues trigger more inspections
compared to Animate ones, especially in cluttered scenes, where more regions are in-
spected to identify all target objects. Similarly to first pass, we observe a main effect
of number of target, but this time only for 1 Target. A single target object triggers
overall more inspections. Participants want to be sure that they did not miss any target,
especially during a search task.

1 Initiation time can only be computed for first pass.
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(a) Total Scanning: the frequency of inspected objects between passes on the tar-
gets.

(b) Total Verification: the total sum of fixation duration on the target objects.

Figure 6.5: Total Measures.On the left panel, we plot results from low cluttered scenes (Minimal), on
the right panel for high cluttered scenes (Cluttered). The Targets (1,2,3) are displayed on the x-axis.
The colors represent the two factors of Cue: red is animate, blue is inanimate. The line and point types
represent the 4 different condition compared to help visualization.
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Table 6.4: LME coefficients. The dependent mea-
sures are: Total Verification and Total Scanning.
The predictors are: Target (1;2;3), target 3 is ex-
pressed at the intercept, Cue (Animate -0.4,vs Inan-
imate 0.6), Task (Search 0.5, vs Description -0.5)
and Clutter.

Total Scanning
Predictor Coefficient p

Intercept −0.2716 0.7
Task −6.01 0.001
Clutter 41.32 0.01
Animacy 1.53 0.04
Target 1 0.92 0.5
Clutter:Cue 122.71 0.0003
Task:Target 1 2.77 0.006

Total Verification
Predictor Coefficient p

Intercept −3.581 0.7
Task −1033.341 0.0001
Target 1 −402.99 0.001
Cue −265.612 0.001
Task:Cue 850.10 0.0001

In Figure 6.5(b), we show total ver-
ification time across all targets. Also in
total verification time, we find a main
effect of Task: description, differently
from search, requires the integration of
visual and linguistic information; which
results in longer fixations. Differently
from first pass, we find that animate
targets are overall more inspected than
inanimate ones, especially during a de-
scription task, where animate referents
carry important conceptual information
to source the underlying sentence encod-
ing. When looking at effects of Target,
we find that a single target receives less
looks during the course of a trial than
3 targets. Despite the fact that in Fig-
ure 6.5(a) we observe more looks to 2
animate targets during description, we do
not find this effect to be significant after model selection. The reason is that as main
effect, 2 targets is not significantly different than 3 targets, thus the associated inter-
actions are not considered (see Chapter 2). Probably, however, an explanation for the
effect observed is that if two visual targets share the same linguistic referent, they both
can appear in the same description through coordination, thus triggering visual compe-
tition. For 3 targets this situation is less likely, as a sentence containing three identical
referents connected through two coordinators, the man is drinking and another man is

walking and another one is greeting, is less frequent than a sentence containing two
referents connected with a single coordinator, the man is drinking and another one is

walking.
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6.3.4.3 Ordered Targets

The order in which targets are fixated might have an impact on visual responses. We
calculate first pass scanning and verification on each target object based on the Order
of fixation (First, Second and Third). For reason of conciseness, we do not show plots
but only report and discuss the results obtained with LME analysis.

Table 6.5: LME coefficients. The dependent mea-
sures are: Verification and Scanning. The predictors
are: Order (First;Second;Third), order third is ex-
pressed at the intercept, Cue (Animate -0.4,vs Inan-
imate 0.6), Task (Search 0.5, vs Description -0.5)
and Clutter.

Scanning
Predictor Coefficient p
Intercept 0.5010 0.6
First 2.24 0.0001
Cue 3.69 0.1
Task −0.80 0.002
Second 0.32 0.8
First:Cue 3.48 0.0001

Verification
Predictor Coefficient p
Intercept 3.072 0.6
First −49.24 0.01
Second 0.29 0.9
Task −30.71 0.001
Task:First −29.23 0.03

In Table 6.5, we report LME coef-
ficient of scanning and verification pre-
dicted by a model where order of fix-
ation is included as fixed effect. To-
gether with Subject and Trials, we in-
clude a random slope (Order—Number
of Targets), as the number of targets is
crossed with order of fixation1. We con-
firm the main effects of task and cue
found in section 6.3.4.1. Description de-
mands more inspections than search. It
takes longer to identify a target object
when it is Inanimate, compared to when
it is Animate. We also find a main ef-
fect of Order, where more objects are in-
spected before landing on the first target,
compared to the number of objects in-
spected before landing on the third target.
This effect is particularly prominent when the target object is Inanimate. In the model,
we also observe that more objects are inspected before landing on the second target,
compared to the third one but the effect doesn’t reach significance. The more visual
attention has gathered information about the scene, the less inspections are needed to
locate subsequent target objects.

On the verification time, we confirm the main effect of task observed in 6.3.4.1,
where descriptions have a longer first pass compared to search; We find shorter verifi-

1The order of fixation is associated with the number of targets: if there is only 1 target depicted,
there is only 1 possible order of fixation.
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cation on the first target compared to the third one; but not during description, where
instead the first target is fixated longer than a third target.

The trend of verifications seems to suggest that the fixation duration increases along
with the number of targets observed. Probably, the more visual objects with the same
linguistic reference are found, the more visual information is required to distinguish
them, which leads to longer fixation duration. However, during description a different
trend emerges. In this case, the target first fixated is probably selected as a linguistic
referent to be mentioned, and fixation duration has to be longer, in order to identify its
distinctive visual features, before passing onto the surrounding scene information to
contextually situate it.

6.3.4.4 Spatial Distribution

The spatial distribution of eye-movements indicates how many regions of a scene are
inspected during task performance. Different tasks trigger different spatial distribu-
tions, i.e. visual search has been shown to have a narrower spread than memorization
(Castelhano et al., 2009).

The more spread out the spatial distribution is, the more referential information
of the scene is retrieved. We want to emphasize here that spread of fixations and
number of inspections might be correlated, i.e. the more inspections, the more objects
are scanned, but this cannot be generalized. For example, in the case of multiple
Animate Targets, fixations can go back and forth between them. Our hypothesis is
that a description task imposes a more stringent allocation of visual attention; which
in turn results into a narrower selection of scene referents scanned. A description task
constraints visual retrieval on those referents selected during sentence encoding. In
search, instead, after an initial phase of contextually driven visual attention to locate
the first target, it follows a second and more spread out phase, to find other potential
targets embedded in the scene.

We have generated an attentional landscape (see Figure 6.6) of each scene for both
description and search, and computed Entropy, to quantify the spread of spatial dis-
tributions. We find that search has a lower entropy compared to description; which
nevertheless varies according to the other factors involved (see Table 6.6 for coeffi-
cients). Inanimate targets trigger higher entropy, especially during search; whereas
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Figure 6.6: Attentional Landscapes. Comparing the spatial distribution of fixations of Search and Pro-
duction.

during description, the same effect is found associated with animate referents. In line
with previous findings, search is faster for animate objects (Fletcher-Watson et al.,
2008), thus fixation are less spread out across the scene. The opposite effect instead
is observed on animate targets during description. Confirming results in Chapter 4,
visual attention spreads on cluttered regions to retrieve scene informtion supporting
the ongoing sentence generation. Clutter is also more generally found as a main effect,
where the more visual information is available, the higher the entropy. We find also
a main effect of target, where a single target leads to higher entropy than 3 targets, in
particular when a search task is performed. The possibility that the scene might have
up to 3 targets led the participants to inspect larger regions of the scene to look for
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more targets, especially when only 1 target was present. We observe, instead, lower
entropy for 2 targets compared to 3 targets. A reason might be that 2 targets requires
less inspection to be found. Moreover, we believe that implicit learning might have
developed during the course of the experiment by the participants, helping them to
quickly discriminate between trials with 2 or 3 targets1.

6.4 General Discussion
Table 6.6: LME coefficients. The dependent
measure is Entropy. The predictors are: Target
(First;Second;Third), target 3 is expressed at the in-
tercept, Cue (Animate -0.5, vs Inanimate 0.5), Task
(Search 0.5, vs Description -0.5) and Clutter (Mini-
mal 0.35 vs Cluttered -0.65. Scenario (Indoor -0.25
vs Outdoor 0.75) is included as random effect to
control for differences in clutter.

Entropy
Predictor Coefficient p

Intercept 11.88 0.0001
Cue 0.20 0.0001
Clutter −0.12 0.006
Target 2 −0.30 0.0001
Task −0.07 0.001
Target 1 0.15 0.03
Cue:Task 0.21 0.0001
Task:Target 1 0.14 0.03

The aim of experiment 7 was to inves-
tigate the role of task interactivity on
the active allocation of visual attention
by comparing a purely visual task, i.e.
search, with a multi-modal task, i.e. de-
scription.
We defined the notion of interactivity rel-
ative to the concept of cross-modal ref-
erentiality. We assumed that tasks differ
by the amount of cross-modal interaction
required to perform them. This cross-
modal interaction depends on whether
referential information has to be inte-
grated, or not, across modalities. In a
search task, visual attention utilizes ref-
erential information of scene and target
to build a cognitive relevance model and
optimally allocate attentional resources
(Malcolm & Henderson, 2010). In such tasks, only visual referential information has
to be accessed and utilized; thus, after the target object is verified, no further pro-
cessing is needed. The situation is rather different, however, when the task performed
demands synchronous processing between modalities. As seen in chapters 2 and 3,
if a situated language processing task is performed, e.g. description, visual attention

12 Targets are found more often in Indoor Scenes. Although, the result holds even after including
Scenario as a random effect in our LME models.
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and sentence processing interact over a shared cross-modal referential interface, which
allows modalities to coordinate the synchronous processing flow. Our main hypothesis
was that the cross-modal coordination demanded by a description task influences both
components1, temporal and spatial, of visual attention differently than search. Espe-
cially, during description we expected more temporal processing compared to search,
e.g. longer fixation duration, because visual and linguistic referential information has
to be integrated across modalities. Moreover, we expected task interactivity to be mod-
ulated by non-linguistic factors of the target, i.e. animacy, and the scene, i.e. clutter. In
line with the search literature, clutter was expected to impair visual search performance
(Henderson et al., 2009b), and animate targets to make it faster (Fletcher-Watson et al.,
2008). In line with results shown in Chapter 4, during a description task we expected
sentence encoding to benefit from clutter, especially in relation to animate targets, as
a cluttered scene provides more contextual information to linguistically situate the tar-
gets.

We compared search and description on a range of standard eye-movement mea-
sures, covering both spatial and temporal components of visual processing, over two
main levels of granularity: first pass, i.e. until the target is found, and total, i.e. the
whole trial. Results on first pass and total confirm our main hypothesis: the more
cross-modal interactivity is needed, the more visual processing occurs.

On the spatial component, we find that description triggers more inspections than
search. When looking at their distribution, furthermore, we find that conceptual fac-
tors, e.g. animacy, play an important role in which regions are inspected. Especially,
inanimate targets lead to a more spread distribution during search than description,
whereas the opposite is found for animate targets. A description of an inanimate ob-
ject requires it to be anchored in the context of another ground object, e.g. the pen is on

the table, hence narrowing the span of visual attention. In search, instead, the scene is
more widely inspected, as other target objects can be found at different locations, e.g. a
PEN on a COUNTER. A completely different pattern is observed for animate objects. In
fact, descriptions of animate objects need contextual information, e.g. HOTEL, MAIN

HALL, to linguistically situate the referent, e.g. the man is signing in; thus, visual at-

1We have introduced this distinction to give a better and more contextualized interpretation of the
eye-movement measures used, see section 6.2 for details.
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tention tends to spread more compared to search, where instead animate referents are
quickly identified (Fletcher-Watson et al., 2008).

On the temporal component, we observed longer first pass and total verification
during description compared to search. Again, non-linguistic factors have been shown
to have a crucial influence on visual responses for both tasks. In particular, fixation
duration was found shorter on animate objects in search than description. Moreover,
when investigating the impact of order of inspection, we find that the first inspected tar-
get is more fixated during description than during search. Probably during description,
the first target inspected is selected as linguistic referent of the sentence, thus visual
information about it has to be extracted; whereas in search, the first target is quickly
verified, in order to proceed with the search, as other targets can still be embedded in
the scene.

Description and search primarily differ in the cross-modal interactivity required
to perform them. In description, sentence processing and visual attention are syn-
chronously activated, and mechanisms of cross-modal referentiality are needed to inte-
grate information across modalities. In search, instead, only visual attention is actively
involved. The need for cross-modal interactivity, however, gradually changes across
different tasks. An object naming task, for example, can be imagined as intermediate
with respect to search and description. In such a task, a search is performed to identify
objects which are interesting given their visual features, however, since they have to be
named, their relevance has to be linguistically evaluated. In Experiment 8, we compare
search and description with an object naming task. We expect to find similarity with
both search and description in the visual responses associated to this task.

6.5 Experiment 8: Cross-modal interactivity across
tasks

In experiment 8, we investigate how a task requiring an ‘intermediate‘ degree of cross-
modal interaction, i.e. object naming, compares to a single modality task, i.e. search,
and a fully multi-modal task, i.e. description. Our main hypothesis is that object
naming should share patterns of visual responses with both search and description. In
particular, we expect naming and search to behave similarly on the spatial component
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of visual processing; as search and naming involve a wider scanning of the scene,
i.e. looking for cued targets or finding interesting objects to name, compared to a
description, which instead focuses on the visual objects associated to the sentence
generated. On the temporal component, instead, we expect more similarities between
naming and description. As observed in Experiment 7, the cross-modal integration
of referential information should result into longer fixation duration measures in both
naming and description compared to search.

In relation to the factors of clutter and animacy; we expect again object naming to
share similarities with both search and description. We have observed that the more the
clutter, the more the objects inspected, especially during search for inanimate targets.
Here, we expect object naming to show patterns similar to search. In fact, the more the
clutter, the more objects can be named; and this effect would be independent from the
animacy of targets.

Finally, in order to quantify the overlap of referential information processed during
the different tasks, we investigate similarities between scan patterns. We expect more
similarities of scan patterns to arise between tasks involving cross-modal interaction,
i.e. naming and description, as in both tasks, the objects are fixated according to their
linguistic relevance, compared to search where instead targets are fixated merely ac-
cording to their contextual relevance.

6.5.1 Method

In an eye-tracking experiment, participants were asked to name the most relevant 5
objects embedded in photo-realistic scenes. A subset of the material used in this ex-
periment contained the 24 experimental scenes, in the two versions Minimal and Clut-
tered, used in the scene description experiment presented in Chapter 4, and the search
experiment of this chapter. Our analysis will focus on these 24 scenes, as they are
shared across the three experiments and therefore directly comparable. These scenes
contained always 2 referentially ambiguous targets, animate (man) and inanimate (clip-

board), thus there is no condition involving the number of targets.
In the analysis, we use the eye-movement measures discussed in section 6.3.3.2.

Notice that, in an object naming task, participants were not cued to a particular object,
and therefore looks to animate or inanimate targets are not controlled. However, in
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order to keep animacy of objects as an explanatory variable, in object naming we cal-
culate eye-movement measures based on the cued objects (animate, inanimate) given
in the description and search experiments.

We divide the first pass in three phases: initiation, scanning and verification. For
scanning, instead of reporting the number of inspected objects, we use the correlated
measure of latency, which tells us how much time elapses from beginning of trial, until
the first fixation on the target object. We use latency to make our measures of first
pass directly comparable to Malcolm & Henderson 2010. As total measures, we report
the total verification on targets, and a more general measure based on proportion of
fixations for all animate and inanimate objects contained in the scene. In addition, we
consider the measure of mean gaze duration, i.e. the average fixation duration across
all objects, to test how much temporal processing is devoted during a fixation for the
different tasks.

We calculate entropy and JS-divergence on attentional landscapes generated for the
different scenes (see section 6.3.3.2, for details). Moreover, on the same scene, we cal-
culate pairwise scan pattern similarity1 performing two types of analysis: (1) within
task, i.e. comparing different participants performing the same task; and (2) between
tasks, i.e. different participants from different tasks. The within task analysis inves-
tigates how much similarity there is in the referential information visually processed
across different participants when performing the same task. The between task analy-
sis, instead, investigates how much similarity is shared across different tasks.

We model our eye-movement measures using linear mixed effect models. The
predictors are Clutter (Minimal/ Cluttered), Cue (Animate/Inanimate), Task (Search,
Naming, Description), coded using treatment coding. The reference level is chosen
according to the observed data, always taking the factor which allows a richer inter-
pretation2.

The random effects are Subjects and Trials. To avoid unexpected effects due to
object size, we residualize object area on each dependent measure.

1We report results using OSS measure, see Chapter 2 for details.
2The choice of the reference level affects the interpretation of the results for each individual coding

variable; however, it does not change the overall effect of the model fit and related statistics. Source:
Statistical Tutorial at McGill, http://wiki.bcs.rochester.edu:2525/HlpLab/StatsCourses
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6.5.2 Results and Discussion

We begin discussing the results found on the measures of first pass: initiation, scanning
and verification. We proceed with total verification, mean gaze duration and propor-
tion of fixation. Then, we explore the entropy and JS-Divergence of spatial distribution
across the different tasks, and finish our discussion looking at the scan pattern similar-
ities.

6.5.2.1 First Pass: Initiation, Scanning and Verification

In Figure 6.7, we show results for the initiation phase across the three different tasks.

Figure 6.7: Initiation: the time spent to program the first saccadic movement.

We find only a significant effect of Task, where a naming task has a faster initia-
tion time compared to search (see Table 6.7, for coefficients). No difference is found
between search and description. In search and description, an expectation template is
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generated on the basis of the cue, thus initiation takes longer than in naming where no
cue is given.

Table 6.7: LME coefficients. The dependent measures are: Initiation, Scanning and Verification.The
predictors are: Task (Search, Naming and Description) with search used as a reference level, Clutter
(Minimal 0.5, Cluttered -0.5) and Cue (Animate -0.5, vs Inanimate 0.5)

Initiation

Predictor Coefficient p

Intercept 312.19 0.0001

Naming −122.2 0.001

Scanning

Predictor Coefficient p

Intercept 61.13 0.4

Cue 1973.29 0.0001

Naming 684.07 0.0001

Clutter −294.1 0.0001

Description 331.85 0.0001

Cue:Naming 2168.43 0.0001

Clutter:Naming −264.74 0.03

Cue:Production 1050.21 0.0001

Cue:Naming:Clutter−734.93 0.002

Verification

Predictor Coefficient p

Intercept −0.2281 0.9

Cue 48.60 0.0001

Description 37.63 0.0002

Naming 35.97 0.003

Cue:Naming 30.90 0.003

In Figure 6.8(a), we show results for the scanning phase. We find a main effect
of task: in description, and especially naming, it takes longer to fixate the target for
the first time; the effect mostly regards inanimate targets and it is more prominent for
naming compared to description. During naming the participants were not cued, thus
the inanimate objects all had the same chance of being looked. Moreover, in a scene
there are more inanimate objects than animate ones, thus participants took longer to
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(a) Scanning (Latency): the time elapse from the beginning of the trial until the
target object is fixated for the first time.

(b) Verification: The fixation duration during the first pass on the target object.

Figure 6.8: Measures of First Pass. On the left panel, we plot results from low cluttered scenes (Min-
imal), on the right panel for high cluttered scenes (Cluttered). Cue (Animate, Inanimate) are displayed
on the x-axis. The three tasks are plotted using different colors, line types and points: Search (yellow,
full line, triangle); Naming (green, small dotted lines, empty circle) and Description (red, large dotted
lines, full circle).
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fixate at a specific inanimate object. As expected, the more the clutter, the longer it
takes to identify the object in the scene; in particular if the object is inanimate and the
task is to name it. As just said, the naming task is not triggered by cueing to particular
objects of the scene.

In Figure 6.8(b), we show results for the verification phase. Similar to scanning,
we observe a main effect of Task: in description and naming, the first fixation is longer
than in search (see Table 6.7 for coefficients). Confirming results of section 6.3.4.1 of
experiment 7, a cross-modal task implies a longer temporal processing, as referentiality
has to be integrated across modalities. In line with previous literature, animate refer-
ents are fixated less than the inanimate one, especially during a naming task, where the
retrieval of associated name is boosted for animate objects (Branigan et al., 2008).

6.5.2.2 Total

In this section, we report results related to the whole trial. Thus, we analyze total
verification, i.e. the sum of fixation duration on targets, mean-gaze duration, i.e. the
average fixation duration across all objects, and proportion of fixation, i.e. proportion
of fixation on all animate and inanimate objects of a scene.

In Figure 6.9(a), we show total verification. We find a main effect of Cue, whereby
animate referents are fixated more than inanimate referents, especially during the two
cross-modal tasks, description and naming, which overall have longer total fixation
compared to search (refer to Table 6.8 for coefficients). The conceptual richness of an-
imate referents makes them more likely to be fixated during a linguistically mediated
task. Furthermore, the animacy of the referent interacts with the density of visual in-
formation: the less the clutter, the more attention focuses on the animate referents, and
this is especially true during a naming task, where the scarcity of inanimate referents
to name, pulls attention more prominently on the animate referents.

In Figure 6.9(b), we show mean gaze duration on all objects of a scene, divided
by their animacy. Confirming previous finding, we find a main effect of task: cross-
modal tasks require longer mean gaze compared to a single modality task, i.e. search.
The cross-modal integration of referential information demands longer temporal pro-
cessing. We find also a main effect of cue, which differs from that observed in total
verification. Inanimate objects have a higher mean gaze compared to animate objects,
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(a) Total Verification: the the total sum of fixation duration on the target objects.

(b) Mean Gaze: the average fixation duration across all objects inspected.

Figure 6.9: Total Measures.On the left panel, we plot results from low cluttered scenes (Minimal), on
the right panel for high cluttered scenes (Cluttered). Cue (Animate, Inanimate) are displayed on the
x-axis. The three tasks are plotted using different colors, line types and points: Search (yellow, full line,
triangle); Naming (green, small dotted lines, empty circle) and Description (red, large dotted lines, full
circle).
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especially in a search task, as suggested by the negative interaction found between
cross-modal tasks and inanimate objects (see Table 6.8 for full list of coefficients).
In a search, it is crucial to verify the identity of objects fixated in respect of the cued
target. The operation of verification is more difficult on inanimate objects, as their vi-
sual features might be shared with other visual objects embedded in the scene; which
makes their recognition more ambiguous compared to animate referents.

Table 6.8: LME coefficients. The dependent mea-
sures are: Total Verification, Mean Gaze and Pro-
portion of Fixation. The predictors are: Task
(Search, Naming and Description; with search used
as a reference level), Clutter (Minimal 0.5, Clut-
tered -0.5) and Cue (Animate -0.5, vs Inanimate 0.5)

Total Verification
Predictor Coefficient p

Intercept −15.64 0.8
Cue −1357.2 0.0001
Clutter 328.31 0.0001
Naming 1470.34 0.0001
Description 1132.99 0.0001
Clutter:Naming 689.69 0.0001
Cue:Naming −1489.06 0.0001
Cue:Clutter −263.07 0.001
Cue:Description −1082.91 0.001
Clutter:Description 166.43 0.07
Cue:Clutter:Naming−621.33 0.0001

Mean Gaze
Predictor Coefficient p

Intercept −0.0826 0.9
Cue 9.72 0.007
Clutter 7.01 0.0001
Naming 49.99 0.0001
Description 40.30 0.0001
Cue:Description −17.90 0.0001
Cue:Naming −15.54 0.003

Proportion of
Fixation

Predictor Coefficient p
Intercept −0.2281 1
Cue 0.28 0.0001

In Figure 6.10 we observe a signifi-
cantly higher proportion of looks to inan-
imate objects across all tasks; especially
during naming and search, although this
interaction is not find significant in the
LME analysis. The reason is that tasks
are not significantly different as main ef-
fects, but only in interaction with the
cue. However, given our model selec-
tion procedure, these interactions will not
be considered, as they violate the sub-
set assumption (see Chapter 2 for de-
tails). In fact, when we manually build
a model, containing Cue as main effect
and in interaction with Task, we find the
interactions to be significant in the di-
rection suggested by Figure 6.10 (coef-
ficients are reported in Table 6.9).

During search and naming the scene
is widely inspected to find targets,
or name linguistically relevant objects.
Thus, inanimate objects have a more im-
portant role than animate ones. During
description, instead, animate objects play
a key role for sentence encoding, as sen-
tences usually have animate referents as
subjects.
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Table 6.9: LME coefficients for Proportion of Fixation from a manually constructed model. The depen-
dent measures is: Proportion of Fixation. The predictors are: Task (Search, Naming and Description)
with description used as a reference level, and Cue (Animate -0.5, vs Inanimate 0.5)

Proportion of
Fixation

Predictor Coefficient p

Intercept 0 0.9

Cue 0.28 0.0001

Cue:Naming 0.17 0.0001

Cue:Search 0.07 0.0001

Figure 6.10: Proportion of Fixation spent on animate or inanimate object of a scene during a certain
trial.

6.5.2.3 Spatial distribution

In this section, we compare the three different tasks on their attentional landscapes,
thus directly addressing how visual processing is spatially allocated. We look at two
measures of spatial distribution, entropy and JS-Divergence (see section 6.3.3.2 for
details).
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Figure 6.11: Entropy of fixation landscape across the three different tasks.

In Figure 6.11, we show how spatial fixation entropy changes across the different
tasks, given the factors of animacy and clutter. We find that the spatial distribution for
both search and description has a smaller entropy compared to naming (refer to Ta-
ble 6.10 for coefficients). In a naming task, a scene is more widely inspected to ensure
that linguistically relevant objects are not missed; whereas in search and description,
visual attention has to focus either on the objects contextually appropriate to identify
the target location, or semantically relevant to the sentence encoded.

In Figure 6.12, we show JS-Divergence of spatial distribution of fixations for the
different tasks’ comparison (refer to section 6.3.3.2 for details).

We find that naming and search have the highest divergence compared to the de-
scription/search and description/naming (see Table 6.10 for coefficients). Confirming
what was observed in the analysis of entropy, during naming participants inspect more
objects, which results into a more scattered fixation distribution. We also observe a
main effect of Clutter, where the more the clutter, the more the divergence observed.
Interestingly, there is no significance difference in the divergence between descrip-
tion/search and description/naming. In a description task, fewer visual referents (re-
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Table 6.10: LME coefficients. The dependent measures are: Entropy, and JS-Distance. For entropy
as dependent measure, the predictors are: Task (Search, Naming and Description) with naming used as
a reference level and Clutter (Minimal 0.5, Cluttered -0.5). For JS-Divergence as dependent measure,
instead of Task, we have task comparison (description/search, description/naming, naming/search), the
reference level used is naming/search.

Entropy

Predictor Coefficient p

Intercept 12.03 0.8

Search −0.52 0.0001

Clutter −0.22 0.0001

Description −0.47 0.0001

JS-Divergence

Predictor Coefficient p

Intercept 0.1526 0.0001

Description/Search −0.0309 0.0001

Clutter −0.0222 0.0001

Description/Naming −0.0253 0.0001

lated to the ongoing encoding) are fixated, which might also be fixated during naming
and search for their linguistic and visual relevance. In future research, we plan to in-
vestigate which objects are commonly fixated across different tasks and at what time
during the trial.

6.5.2.4 Scan Pattern Similarities

In this section, we compare scan patterns generated by the participants while perform-
ing the different tasks. Beside its standard definition, a scan pattern can be imagined
as an overt representation of how referential scene information is processed over time,
during the performance of a given task. By computing similarity scores between scan
patterns, we can observe how similar participants are while processing scene infor-
mation within the same task, and between different tasks. The within task analy-
sis measures how consistently referential information is processed, during a certain
task, across participants. The between task analysis, instead, measures how similar the
choices of referential information processing are between tasks.
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Figure 6.12: JS-Divergence box plot. On the x-axis, we show the different task comparison (descrip-
tion/search; description/naming; naming/search). On the y-axis, we plot JS-Divergence. The colors of
the boxes refer to the conditions of clutter (Minimal - yellow; Cluttered - orange)

In Figure 6.13(a), we plot the scan pattern similarity within the same task. We find
that in a naming task, participants have a higher scan pattern similarity compared to
both description and search, which has the lowest similarity (see Table 6.11 for coeffi-
cients). This result is intriguing, as we observed that naming has a higher entropy, i.e.
more objects are inspected, compared to search and description. Probably, however,
the combined activation of object-based visual prominence together with a linguistic
evaluation of object relevance has strengthened guidance of visual attention, thus mak-
ing participants look at visual objects in a more similar order. In description, as seen in
Chapter 5, the similarity of scan patterns is associated with the linguistic content of the
sentence; thus if sentences are dissimilar also the associated scan patterns will be. In
search, instead, after an initial effect of object-based guidance, since visual attention
is not in synchronous processing with other modalities, it loses this referentially based
control hence allowing for more variability across participants.

In Figure 6.13(b), we plot the scan pattern similarities across different tasks. We
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(a) Within Task: scan pattern similarities on the same scene across participants
during the same task.

(b) Between Tasks: scan pattern similarities on the same scene across partici-
pants between different tasks.

Figure 6.13: Scan-Pattern Similarity. Scan-patterns are compared pairwise, the same scene can be both
minimal and cluttered; thus, Different refers to those cases.

find that a naming task shares similarity with both description and search. Despite the
higher entropy of fixation observed in section 6.10, we find that the visual referents fix-
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ated during naming are similar to those observed in the other two tasks. Moreover, we
find that linguistically driven tasks are more similar, than when a visual modality task is
compared with a linguistically driven task, i.e. description vs search. The cross-modal
activation of visual and linguistic referential information allows synchronization of vi-
sual attention allocation. Low cluttered scenes allow a better synchronization of scan
patterns between tasks compared to cluttered scenes; especially during linguistically
driven tasks. The less visual information is available, the less linguistically relevant
visual objects there are in the scene.

6.6 General Discussion

In experiment 8, we have extended our investigation of cross-modal interactivity by
comparing object naming, i.e. a task demanding an intermediate level of synchronous
activation between visual attention and sentence processing, with search, i.e. a sin-
gle modality task, and description, i.e. a highly synchronized multi-modal task. We
expected naming to share similarities of visual processing with both search and de-
scription.

In particular, on the spatial component of visual processing, we expected naming
to resemble a search task, as the scene is widely inspected to have a full understand-
ing of potentially interesting objects embedded that can be named. This similarity
was expected to emerge especially when search is cued with an inanimate target, as
it forces the visual inspection to span more broadly the scene to identify potential tar-
gets. We find that naming and search have a larger entropy of fixation distribution than
description, where visual attention focuses on animate referents and the relation they
have with the surrounding scene context. However, naming is a linguistically driven
task; which implies that the objects of the scene are inspected relative to their linguis-
tic relevance. The direct consequence of this fact is the overlap with the referential
information processed during description. We find on JS-divergence, that description
shares a similar fixation distribution with naming, i.e. similar objects are inspected, but
naming is more spread, probably more objects are fixated, especially when compared
to search. However, interestingly, we find that a more spread out distribution does
not imply more variability of visual responses in naming than in description or search.
On the contrary, we find that within tasks, scan patterns across participants are more
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similar during naming than during description and search. Moreover, when comparing
different tasks, we find that the order of objects fixated during naming is more similar
to both search and description, than when search and description are compared. During
naming, mechanisms of active scene exploration are weighted by linguistic judgments
of the referential relevance of the objects in the scene. Taken together, these results
suggest that naming is an intermediate task between search and description.

Table 6.11: LME coefficients. The dependent mea-
sures are: Similarity Within and Similarity Between.
For Similarity Within; the predictors are: Task
(Search, Naming and Description) with search used
as a reference level and Clutter (Minimal, Differ-
ent and Cluttered), with Different used as a ref-
erence level. For Similarity Between, instead, the
Task predictor is (Naming vs Description, Descrip-
tion vs Search, Search vs Naming), with Descrip-
tion vs Search used as reference level.

Within Task
Predictor Coefficient p

Intercept 0.59 0.0001
Naming 0.096 0.0001
Description 0.061 0.0001
Minimal 0.0022 0.6

Between Tasks
Predictor Coefficient p

Intercept 0.40 0.0001
description vs naming 0.05 0.0001
Minimal 0.04 0.0001
Clutter 0.021 0.001
Minimal:naming vs search −0.04 0.0001
Clutter:description vs naming −0.016 0.0001
Minimal:description vs naming 0.009 0.01
Clutter:naming vs search −0.05 0.0001

On the temporal component of vi-
sual processing, we expected naming
to be more similar to description than
search. Both description and naming de-
mand cross-modal referential integration,
whereas in search only visual integration,
in the form of cue verification, is needed.
In line with results from experiment 7,
we find longer temporal processing, e.g.
longer mean fixation duration, in nam-
ing and description than in search. This
effect was true on all measures of fix-
ation duration considered, with the ex-
ception of initiation time; where instead,
we observed shorter initiation for nam-
ing compared to search and description.
The longer initiations during search and
description are a result of the integration
between cued target and initial scene, i.e.
gist, information. Since the naming task
is not cued, the initiation time is faster.

When looking at the conceptual fac-
tors of target (i.e. animacy) and scene
(i.e. clutter) that were manipulated, we
largely confirmed what was observed in experiments 7-8 and previous chapters. An-
imate targets are identified faster than inanimate ones, especially during search; but

198



6.7 Conclusion

they are looked at more during description and naming, as they carry conceptual in-
formation highly relevant for a linguistic task. Moreover, animacy of targets interacts
with scene clutter in several task dependent ways. The less the density, the easier is
target identification. However, when scene information is used to drive a linguistic
task, the higher density triggers linguistic facilitation as more referential information
is available. In linguistic tasks, in fact, the low density of the scene pulls attention to
the animate objects, as in the absence of a richer inanimate context, they carry the most
relevant linguistic information that could be used during naming or description.

6.7 Conclusion

Theories of active visual perception have stressed the importance of task on defining
the patterns of visual attention allocation (Castelhano et al., 2009; Findlay & Gilchrist,
2001; Henderson, 2007; Yarbus, 1967). The research conducted in visual cognition has
mainly focused on visual tasks, i.e. only visual attention is actively engaged. Never-
theless, several other tasks, e.g. scene description, require the synchronous interaction
of different modalities, e.g. sentence processing. To the best of our knowledge, it
is largely unknown how such linguistically driven tasks, which demand cross-modal
interaction, compare to standard tasks in the visual cognition literature, and whether
they are subject to the same visual biases. Moreover, in the context of this thesis, by
understanding how visual processing reacts to the cross-modal demands of the task,
we can develop a more general theory of cross-modal referential processing.

We extend previous literature in several significant ways. We confirm that ref-
erential object-based scene information is actively used during goal directed tasks to
guide visual attention (Malcolm & Henderson, 2010; Nuthmann & Henderson, 2010;
Schmidt & Zelinsky, 2009). Moreover, we find that the way referential information is
visually processed is related to the nature of task, and the degree of cross-modal inter-
activity required. We observed that linguistically driven tasks share a similar pattern
of referential information processing, where the joint activation of visual and linguistic
information about the objects yields a more tight synchronization, compared to purely
visual tasks.

Based on the nature of the eye-movement measure, we have distinguished between
a spatial and temporal component of visual processing. This distinction has helped
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the interpretation of the results by marking a difference between inspection, e.g. spa-
tial distribution of fixation, and integration, e.g. mean fixation duration, processes.
Interestingly, we have shown that naming and search are more related on the spatial
component, i.e. wider scene inspection; whereas on the temporal component naming
is more related to description, i.e. cross-modal integration.

In line with the previous chapters, we observed that the animacy of the target and
the clutter of the scene have important influences on the pattern of visual responses
observed, across the different tasks. Especially, inanimate objects are more difficult
to identify in cluttered scenes during search, while they are an important source of
referential information during naming. Animate objects, instead, are crucial during
linguistically driven tasks, and this effect is especially evident in low density scenes. In
such cases, the scarcity of inanimate objects to name or describe pulls visual attention
to animate objects, which carry important conceptual information.

Overall, the nature of the task has important theoretical and modeling conse-
quences. Our results support a theory of object-based allocation of visual attention
during goal directed tasks (Nuthmann & Henderson, 2010; Zelinsky & Schmidt, 2009).
However, this view does not spell out how the sub-goals of a task (e.g. formation of a
target template, integration of gist information, localization of cued object, etc.) inter-
act with the referential information about the objects, i.e. a CUPBOARD might contain
a PLATE. This interaction of task sub-goals and object-based information is further
complicated when visual attention interacts with sentence processing. In such cases,
object information is relevant if it is also linguistically relevant, and its activation is
bound to the constraints imposed by the linguistic structures comprehended or pro-
duced. From a modeling perspective, our study suggests that for each task different
routines of spatial and temporal visual processing have to be accounted for. These
routines are, furthermore, intimately connected to the degree of cross-modal interac-
tivity required. Thus, we believe that models based on a combination of contextual and
image-based information (Torralba et al., 2006) would not be able to extend beyond
search tasks.

Overall, theories of active visual perception, beside visual factors, must now in-
clude also cross-modal factors. Moreover, our results suggest that the modeling frame-
work adopted has to be task specific, and must be able to utilize the referential infor-
mation of objects to achieve the different sub-goals required.
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Chapter 7

Conclusion

In this thesis, we investigated how referentiality is formed, maintained and shared
across vision and language during their synchronous processing. In a range of dif-
ferent behavioral experiments, we unraveled the mechanisms underlying cross-modal
referentiality by exploring the visual and linguistic factors involved, and the pattern of
their interaction.

7.1 Contributions

Cognition is a highly integrated system, which emerges as a result of the interaction
between mechanisms of different cognitive modalities. The conclusion we arrived at
in this thesis is the existence of a cross-modal referential interface allowing the differ-
ent modalities to communicate, share and integrate information. Our work focused on
the interaction of vision and language during tasks demanding synchronous process-
ing. We found that properties of visual referential information directly modulate pro-
cesses of situated language understanding and production. And likewise, the responses
of visual attention closely relate to the linguistic referential information concurrently
processed.

Previous literature in situated language processing (Visual World Paradigm, VWP)
has focused on linguistic phenomena, largely underestimating the active contribution
of mechanisms specific to visual processing (e.g. Altmann & Kamide 1999; Knoe-
ferle & Crocker 2006; Tanenhaus et al. 1995). Our first contribution was to show how
image-based low-level visual information, i.e. saliency (Itti & Koch, 2000b; Parkhursta
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et al., 2002), is activated during situated language understanding. In particular, we
showed that the saliency of visual objects is used to predict upcoming linguistic ref-
erents of the sentence. When the linguistic information processed is not sufficient to
make a full prediction about upcoming arguments, sentence processing resorts to vi-
sual saliency to anticipate this information. This effect is, in fact, observed around the
verb site, where visual information can be used to anticipate its following arguments
(e.g. direct object). This finding, beside showing a clear interaction between visual
and linguistic information, also challenges evidence in the visual cognition literature,
where saliency information is observed guiding visual attention only when the task
performed is not goal directed, i.e. free viewing (Henderson et al., 2007). In a situated
language understanding task, the linguistic information processed mediates visual at-
tention incrementally (Crocker et al., 2010). Thus, when linguistic information is not
sufficient to generate a prediction about all the arguments involved in the sentence (as
visual referents), visual attention is relatively unconstrained, and image-based effects
emerge to fill in this gap. So, more generally, we argue that image-based information
is utilized when other sources of top-down information, e.g. linguistic information, are
not sufficient to guide visual attention.

In a situated language understanding task, the patterns of visual attention are
mainly reactions to linguistic stimuli; and this implies a rather passive contribution
of visual mechanisms during the course of the task. In order to explore the active in-
volvement of visual mechanisms during sentence processing, we moved on to situated
sentence production tasks. The main advantage of studying production processes is
that we can observe how the visual information of a scene is selected for linguistic en-
coding; thus allowing us to observe natural associations between visual and linguistic
information. During production, in fact, we are able to disentangle the cross-modal
factors modulating the synchronous association between linguistic, i.e. sentences, and
visual referential information processed, i.e. scan patterns.

An important change, which we are the first to introduce within the VWP approach,
is to situate language production tasks in photo-realistic scenes. This change is crucial
in order to explore with a finer granularity cross-modal integration of visual and lin-
guistic referential information. The complexity of a photo-realistic scene, compared
to the commonly used object arrays or clip-art pseudo-scenes (e.g. Arai et al. 2007;
Spivey-Knowlton et al. 2002), allows visual attention to be more realistically driven
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by image (e.g. color, luminosity) and object based (e.g. co-occurrence) information.
In particular, we focused on two factors shown to have an influence both on visual
attention and sentence processing: scene density, i.e. clutter (Rosenholtz et al., 2005),
and object semantics, i.e. animacy (McDonald et al., 1993). The clutter of a scene is
a general indicator of visual complexity (Rosenholtz et al., 2007), which, investigated
during search task, is negatively correlated with target identification (Henderson et al.,
2009b). The animacy of objects, instead, marks a conceptual division of real-world en-
tities, which has important implications for sentence processing, e.g. word order and
grammatical function assignment (Branigan et al., 2008); as well as on visual atten-
tion, i.e. target identification and temporal fixation processing (Fletcher-Watson et al.,
2008). We re-evaluated and unified these findings by investigating the impact of ani-
macy of objects and clutter of the scene during situated sentence production. Beside
confirming previous literature, we provided an unified explanation of their cross-modal
interaction. We showed that clutter of the scene and animacy of objects are intimately
connected both in visual and linguistic responses. In particular, the encoding of ani-
mate referents is facilitated by higher clutter: the more the clutter, the more referential
information can be used to situate the description, i.e. more looks to the scene context
occur during linguistic mention; whereas a lower clutter forces visual attention to re-
sort to the animate referent itself to source the generation process, i.e. more looks to
the animate referent during its mention. Also inanimate referents tend to benefit from
higher clutter during description, but in a different way compared to animate refer-
ents. A cluttered scene provides more ground objects to spatially relate the inanimate
referents. Once the linguistic encoding has started, visual attention narrows around
those visual referents forming the description to avoid competition with surrounding
objects; whereas in minimal scenes, the lackness of competing ground objects makes
visual attention more spread.

A mechanism assumed to explain how visual and linguistic referential information
is combined during situated language production is the eye-voice span (Griffin & Bock,
2000; Qu & Chai, 2008, 2010), which states that a visual referent is looked at shortly
before its linguistic mention. We showed that this mechanism doesn’t hold in photo-
realistic scenes; instead, we observed the eye-voice span to be modulated by the clutter
of the scene and the animacy of target object. During linguistic mention of animate
referents, we found for example, that visual attention is captured by contextual scene
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information rather than the referent itself. More generally, we assumed the eye-voice
span to be a sub-routine of a larger process of cross-modal coordination which occurs
only when certain visual and task related factors are satisfied, e.g. minimal scenes. Ev-
idence of coordination has been observed on scan patterns during multi-modal tasks,
such as dialogue (Richardson et al., 2007) and motor-action (Land, 2006): participants
align their scan patterns to synchronize the interaction between cognitive processes.
We argued, more generally, that coordination emerges to synchronize cross-modal in-
teraction. So, our hypothesis is that coordination should be observed during situated
language processing, as a result of cross-modal interaction occurring between visual
and linguistic referential information. Thus, we expected that during scene descrip-
tion, the linguistic information mentioned (sentences) is coordinated with associated
patterns of visual inspection (scan patterns). Moreover, we assumed this relation to
be partially independent from the eye-voice mechanism, i.e. visual objects can be
fixated before or after their linguistic mention: what matters is that the sequence of
objects fixated relates to the sequence of words produced. By performing a cross-
modal similarity analysis, where we correlate similarity between sentences and scan
patterns, we are able to show their coordination: i.e. similar sentences are associated
to similar scan patterns. Crucially, we are able to show that the coordination holds
both within the same scene and across different scenes, i.e. the similarity between sen-
tences produced in different scenes positevely correlates with similarity of associated
scan patterns. We conclude that the coordination observed across scenes goes beyond
the known scene-based factors (bottom-up/top-down) driving scan pattern similarities
(Humphrey & Underwood, 2008; Itti & Koch, 2000b), and suggests a deeper process
of synchronous cross-modal alignment, which allows multi-modal cognitive processes
to be organized.

A situated language processing task requires the cross-modal interaction between
visual and linguistic mechanisms. However, cross-modal interaction emerges only in
relation to the nature of the task performed. In fact, each task entails different sub-
goals, which are decisive on the cognitive modalities engaged, and the pattern of their
interaction. Research in visual cognition has mainly compared visual tasks, e.g. search
and memorization, observing significant differences in the eye-movement responses
(Castelhano et al., 2009). Both search and memorization are single modality tasks, in
that only visual attention is actively engaged. However, in order to better understand
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the influence of task, and its relation with cross-modal interactivity, a comparison be-
tween tasks demanding different degrees of cross-modal interactivity was needed. We
compared three tasks: (1) search (i.e. find and count a cued target), (2) object nam-
ing (i.e. name the most important five objects), and (3) description (i.e. describe a
cued target in relation to the scene). These tasks vary by the degree of cross-modal
(visual and linguistic) interaction required. During search only visual attention is acti-
vated; whereas in object naming and description also sentence processing is involved
but with a different prominence. In naming, visual attention is partially driven by the
linguistic relevance of objects, whereas in description, visual attention is tightly co-
ordinated with the structure of the sentence concurrently processed. We tested, and
supported, the hypothesis that cross-modal interaction triggers a more complex pattern
of visual referential processing by looking at several eye-movement measures, e.g.
first pass fixation duration, and scan pattern similarities within/between tasks. More-
over, motivated by previous results, we argued that density of scene and animacy of
objects should modulate visual responses according to the task being performed. In or-
der to rationally interpret eye-movement measures in relation to the visual processing
triggered, we introduce a distinction between the temporal and spatial components of
visual processing. Measures for the spatial component look at inspection, e.g. spatial
distribution of fixation, and indicate how wide visual sampling is for a certain task.
Measures for the temporal component look at integration, e.g. mean fixation duration,
and refer to the complexity of visual processing needed to perform a certain task. We
showed that the cross-modal interaction needed during naming and description, require
more complex temporal processing, as visual and linguistic referential information has
to be integrated. Moreover, the cross-modal interaction of these tasks results in a
higher scan pattern similarity compared to search, a single modality task. The joint
activation of visual and linguistic relevance allows for a stronger guidance of visual
attention, which makes different participants more coordinated in their scan patterns.
On the spatial component, we find that naming has a wider visual sampling compared
to search and description. Overall, the goal of a task, e.g. name the most relevant
five objects, has a direct impact on the spatial component, whereas its cross-modal
interactivity is reflected by the complexity of temporal processing needed to integrate
referential information across modalities. In light of these findings, theories of active
visual perception (e.g. Malcolm & Henderson 2010; Schmidt & Zelinsky 2009) and
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situated sentence processing (e.g. Altmann & Mirkovic 2009; Tanenhaus et al. 1995)
must now move toward a more unified framework, which is able to explain the influ-
ence of both visual and linguistic factors in relation to the type of task performed, and
its goals.

7.2 Future work

In this thesis, we have demonstrated the existence of a cross-modal referential interface
upon which scene understanding and sentence processing can be coordinated. The co-
ordination on reference allows different cognitive processes to be synchronized. More
importantly, coordination permits an efficiently organized communication, as informa-
tion have to be ‘standardized‘ in order to be optimally conveyed. So, the more similarly
we behave, the more coordinated the resulting communication will be. Importantly, we
demonstrated that such similarity crosses the domain of a single modality, and it ex-
tends over the different modalities engaged by the task performed.

The main consequence of our demonstration is that even if modalities might be
governed by independent mechanisms, they nevertheless share correlated patterns of
processing. So, any theory of cognition that aspires to integrate multi-modal process-
ing within the same account, has to explain: (1) the formation of correlated cross-
modal patterns, (2) the mechanisms modulating the strength of such correlation, and
(3) the range of multi-modal factors involved. The work presented in this thesis lays
the foundation to systematic research on cross-modal processing; but its theoretical
reach is limited to a general understanding on how cross-modal processing can be ex-
perimentally examined and computationally quantified. More specific questions elu-
cidating the interplay between different components (conceptual, representational and
computational) involved in cross-modal similarity are needed.

In particular, during our exploration of the coordination between vision and lan-
guage, we observed a non-linear (sigmoid-like) trend of cross-modal similarity. This
trend displayed an extended intermediate plateau region with constant values of cor-
related similarity, and extremes with sharp changes (positive and negative), where a
minimum change of similarity in one modality was correlated to sensible changes on
the other modality. This finding is particularly intriguing, as it suggests the presence
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of different weighting factors, both visual and linguistic, mediating coordination. As
a first diagnostic, we propose to divide pairs of sentences/scan patterns into classes,
according to their cross-modal similarity value; thus, we can distinguish intermedi-
ate values from extremes. Then, we suggest to explore more in depth which factors
could be implicated (positively or negatively) on the cross-modal similarity value for
the different classes. These factors might be conceptual, as we have shown with an-
imacy, but they can also relate more generally to the accessibility and processing of
event knoweldge, i.e., some scenes foster coordination more than others. In situated
language production, in fact, accessibility of an event strongly depends upon the vi-
sual material displayed in the scene: how such material is spatially organized, which
objects are contained, how many can be recognized or classified, their familiarity and
the contextual relations they entertain with one another (just to mention a few). Thus,
we suggest that through a series of different experiments, spanning both behavioral
and brain imaging, testing the role of event context, it would be possible to provide a
taxonomy of the factors involved in cross-modal similarity, and quantify their relative
weights.

Obviously, the accessibility of the event is not isolated from the production task
performed. We investigated production cued on specific targets. This decision was
taken to bound the generation within the information displayed by the scene, and limit
the actual sentence production to mere descriptions. However, in other production
tasks, such as free production, we expect a different pattern of coordination to arise.
Especially, we expect a sensible increase in the variability of both sentences and the
associated scan patterns, resulting from the use of associative and episodic memory
(i.e., an object could be described relative to a fictitious past 1), and freedom of lin-
guistic selection both of the referents, and their syntactic construction (e.g., active vs
passive). Even if a free production task is expected to show less coordination than a
cued task, it would be crucial to unravel their underlying similarities; as the pool of
sentences shared by both tasks would represent ‘optimal descriptions‘ of the corre-
sponding scenes, i.e., descriptions generated both with and without explicit cueing.

1Hints suggesting this idea come from a follow-up free production web-experiment, which has not

been reported in this thesis.
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A basic question about cross-modal similarity of visual and linguistic processing,
and more generally about their synchronous interaction, regards the way visual and
linguistic information are represented. Both types of information has syntactic orga-
nization and semantic form; but they are quite distinct for the two modalities. Thus,
an important step to bring us closer to the understanding of cross-modal similarity is
to unify the syntactic and semantic representation of visual and linguistic information.
In order to address this issue, the first challenge is to assign a syntactic representation
to visual information. At the state of art, we can compare semantic information of
visual and linguistic processing in the form of referential sequences (see Chapter 5),
but syntactic information of sentences does not extend to visual information, as a verb
phrase like eat is represented by a configuration of visual objects such as a MAN with
the MOUTH open, and his HAND holding an APPLE. Thus a ’syntactic’ representation
shared between visual and linguistic information must be able to incorporate these pat-
terns of visual configurations with the identity of the linguistic constituent. By finding
a syntactic representation shared between vision and language, we would also be able
to solve the problem of one-to-one multimodal mapping between visual and linguistic
information, when modeling techniques, such as Hidden Markov Models, are applied.

The studies presented in this thesis have focused on the English language. How-
ever, if cross-modal coordination is a general mechanism of cognition, we should be
able to observe it across different languages. The advantage of studying coordination
across languages is that we can investigate phenomena occurring at the syntactic and
semantic component of sentence processing by looking at cross-linguistic similarity.
A concrete extension of these ideas could be a cross-linguistic comparison between
languages which have a different syntactic ordering, like English and Japanese; and
a test whether similarity of scan patterns emerges in relation to sentences with iden-
tical semantics but a different syntax. If such similarity is found, we can conclude
that visual attention organizes its referential representation independently of syntactic
mechanisms, but based on the meaning of the event. In order to actually quantify such
similarity, we suggest to include in the cross-linguistic comparison another language,
like Italian, which has a similar syntactic ordering to English, and could be used as a
reference baseline.

Throughout the thesis, we have performed statistical regression modeling to quan-
tify the factors involved during cross-modal processing, using the descriptive approach.
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In order to situate the cross-modal interaction between sentences and scan patterns in a
generative framework we might approach it in terms of graphs, and focus on simulat-
ing a specific task, e.g. object naming. A scan pattern can be represented as a directed
graph, where the nodes are the visual objects looked at, which can be enriched with
more information such as fixation duration, and the edges connecting the nodes are
the transition probabilities of saccading to another object. A starting representation
for a sentence might be a semantic network where the content words are the nodes,
and the edges connecting them are co-occurrences probability of other content words
related to them. The main challenge, however, is to join the two resulting graphs to
perform measures of their connectivity, while attempting to simulate sentences from
scan patterns, and vice-versa. In this generative approach, a combination of methods
from graph theory, graphical models, and markov processes can be used to align visual
and linguistic processing.

In general, our work has shown that it is possible to unify findings across different
independent fields, such as human sentence processing and visual cognition. By iden-
tifying the common mechanisms allowing cross-modal interaction, we aim to provide
a more integrated understanding of the architecture of cognition.
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Chapter 8

Experimental Material

Sentences used in Experiments (1-3)

The boy will put the pillow on the table in the box
The girl will put the orange on the tray in the bowl
The boy will put the pasta on the plate in the colander
The girl will put the griddle in the oven on the table
The boy will put the bottle in the freezer on the shelf
The girl will put the sausage in the pot on the platter
The boy will move the apple on the towel in the box
The girl will move the pen on the folder in the box
The boy will move the cake on saucer in the bowl
The girl will move the key on the envelop in the closet
The boy will move the salt-shaker on the envelop in the drawer
The girl will move the flower on the newspaper in the freezer
The boy will place the pencil on the erase in the cup
The girl will place the spoon on the napkin in the bowl
The boy will place the coin on the cash in the cup
The girl will place the coin in the vase on the paper
The boy will place the flower in the glass on the newspapers
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The woman will place the apple in the colander on the napkin
The boy will lay the pencil in the vase on the cash
The girl will lay the salt-shaker in the briefcase on the tray
The boy will lay the spoon in the bin on the platter
The girl will lay the pineapple in the briefcase on the carpet
The boy will lay the pie in the luggage on the plate
The girl will lay the ruler in bin on folder
The boy will put the lighter on the jacket in the wardrobe
The girl will put the agenda on the lantern in the bag
The boy will put the parsley on the fish in the aquarium
The girl will move the nuts in the jug on the cooker
The boy will move the chopsticks in the pitcher on the microwave
The girl will move the shrimp in the can on the chair
The boy will lay the candle in the candelabra on the cabinet
The girl will lay the socks on the blanket in the dryer
The boy will lay the lobster on the rug in the basin
The girl will place the corn in the jar on the desk
The boy will place the clip on the curtain in the hamper
The girl will place the burger in the basket on the bench
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Set of Images used in Experiment (1-3)
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Sentences produced in Experiment 5

The woman is weighing herself
The woman is sitting on the bed
The man is cutting the pie
The man is paying for his room
Kid is playing the drum
The man is sorting things out
The sponge is next to the bath
The towel is on the basket case
The orange juice is in glasses
The suitcase, suitcases, are in the reception of the hotel
Th.. The knives are on the table
The book is lying open on the table
There are two babies in the bathroom
Man is lying down
The man is writing notes
Man is sitting in the chair
The man is cutting up meat
The man is tired at work
The bucket is in the blue basket
The teddy is in the girl’s harms
The juice is in jugs on the table
The flowers are on the table
The fruit is on the table
The phone lies next to the screen
A man is washing the bath
The girl is hugging a teddy bear
The woman is looking at a pile of paper
The woman is paying an hotel bill
The woman is making a salad
The woman is talking on the telephone
The woman is using the scale to weigh herself
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The shoe is on the floor
The men are drinking soup
The lamp is next to the reception desk
The baby is playing with the apple
The mug is on top of the in-tray
The woman is reading some letters
The kid is sleeping
The woman is eating breakfast
The man is checking out of the hotel
The man is carving a chicken
A woman is cleaning the floor
The baby is playing with the toilet-paper
The mobile is on the bed
The man is writing on a clipboard
The telephone is on the desk
Void
The man is working on his laptop
The baby sat on the toilet
The man laid upon the bed while his friend read the newspaper
The man filled out an application
A man sits in a rocking chair
The man prepares food in the kitchen
The man sat exasperated at his computer speaking to his friend
The man cleaned the tub rinsing his rug in a bucket
The girl resting upon the bed held her teddy tightly while another teddy sat on the
ground
As the two women thought the pens sat neatly on the table next to them
The hotel reception was decorated with flower buds
The woman cuts the fruit
The woman at the desk spoke on the phone while another phone sat unused next to her
The woman weight herself on the scale while her friend redid her face
This catholic glad woman sat on the edge of the bed talking to her friend
The man ate dinner at his table
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The man spoke to the employ at the registration desk at the hotel
The kid banged his drumstick against the floor
Void
The woman used the sponge to clean the counter top
The towel was placed next to the child who was laying upon the bed
The female drinks juice with her breakfast while speaking to a female friend
As the man checked into the hotel his suitcases sat by his feet and another sat on the
counter
The man dissected the roast chicken with his knife
The book sits open on the desk
A woman washing glass
A kid on a bed
A woman sitting in a table drinking orange juice
A man standing at an hotel counter
A man preparing chicken
Woman cleaning the floor
Baby playing with toilet paper
A mobile phone sitting on a bed
Soldier writing on a clipboard
Telephone on a pedestal
A man preparing a waffle
A laptop on a desk
A man washing clothes in a bathtub
A girl holding a bonny rabbit
A woman talking on the phone
A woman at the counter
A woman preparing food
Woman in an office
A woman standing on a scale
A shoe in a box
A man eating soup
A lamp on a table
An apple on a plate
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A mug on a conference room table
The woman stands on the scale
The woman is sitting on the bed
The man is standing at the dinner table
The man is at reception
The kid plays the drum
The man is on the desk and counting out some leaflets
The sponge is next to the bath
The towel is on the end of the bed
There is juice on the table
There is a suitcase on reception and on the floor
The knife is on the chopping board
The book is on the table
The baby is on the toilet
The man is lying on the bed
The man is sitting on the sofa
The man is at the reception
The man is in the kitchen
The man is in his office
The bucket is on the floor
The child is holding a teddy
There is juice on the mantel piece and on the table
The flower is sitting on the reception
There is fruit on the table
The woman is on the phone
The man is bringing his clothes in the bathtub oh no cleaning the bathtub
The girl holding the teddy bear is sitting on the bed and the girl in the nighty is next to
the bed
The woman is sitting in a chair in the corner
The woman is chatting to the reception
The woman is having coffee and the other woman is arranging the food on the table
The woman approaches the receptionist who is on the phone
The woman is standing on the scale in the bathroom
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The running shoes are scattered in the bedroom and the woman is wearing black heel
shoes
The soup is on the dining room table
The lamps are on the side tables
The apple is in the toddler’s bowl and the other apple is on the counter
The two mugs are on the desk holding stationery
The women are in the bathroom
The kids are in the bedroom playing and sleeping
The woman is having breakfast with another woman at the table
The man is signing papers at the lobby
The men are sitting at the kitchen counter, wow, one man is sitting at the kitchen
counter and the other man is carving a chicken
The woman is sitting on the chair
The children are playing with the toilet-paper in the bathroom
The mobile is open on the bed
Two clipboards are on the table of a living room
One telephone is on an elaborate side table and the other telephone is on the counter
The chef on the left is making a waffle
The laptop is on the office desk
The baby is in the bathroom
The man lies in the bed
The man is filling a paper
The man sits waiting in the chair
The man is working in the kitchen
The man is at the office
There is a bucket in the bathroom
Teddy is on the ground
The woman has a pen in her hand
On the table sits the beautiful flowers
The woman puts fruit on the table
The woman is on the phone
The woman is on the scale
The woman sits on the bed
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The man is drinking wine
The man is working at the hotel
The kid is in the kitchen
The man is working in the office
The sponge is used for cleaning
The towel lays bordered on the bed
The woman drinks orange juice for breakfast
A small suitcase is being carried by the man
The knife sits on the cutting board
The book is on the shelf
Two, there are two, there is one woman cleaning bathroom taps while another woman
is doing something that looks like the same
One kid is sleeping as the other kid is beside him playing
There is a woman drinking orange juice and another woman speaking to her
One man waits for another man to sign in to, fill out the registration form for a hotel
There is a man preparing a turkey while another man is smelling it
There is a woman sitting in a chair as well as a woman cleaning the waiting area
One child is wasting toilet-paper
A man laid down on his bed with his mobile beside him
One man writes on a clipboard, as another man observes a piece of paper
There is a telephone in front of a man, who is checking another man into a hotel
Two, one chef is preparing a waffle
There is a man scratching his head in front of his laptop
One man is washing something in the sink while another man is observing
There is a girl hugging a teddy bear while another girl observes her
One woman sits in the chair relaxing as another woman sits on the phone
There is a woman ahead waiting to check in an hotel room and she is being served by
another woman
There is a woman standing up and drinking coffee while another woman prepares
appetizers
There is a woman talking with someone at the phone as another woman waits for her
attention
A woman is standing on the scale and another woman behind her
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There is a shoe on the floor beside two women
A man is about to serve another man soup
There is man checking into a hotel in front of a lamp
Children playing in the kitchen
There is a mug on the desk behind the man who is sorting out files
There is a woman weighing herself on the scales
There is a woman sitting on the bed
There is a man drinking wine, waiting for his food
There is a man in a pink shirt serving another gentleman
There is a kid playing the drums and a kid playing with a fruit bowl on the floor
There is a man unpacking a box
The woman is cleaning the sink with a sponge
There is a towel as well as other towels folded on the bed
There are two glasses of juice in this picture
There is a suitcase on the desk and a suitcase by the gentleman’s feet
A gentleman is cutting chicken with a knife
There is a book sitting open on the desk
There is a baby playing with the toilet-roll
There is a man resting on the bed as another man unpacks his clothes
There is a man taking notes
There is a man relaxing in a chair
There is a man chopping meat on the counter
The man is overworked
There is a blue bucket in the basket
The little girl is sitting on the bed cuddling her teddy
There is a jug of juice sitting on the table
There is a very pretty yellow flower in the vase
There is a lot of different kind of fruit in the fruit bowl
The woman is talking on the telephone
The man cleaned the bathtub as his friend watched
The girl hugged her teddy
The two women sat in the empty room
A woman arrived at her hotel and was greeted kindly
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The woman tried some of dinner she just made for her friend
The woman went to the help desk
The scale in the bathroom was stood on by the woman
The girl has tried on her new shoes
The soup was made and placed on the table
The lamps in the foyer were old but beautiful
The apple on the counter went unnoticed
The mug was new
The two women cleaned the bathroom together
The kid played while his baby brother slept
The woman enjoyed her breakfast while the nanny arrived for the day
The man at the hotel desk helped the tourist check-in
The man made lunch for his friend
The woman cleaned the floor in the office
The baby used too much toilet-paper when using the toilet
The man’s mobile phone rang
The empty clipboard laid beside the two soldiers
The telephone in the hotel lobby began to ring
The waffle was made especially that morning
The laptop stopped working
The baby is playing with the toilet-paper
The man is in police uniform
The man is writing
The man is waiting at the reception
The man is cooking
The man is tired
A man is cleaning the bucket
The girl is holding a teddy
The pen is lying on the sofa
The flower is in the vase
The fruits are lying on the table
The girl is talking on the phone
The woman is weighing herself
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The woman is looking at the toys
The man is making a meal
The men are at the reception
The kids are playing
The man is in an office
The girl is cleaning with the sponge
The towel is yellow, coloured
The juice is on the table
The suitcase is lying on the ground
The knife is lying on the table
The book is lying opened
There is a woman scrubbing a bathroom sink with a sponge, and another woman who
looks to be dusting a wall
There is a little kid passed out on his mum’s and dad’s bed, and a kid standing next to
him with some sort of holes in the crouch of his pants
There is a woman sitting at the table drinking a juice, laughing, and an older woman
facing her, she looks like she is about to say something
A man is standing behind a reception desk facing directly forward, there is another
man to his right signing in a form on the desk
There is a man preparing what looks to be a chicken or a turkey to eat and another
man sitting across from him
There is a woman who looks to be mopping a floor pushing a broom in the left hand
corner and another woman sitting at ehh in a chair at a table eating toast
There are two small children playing with toilet-paper in the bathroom
There is a man asleep on a bed and an open mobile next to him, there is another
mobile perched on the ehh perched on the wall, sorry, charging
There is a clipboard sitting on a coffee table and another clipboard next to it on which
a US army man is writing
There is some sort of reception counter and a telephone on the reception counter next
to a man, there is another telephone on a pedestal to his left
There is a Japanese man, I think, in a kitchen cooking waffles
There is a man leaning back sitting on a desk whereas a laptop is opened in front of
him there is another opened laptop ehh further to the front of the picture
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There is a man leaning over into a bathtub, he looks like is dipping a cloth into the
water and there is another man with his back to the scene near many cleaning products
There is a girl sitting on her bed hugging her teddy bear and another little girl next to
her, she looks like she wants the teddy bear
There is a woman in a party jazz lying back against a chair and another woman directly
across from her on the phone in a living room, with a lot of liquor on the mantel
There is a woman checking into a hotel she is handing her credit card to another
woman that is standing behind the desk
There is a woman making a platter of fruit in the kitchen and another woman drinking
a cup of tee and talking to her
There is a woman talking on the phone behind her desk and another woman who looks
to be waiting to see her when she is done
There is a woman standing on a scale in a bathroom facing the sink and the mirror
There is one shoe in a filing box next to a woman on a bed in a bedroom and another
shoe on the floor near another woman also in the bedroom
There is a man serving soup to his friend
There is a man at the desk in what looks to be an hotel and there is a bed side table
with a lamp on top of it next to him ahh there is also another lamp in a sitting area to
his right
There is an apple sitting on a plate on a kitchen counter and two little boys playing on
the floor with some toys
There is a mug sitting on an office desk with a bunch of pencils and rulers and office
supplies in it, and another mug across from it with the same contents, there are also
two larger mugs that look like travel mugs on the desk
The woman is on the scales and the woman is standing
The woman is sitting on the bed and standing
The man lifts the dish from the table
The men are standing
The kids are sitting on the ground playing
The man is standing reading and the man is sitting
The sponge is being used to clean the bathroom
The towel is on the bed and on the sh.. drawer
The women are drinking the juice
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The suitcases on the desk and on the floor
The knife is on the bread board
The book is on the table
The babies are in the bathroom playing
The man is reading the newspaper and lying on the bed
The men are sitting
The man is sitting and the man is standing
The men are chopping food
The man is in his office leaning back
The bucket in the picture is next to the cleaning products and in a basket
The teddy is on the floor next to the bed and being held by the girl
The juice is in two jugs on the table and the mantel
The flowers are in a vase on the desk and on the table with the chairs
The fruit is on the table in two baskets
The woman is talking on the phone
The man washing the clothes in the bath
The little girl on the bed cuddling a teddy, two little girls
One woman is on the phone while the other is sitting relaxing in her seat
Two women talking at the front desk
The woman standing drinking tea
There is a woman standing by the desk and another like woman on the phone
A set of weighing scales, two sets of weighing scales in the bathroom
Two shoes on the cha.., on the bed and on the floor
The man dishing soup to his guest
There are two lamps on, one on the table and one on the cabinet
There is an apple on the bowl, on the floor with the child and an apple on the work
surface
There are two mugs on a desk with stationary in them
There is one woman cleaning in shorts and one woman polishing glass
There is one little kid asleep on the bed and another standing, playing
One woman is sitting at the table eating breakfast and another is standing up
There is a man signing papers at the front desk and another man sit.. ehmmm that
works at the front desk
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There is one man preparing chicken and one sitting
There is one woman eating and one woman standing, cleaning I think
The child playing with the toilet-paper on the loo seat
A mobile phone charging at the wall
The man is writing information, soldier I guess or marine, was writing information on
the paper on the clipboard
One telephone on the stand and one telephone on the desk
The chef is making waffles and there is waffles in the microwave
The laptop on the desk
The baby is playing with toilet-paper
The man is lying in bed
The man is signing a paper
The man is near a fax machine
The man is wearing a yellow apron
The man is tired
A bucket is blue
The girl is holding a teddy bear
The pen is in the woman’s hand oh no the pen is on the table
The flowers are yellow
The woman is picking a piece of fruit
The woman is on the phone
The woman is weighing herself
The woman is sitting on the bed
The man is serving dinner
The man is checking in
The kid is playing with sticks
The man is emptying the box
The sponge is on the edge of the bathtub
The towel is folded on the bed
The woman is having juice for breakfast
The suitcase has red edges
The knife is sitting on the cutting board
The book is open on the table
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A woman and her friend busy cleaning a bathroom
A kid asleep at the foot of a double bed and another kid staring at the camera
A woman drinking orange juice sitting on a seat speaking to another woman holding
an handbag
A man stands behind a reception desk while a second man scribbles some notes in a
pad
A man sat at the table watching another man prepare a chicken
A woman cleaning a public area while another woman sits with a plate holding toasts
Toilet-paper has been unravelled by an unruly toddler on top of a lavatory
A mobile phone occupies its hoister on the wall of a hotel room while a second mobile
phone lies at the hand of a Chinese male
A man jots notes on a clipboard while his friend observes a second clipboard and a
third clipboard lies unused on a coffee table
A man sits behind... stands behind a counter with a telephone while a second telephone
rests a top a pedestal
A chef preparing a waffle while a separate chef carves a chicken
Two laptops are currently unused in an office space
A man cleaning a bath and another man possibly chatting to him
A girl sits cross legged on a bed clutching a teddy bear while another girl looks
thoughtfully at the room
A woman is relaxing at home while another woman, possibly her mother, speaks on
the telephone
A woman behind a reception desk is speaking to another woman checking in to the
hotel
A woman sips coffee while another woman idly interacts with food
A woman speaking on the phone and another woman waiting at her desk
A woman weights herself upon a scale while a second scale lies to her right
A woman wearing high heel shoes sits on a bed next to a box of new shoes
Two men sit preparing to eat soup
A lamp a top a side table in the lobby of a guest house
A child sitting on the floor playing with a pot holding an apple
A mug on an office table
The woman is on the scales
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The woman is on the bed
The man is serving food
The man is at the desk
The kid is playing with the drum
The man is standing
The sponge is on the bath
Towel is on the bed and on the chest
Woman is drinking juice
The suitcase is on the floor
The knife is on the board
The book is on the table
Baby is on the toilet
The man is on the bed
The man is writing
The man is sitting in the chair
The man is cooking
The man is tired
There is a bucket next to the bath and a bucket next to the door
The girl is holding a teddy
Juice is in the jug
The flower is on the table
Fruit is on the table
Woman is on the phone
There is a man watching another man in the bathroom
There is a girl holding a teddy on the bed
There is a woman on telephone
The woman is booking into reception
There is a woman who is preparing the fruit-salad
There is a woman answering the telephone
There is a woman on top of the scales
There is a shoe in a box
The man is preparing the bowl of soup
There is a lamp beside the reception
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The child has an apple in the pot
There is a mug filled with stationary
There is a woman who is scrubbing down the worktop
There is a kid asleep on the bed
There is a woman eating her breakfast
There is a man signing off papers at the reception
There is a man preparing a chicken
There is a woman cleaning the floor
The child is playing with the toilet-paper
There is a mobile phone open on the bed
There is an army office writing on the clipboard
There is a telephone behind the receptionist
The chefs are preparing waffles
There is a laptop open on the desk
The baby is sitting on the toilet
The man is lying on the bed
The man is filling out paperwork
The man is sitting in the lobby
The men are cooking
The man is stretching
The man is using a bucket to clean with
The girl is holding the teddy
The pen is sitting on the chair
There are flowers on the side table
The woman is eating fruit
The phone is being used by the lady
The woman is on the scale
The woman is looking at the teddy bear
The man is drinking wine
There is a man behind the desk
The kid is playing the drums
The man is working
The lady is cleaning with the sponge
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There are two towels on the bed
The lady is drinking juice
There are two suitcases in the lobby of the hotel
The man is using a knife to cut the turkey
There is a book on the table
The woman and her friend clean the bathroom
The kid lies on the bed
The woman drank a glass of orange juice
The man stood behind the desk
The man used the knife to cut the meat
The woman cleaned the floor
The baby used all the toilet-paper and trashed it over the floor
The man used his mobile to call his friend
The man wrote on his clipboard
There was a telephone on the polished desk
The chef prepared a waffle
The laptop was on the desk
The man washed in the bath
The girl sat on the bed hugging her teddy
The woman sat on the chair and looked at her wine collection
The woman greeted the receptionist
The woman drank a cup of tea
The woman was greeted by the receptionist
The woman stood on the scales
The girl looked at the new shoe she bought
The man enjoyed his soup
There was more than one lamp in the well lit reception area
There was an apple on the counter
There were many mugs on the desk
The woman is in the bathroom, one woman weights herself and another woman is
moisturising
The woman is sat on the bed next to another woman
The man is sat at the table with another man
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The man books into the hotel
The kid is playing with another kid in the kitchen
The man is sorting two files
The sponge is by the bath
There are two towels on the bed and two towels on the basket
The woman drinks the juice in the morning
There is a suitcase in the hotel, the customer has two suitcases
The knife is being used in cooking
There is a book on the side
The baby is playing with the toilet-roll
There is a man sleeping in an hotel room and another man reading a newspaper
The man is signing papers in the army
The man is relaxing in a hotel lobby
The man is cooking with another man
The man is tired of work
There is a bucket in the bathroom being used in cleaning the bathroom
The girl has lots of teddies
There are two jugs of juice in the room
There are flowers in the reception of the hotel
They have fruits on the table
The phone is being used by a receptionist
One man watches another man wash an item in the bath
One girl watches another girl sitting on the bed
One woman talks on the phone whilst another sits on the chair
One woman checks on with another woman
One woman drinks tea whilst another prepares dinner
One woman waits to speak to another woman who she is in the phone
A woman weights herself on the scales
One shoe is in a box on the bed another shoe is beside of the bed
There is soup in the bowl
There is a lamp to the left of the man, another lamp is beside the stairs
There is an apple on the counter, another is in a bowl
There are two mugs containing stationary on the desk
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A woman cleans the bathroom, another woman helps
One kid sleeps on the bed whilst another plays
One woman stands while another woman sits and eats her breakfast
One man is standing at the desk the other is signing a paper
Void
One woman eats whilst another woman cleans
The child plays with the toilet-paper
The mobile is on the bed next to the man
Two men hold, clipboard each, another clipboard rests on the table
There is a telephone on the desk, another telephone is on a stand
The chef prepares some waffles
A laptop sits on the desk, another laptop is on top of a box
There is a baby learning how to walk, within a toilet, while another baby is potty
training himself
There is a man asleep on a bed, with his phone open, while another man stumbles
reading a paper in a hotel room
A man signing a form in army costume next to an older member possibly a senior
There is a man sitting in the lobby of a reception while another man is on the computer
There is man preparing food in a kitchen with another man also doing the same
There is a tired man at work being chatted to by his boss in a very blank bare office
There is a man cleaning the bath with two buckets
There is two girls in a bedroom, one of which hugging a teddy the other has been left
by end of the bed
A pen has been left on a table while two women sit in a very empty living room
A woman is handing another woman room-key for the hotel next to a set of lovely
flower
A woman is about to have some fruit while chatting to her friend in a kitchen
There is a woman on a phone at reception with a customer waiting
There is a woman weighing herself at the sink within bathroom while her friend does
some cleaning
There is woman sat on the bed and a woman standing up within a bedroom of,
furniture
There is a man serving food to an empty table where one man with wine is about to sit
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down
There is a man at reception talking to another man behind the counter within a hotel
lobby
There is kid pretending to play the drums with his little brother playing with toys in
the kitchen
There is man standing in an office, unpacking a box, while his colleague does some
work on a computer
There is a sponge by the bath with two women cleaning it
A folded towel was left on a bed next to an unattended baby with his older brother
playing with the toy
A woman is drinking juice at a coffee table chatting to her friend
A man with a red suitcase is signing in to a hotel while the receptionist poses for the
camera
A knife is being left on a board, one man uses another knife to prepare a kitchen for
his friend
A book is being left open on a table while a woman is eating some food in a chair with
a cleaner behind her
One woman is cleaning the bathroom while the other one cleans the glasses
One kid is sleeping on the bed and the other one is playing
The woman is drinking orange juice
The man is checking out from the hotel
One man is cutting the chicken while the other one looks at him
The woman is eating while she waits
The kids are playing with the toilet-paper
The person on the bed was holding the mobile
The military is writing on his clipboard
There are two telephones in the lobby of the hotel
The chefs are cooking ... one of the chef is cooking waffles
The laptop is on the desk
The man is washing the tube while the other man looks at him
One girl is on the bed hugging a teddy bear and the other one is on the floor looking at
her
One of the women is talking on the phone while the other one is looking at the flowers
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The woman is checking in to the hotel
One of the women is eating fruit while the other one drinks tea
The woman waits while the other one is on the phone
There are two scales in the bathroom
There is one shoe right next to the bed and one shoe inside a box
The waiter is serving soup to the guest
There are several lamps in the room
The apple is on the counter
There are several mugs in the office
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Set of Photo-realistic Scenes used in Experiment 5
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