
Db2 Warehouse
Datalake Tables

Kelly Schlamb
WW Technology Sales Enablement
kschlamb@ca.ibm.com

Data Server Day 2024
Stockholm, Sweden



Notices and disclaimers

© 2024 International Business Machines Corporation. 

All rights reserved. 

This document is distributed “as is” without any warranty, either express or 

implied. In no event shall IBM be liable for any damage arising from the use of 

this information, including but not limited to, loss of data, business interruption, 

loss of profit or loss of opportunity.

Customer examples are presented as illustrations of how those customers have 

used IBM products and the results they may have achieved. Actual performance, 

cost, savings or other results in other operating environments may vary. 

Workshops, sessions and associated materials may have been prepared by 

independent session speakers, and do not necessarily reflect the views of IBM.

Not all offerings are available in every country in which IBM operates.

  

Any statements regarding IBM’s future direction, intent or product plans are 

subject to change or withdrawal without notice.

IBM, the IBM logo, and ibm.com are trademarks of International Business 

Machines Corporation, registered in many jurisdictions worldwide. Other product 

and service names might be trademarks of IBM or other companies. A current list 

of IBM trademarks is available on the Web at “Copyright and trademark 

information” at: www.ibm.com/legal/copytrade.shtml.

Certain comments made in this presentation may be characterized as forward 

looking under the Private Securities Litigation Reform Act of 1995. 

Forward-looking statements are based on the company’s current assumptions 

regarding future business and financial performance. Those statements by their 

nature address matters that are uncertain to different degrees and involve a 

number of factors that could cause actual results to differ materially. Additional 

information concerning these factors is contained in the Company’s filings with 

the SEC.

Copies are available from the SEC, from the IBM website, or from IBM Investor 

Relations. 

Any forward-looking statement made during this presentation speaks only as of 

the date on which it is made. The company assumes no obligation to update or 

revise any forward-looking statements except as required by law; these charts 

and the associated remarks and comments are integrally related and are 

intended to be presented and understood together.

https://www.ibm.com/legal/copytrade


Agenda

01

02

03

04

Data management 
architectures

Open-source
file & table formats

Db2 WH datalake tables

Creating and working
with datalake tables



Data Warehouse
• Highly performant data management platform

• Data from multiple sources organized into a 
centralized, highly-structured relational database

• Primarily supports data analytics and
business intelligence applications

• Data stored in proprietary formats on fast, 
expensive block-based storage devices



Data Lake
• A low-cost storage environment, which can house petabytes of raw data

• Commonly associated with Apache Hadoop, an open-source software framework for big data storage

• Traditionally has used HDFS, but object storage increasingly more common

• Stores structured, semi-structured, and unstructured data



Data Lakehouse
• Brings together the best attributes

of data warehouses and data lakes

• Utilizes low-cost object storage

• Exploits open data and table formats

• Flexibility to support both data analytics
and machine learning workloads

• Fit for purpose query engines (ideally)



What is object storage?

Object storage:

• Low cost 

• Near unlimited scalability

• Extreme durability & reliability 
(99.999999999%)

• High throughput

• High latency (but can be 
compensated for)

• Basic units are objects, which
are organized in buckets

• Most notable provider for object storage is Amazon S3 (Simple Storage Service)
• Other vendors offer S3-compatible object storage

Source: https://www.openpr.com/news/2367430/global-object-storage-market-market-revenue-market-growth



The rise of cloud object storage for data lakes and lakehouses

Object Storage HDFS Object Storage
vs. HDFS

Elasticity Yes (decoupled) No S3 is more elastic

Cost/TB/Month $23 $206 10X

Performance 20MB/s/core 90MB/s/core 2x better price/perf

Availability 99.99% 99.9% (estimated) 10X

Durability 99.999999999% 99.9999% 
(estimated)

10X+

Transactional 
writes

Most technologies 
now provide strong 
consistency

Yes Comparable

Cloud object storage technology is displacing HDFS as de facto storage technology for data lakes

Source: https://www.databricks.com/blog/2017/05/31/top-5-reasons-for-choosing-s3-over-hdfs.html



• Human-readable text

• Each row corresponds

to a single data record

• Each record consists

of one or more fields, 

delimited by commas

• Human-readable text

• Open file and data 

interchange format

• Consists of attribute-

value pairs and arrays

• JSON = JavaScript

Object Notation

• Open-source

• Binary columnar storage

• Designed for efficient 

data storage and

fast retrieval

• Highly compressible

• Self-describing

• Open-source

• Binary columnar storage

• Designed and optimized 

for Hive data

• Self-describing

• Similar in concept

to Parquet

• Open-source

• Row-oriented data 

format and serialization 

framework

• Robust support for 

schema evolution

• Mix of text/binary

Common open 

data file formats

Computer systems and 
applications store data
in files

Data can be stored in 
binary or text format

File formats can
be open or closed 
(proprietary/lock-in)

Open formats (Parquet, 
ORC, and Avro) are 
commonly used in data 
lakes and lakehouses



Apache Parquet

Parquet is designed to support fast data processing
for complex data

• Open-source

• Columnar storage

• Highly compressible with configurable compression
options and extendable encoding schemas by data type

• Self-describing: schema and structure metadata is included

• Schema evolution with support for automatic schema merging

Why do these things matter in a lakehouse?

• Performance of queries directly impacted by size and amount of file(s) being read

• Ability to read/write data to an open format from multiple runtime engines enables collaboration

• Size of data stored, amount of data scanned, and amount of data transported affect the charges
incurred in using a lakehouse (depending on the pricing model)

Row-oriented storage

Column-oriented storage



• Open-source, columnar storage format

• Similar in concept to Parquet, but different design

• Parquet considered to be more widely used than ORC

• Highly compressible, with multiple compression options

• Considered to have higher compression rates than Parquet

• Self-describing and type-aware

• Support for schema evolution

• Built-in indexes to enable skipping of data not relevant to a query

• Excellent performance for read-heavy workloads

• ORC generally better for workloads involving frequent updates or appends

• Parquet generally better for write-once, read-many analytics

Apache ORC

Column-oriented storage

Row-oriented storage



Apache Avro

• Open-source, row-based storage and serialization format

• Can be used for file storage or message passing

• Beneficial for write-intensive workloads

• Format contains a mix of text and binary

• Data definition: Text-based JSON

• Data blocks: Binary

• Robust support for schema evolution

• Handles missing/added/changed fields

• Language-neutral data serialization

• APIs included for Java, Python,
Ruby, C, C++, and more

Source: https://www.oreilly.com/library/view/operationalizing-the-data/9781492049517/ch04.html



What are Hive tables?

• Apache Hive was introduced in 2010 to provide a data warehouse-like
structure on top of Hadoop

• Supports the distributed analysis of large datasets in Hadoop's HDFS,
as well as S3-compatible object storage

• SQL-like HiveQL queries are converted to MapReduce jobs

•  "Schema on read" enforces structure at query time

• Tables are just "data files in directories" – supporting
plain text, ORC, RCFile, Parquet, and other formats

• Metadata store (HMS) component tracks metadata
such as schema and location

• No concurrency control, inefficient updates/deletes,
and schema changes require rewriting entire dataset

Source: https://dev.to/aws-builders/introduction-to-hivea-sql-layer-above-hadoop-kk1



• Open-source

• Designed for large, 
petabyte (PB)-scale 
tables

• ACID-compliant 
transaction support

• Capabilities not 
traditionally available 
with other table formats, 
including schema 
evolution, partition 
evolution, and table 
version rollback – all 
without re-writing data

• Advanced data filtering

• Time-travel queries let 
you see data at points
in the past

• Open-source

• Manages the storage of 
large datasets on HDFS 
and cloud object storage

• Includes support for 
tables, ACID transactions, 
upserts/ deletes, 
advanced indexes, 
streaming ingestion 
services, concurrency, 
data clustering, and 
asynchronous 
compaction

• Multiple query options: 
snapshot, incremental, 
and read-optimized

• Open-source, but 
Databricks is primary 
contributor and user, and 
controls all commits to 
the project – so “closed”

• Foundation for storing 
data in the Databricks 
Lakehouse Platform

• Extends Parquet data 
files with a file-based 
transaction log for ACID 
transactions and scalable 
metadata handling

• Capabilities include 
indexing, data skipping, 
compression, caching, 
and time-travel queries

• Designed to handle batch 
as well as streaming data

Table 

management 

and formats

Sits “above” the
data file layer

Organizes and manages 
table metadata and data

Typically supports 
multiple underlying disk 
file formats (Parquet, 
Avro, ORC, etc.)

May offer transactional 
concurrency, I/U/D, 
indexing, time-based 
queries, and other 
capabilities



Table 

management 

and formats

Sits “above” the
data file layer

Organizes and manages 
table metadata and data

Typically supports 
multiple underlying disk 
file formats (Parquet, 
Avro, ORC, etc.)

May offer transactional 
concurrency, I/U/D, 
indexing, time-based 
queries, and other 
capabilities

Tabular founded
by original creators 
of Iceberg (they 
now join Databricks)

It appears the intention is to 
make Iceberg and Delta Lake 
more compatible over time,
with enhanced interoperability
of analytics workloads.

?



Apache Iceberg open data table format

Open-source data table format that helps simplify 
data processing on large dataset stored in data lakes

People love it because it has:

• SQL access — Build the data lake and perform
most operations without learning a new language

• Data Consistency — ACID compliance 
(not just append data operations to tables)

• Schema Evolution — Add/remove columns without 
distributing underlying table structure

• Data Versioning — Time travel support that lets you 
analyze data changes between update and deletes

• Cross Platform Support — Supports variety of storage 
systems and query engines (Spark, Presto, Hive, +++)

Catalog

Source: https://iceberg.apache.org/spec/



ACID transactions

Means that data is not lost or corrupted once a transaction is submitted.
Data can be recovered in the event of a system failure, such as a power outage.

Atomicity

Consistency

Isolation

Durability

ACID refers to a set of properties of database transactions intended to
guarantee data validity despite errors, power failures, and other mishaps

Allows multiple transactions to occur at the same time without interfering
with each other, ensuring that each transaction executes independently.

Ensures that data is in a consistent state when a transaction starts and when
it ends, guaranteeing that data is accurate and reliable.

Guarantees that each transaction is a single event that either succeeds or fails 
completely; there is no half-way state.



Db2 Warehouse DATALAKE tables

Work with Db2 data in open data & table formats
(e.g. Parquet, Iceberg) hosted on low-cost object storage

Optimize resources by segmenting workloads across the 
warehouse and other datalake/lakehouse engines

Seamlessly combine warehouse data with
enterprise lakehouse data

Export Db2 warehouse data to object storage (e.g. CTAS), 
while retaining the ability to query that data

Use a datalake engine (e.g. Spark) to cleanse and 
transform data; then bring that curated data into Db2

ODF tables stored
in object storage buckets

Native tables in 
block storage

Seamlessly join data between 
native tables and datalake tables

Db2 
Warehouse



Some interesting facts
about Db2 datalake tables

Two types of
datalake tables:

Hive ("normal")
& Iceberg

Data not owned
by Db2 - stored 

externally outside
of the database

New CREATE/
ALTER/RENAME/
DROP DATALAKE 

statements

Insert data using 
INSERT, SELECT INTO, 

or CREATE TABLE AS 
SELECT (CTAS)

Operations (DDL, DML) 
are outside of Db2 

transactional control
(either succeed or fail)

Supports Parquet,
ORC, Avro, text file,
and JSON data file 

formats (depending
on table type)

Collect statistics
using the

ANALYZE TABLE 
statement

Supported in
Db2 WH 11.5.9 

(OpenShift/K8s) &
Db2 Warehouse
on Cloud (Gen 3)

Based on technology 
from IBM Db2 Big SQL

Uses a built-in Hive 
Metastore (HMS)



Hive vs. Iceberg datalake tables

Capability/Behavior Hive Datalake Tables Iceberg Datalake Tables

ACID transaction support
(of underlying table format type)

No Yes

Suitability
Read-only or

append-only tables
(only INSERT supported)

Transactional workloads *
(INSERT today; UPDATE and 
DELETE not yet supported)

Schema evolution Requires rewriting dataset Schema evolution supported

Supported data file formats
Parquet, ORC, Avro,

text file, JSON
Parquet, ORC, Avro

Can create datalake table
on top of existing data?

Yes
No

(but can sync with external HMS)

CREATE DATALAKE TABLE syntax
Lack of STORED BY 
clause implies Hive

STORED BY ICEBERG

* While the Iceberg table format itself supports I/U/D operations, it is NOT suitable to handle the fast, high-frequency
   OLTP transactions that Db2 is built to handle.



Object storage organization for tables

– Bucket

– Additional path folders (optional)

– Table folder

– Data folder

– Metadata folder

Metadata files

Iceberg Datalake TablesHive DatalakeTables

– Partition folder (as needed)

Data files

– Partition folder (as needed)

Data files

– Bucket

– Additional path folders (optional)

– Table folder

– Partition folder (as needed)

Data files

– Partition folder (as needed)

Data files

... ...



Object storage credentials

Required by Db2:

• Bucket name

• Endpoint

• Access key

• Secret access key



Storage access aliases

CALL SYSIBMADM.STORAGE_ACCESS_ALIAS.CATALOG ('s3_alias', 'S3',
 'ibm-lh-lakehouse-minio-svc.cpd.svc.cluster.local:9000',
 'fbsj2i5Cee4bww1BacBfo0v2', 'jv7oBC8jeBefq3fakEEFijmz',
 'db2hivebkt', '', 'I', '');

• Allows Db2 to locate and access object storage buckets

• Call to SYSIBMADM.STORAGE_ACCESS_ALIAS.CATALOG( ) includes:

• Name of storage access alias

• Storage vendor/type (S3)

• Storage endpoint

• Access key

• Secret access key

• Bucket name

• High-level folder in which to organize and store data

• Who is authorized to use the alias

SYSIBMADM.STORAGE_ACCESS_ALIAS.CATALOG Docs

https://www.ibm.com/docs/en/db2-warehouse?topic=procedures-sysibmadmstorage-access-aliascatalog-procedure


Hive datalake table examples

CREATE DATALAKE TABLE Docs

CREATE DATALAKE TABLE HIVETAB5 (ORDER_KEY INT NOT NULL, ORDER_NOTES VARCHAR(100) NOT NULL)
 PARTITIONED BY (ORDER_DATE VARCHAR(10))
  LOCATION 'DB2REMOTE://salesbktalias//orderdata/hivetab5';

CREATE DATALAKE TABLE HIVETAB1 (C1 DATE, C2 INT, C3 TIMESTAMP)
  STORED AS PARQUET
  LOCATION 'DB2REMOTE://myalias//db2tables/hivetab1';

CREATE DATALAKE TABLE HIVETAB2 (C1 CHAR(20), C2 FLOAT, C3 INT)
  STORED AS ORC
  LOCATION 'db2remote://stgalias//tables/myschema/hivetab2';

CREATE DATALAKE TABLE HIVETAB3 (C1 INT, C2 FLOAT, C3 DATE)
  STORED AS PARQUET
  LOCATION 'DB2REMOTE://s3alias//db2bucket/hivetab3'
  TBLPROPERTIES ('external.table.purge'='true');

CREATE DATALAKE TABLE HIVETAB4
  LOCATION 'db2remote://objstg//offloadedtables/hivetab4'
 AS SELECT * FROM MYDB2TABLE;

https://www.ibm.com/docs/en/db2-warehouse?topic=statements-create-table-datalake


Iceberg datalake table examples

CREATE DATALAKE TABLE ICEBERGTAB4 (PROD_ID CHAR(30) NOT NULL, PROD_DESC CHAR(100) NOT NULL)
  PARTITIONED BY (TRUNCATE(10, PROD_ID))
  STORED BY ICEBERG
  LOCATION 'db2remote://salesbktalias//db2tables/icebergtab4';

CREATE DATALAKE TABLE ICEBERGTAB1 (C1 INT, C2 CHAR(100), C3 DATE, C4 TIMESTAMP, C5 FLOAT)
  STORED AS PARQUET
  STORED BY ICEBERG
  LOCATION 'DB2REMOTE://stgalias//icebergtab1'
  TBLPROPERTIES('external.table.purge'='false')

CREATE DATALAKE TABLE ICEBERGTAB2 (C1 CHAR(10), C2 FLOAT, C3 FLOAT)
  STORED AS PARQUET
  STORED BY ICEBERG
  LOCATION 'db2remote://myalias//mydb2tables/myschema/icebergtab2';

CREATE DATALAKE TABLE ICEBERGTAB3
 STORED AS PARQUET
  STORED BY ICEBERG
  LOCATION 'DB2REMOTE://s3bkt//db2data/icebergtab3'
 AS SELECT * FROM SALESDATA WHERE SALES_YEAR < 2021;

CREATE DATALAKE TABLE Docs

https://www.ibm.com/docs/en/db2-warehouse?topic=statements-create-table-datalake


What does a Parquet-based Iceberg table look like in object storage?



What does a Parquet-based Iceberg table look like in object storage? (cont.)

metadata

data



What does a Parquet-based Iceberg table look like in object storage? (cont.)

Folders for a partitioned table (under "data" folder)

Data files in one of these partitions



Which tables are datalake tables? Which are Iceberg?

SELECT TABSCHEMA,
       TABNAME,
      SUBSTR(PROPERTY,18,1) AS IS_ICEBERG,
      SUBSTR(PROPERTY,22,1) AS IS_DATALAKE_TABLE
  FROM SYSCAT.TABLES
  ORDER BY TABSCHEMA, TABNAME;



Where are my datalake tables located?

SELECT TABSCHEMA, TABNAME, LOCATION
  FROM SYSHADOOP.HCAT_TABLES ORDER BY TABSCHEMA, TABNAME;

SYSHADOOP.HCAT_TABLES Docs

https://www.ibm.com/docs/en/db2-warehouse?topic=views-syshadoophcat-tables


Dropping datalake tables

• By default, DROP DATALAKE TABLE does not remove the table's
directories and files

• Information is only removed from the Db2 catalogs

• Data is managed outside of Db2, and depending on your environment
there could be other external data users or future needs for that data

• Use DELETE DATA option to delete the data as well

• Requires table's external.table.purge TBLPROPERTIES value be set to true
(or for Iceberg tables, alternatively set gc.enabled to true)

• Deleted directories and files are moved to the storage's trash bin

• System administrator enables and manages trash bin support, including regular cleaning

• Deleted directories and files moved to .Trash folder in storage

• Alternatively, use DELETE DATA PURGE open to permanently delete the files

DATALAKE 

TABLES



Restrictions and limitations

• Familiarize yourself with datalake table restrictions and limitations

• Unsupported data types (e.g. BINARY, DECFLOAT, LOB, GRAPHIC, XML, UDT, …)

• Unsupported features (e.g. enforced constraints, generated columns, RCAC,
LBAC, isolation levels, data capture changes, CGTT, …)

• Tables can't be range-partitioned, MDC, MQT, Temporal, or Typed

• Can't specify IN TABLESPACE (data is external and doesn't live in a table space)

• Can't create text indexes on datalake tables

• Schema names, table names, and column names must be unique, even when different case 
specified ('ABC' = 'abc')

• Iceberg tables:

• UPDATE and DELETE not supported (yet)

• Time travel queries not supported

https://www.ibm.com/docs/en/db2-warehouse?topic=tables-restrictions-limitations


33

Additional resources

My blogs:
• How to create datalake tables in Db2WH
• How to integrate Db2WH with watsonx.data

Relevant Db2 Warehouse documentation:
• Datalake table terminology
• Introduction to datalake tables
• Creating datalake tables
• Restrictions and limitations

Open-source documentation:
• Parquet data file format
• ORC data file format
• Avro data file format
• Iceberg table format

Going to TechXchange in Las Vegas in October?
• Attend my hands-on lab on Db2 datalake tables

and watsonx.data integration (session #1848)

https://community.ibm.com/community/user/datamanagement/blogs/kelly-schlamb/2024/02/07/db2-datalake-tables
https://community.ibm.com/community/user/datamanagement/blogs/kelly-schlamb/2024/02/15/db2-watsonx-data-integration
https://www.ibm.com/docs/en/db2-warehouse?topic=tables-terminology
https://www.ibm.com/docs/en/SSCJDQ/com.ibm.swg.im.dashdb.doc/doc/db2woc_using_datalake_tables.html
https://www.ibm.com/docs/en/db2-warehouse?topic=statements-create-table-datalake
https://www.ibm.com/docs/en/db2-warehouse?topic=tables-restrictions-limitations
https://parquet.apache.org/docs/
https://orc.apache.org/
https://avro.apache.org/
https://iceberg.apache.org/docs/1.4.0/
https://www.ibm.com/community/ibm-techxchange-conference/



	Slide 1: Db2 Warehouse Datalake Tables
	Slide 2: Notices and disclaimers
	Slide 3: Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7: What is object storage?
	Slide 8: The rise of cloud object storage for data lakes and lakehouses
	Slide 9
	Slide 10: Apache Parquet
	Slide 11: Apache ORC
	Slide 12: Apache Avro
	Slide 13: What are Hive tables?
	Slide 14
	Slide 15
	Slide 16: Apache Iceberg open data table format
	Slide 17: ACID transactions
	Slide 18: Db2 Warehouse DATALAKE tables
	Slide 19: Some interesting facts about Db2 datalake tables
	Slide 20: Hive vs. Iceberg datalake tables
	Slide 21: Object storage organization for tables
	Slide 22: Object storage credentials
	Slide 23: Storage access aliases
	Slide 24: Hive datalake table examples
	Slide 25: Iceberg datalake table examples
	Slide 26: What does a Parquet-based Iceberg table look like in object storage?
	Slide 27: What does a Parquet-based Iceberg table look like in object storage? (cont.)
	Slide 28: What does a Parquet-based Iceberg table look like in object storage? (cont.)
	Slide 29: Which tables are datalake tables? Which are Iceberg?
	Slide 30: Where are my datalake tables located?
	Slide 31: Dropping datalake tables
	Slide 32: Restrictions and limitations
	Slide 33: Additional resources
	Slide 34

