
 

 

 

 

 

 

 

 

 

Game Audio Pipelines 
A research of how we organize ourselves 

 

 

 

 
Bachelor's project in Media Sonic Communication,  

Sonic College - UCSYD Haderslev 

19. december 2019 

by Jeppe Emil Lindskov & Mads Vesterager Riddersholm 

Contact: jeppelind@icloud.com & contact@madsriddersholm.com  

Project Supervisor: Niels Bøttcher 

Characters: 84.000 

 

  

 

mailto:jeppelind@icloud.com
mailto:contact@madsriddersholm.com


Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Table of Contents 
1.0 Introduction…………………………………………………. p. 2 

1.1 Motivation & Problem Statement…………………... p. 2 
1.2 Methodology…………………………………………..p. 3 

2.0 Game Audio Pipelines…………………………………….. p. 5 
2.1 Definition……………………………………………… p. 5 
2.2 Historical Context……………………………………. p. 7 
2.3 Pre-Production………………………………………..p. 10 

3.0 Tools & Software…………………………………………… p. 12 
3.1 DAW………………………………………………….. p. 12 
3.2 Audio Middleware…………………………………….p. 15 
3.3 Implementation………………………………………. p. 19 
3.4 Tools…………………………………………………...p. 21 

4.0 Organization………………………………………………… p. 25 
4.1 Transparency………………………………………… p. 25 
4.2 Naming Conventions & Categorization…………….p. 26 
4.3 Generalist vs. Specialist……………………………..p. 29 
4.4 Collaboration…………………………………………. p. 31 

5.0 Key Takeaways……………………..……………………….p. 33 
6.0 Pipeline Development……………………………………...p. 36 

6.1 Organizing……………………………………………. p. 36 
6.2 Choice of DAW………………………………………. p. 37 
6.2.1 Reaper Export/Import Pipeline……………………p. 38 
6.3 Choice of Middleware……………………………….. p. 40 
6.4 Tools and Implementation………………………….. p. 41 
6.4.1 WwiseType System……………………………….. p. 42 
6.4.2 Custom Third-Person Listener…………………....p. 44 
6.4.3 Wwise Material Switch……………………………. p. 45 
6.4.4 Wwise Ambience Follower……………………….. p. 46 
6.4.5 Wwise Sound Painter……………………………...p. 46 
6.4.6 Wwise Animation………………………………….. p. 48 

7. Closing Thoughts…………………………………………….p. 49 
8. Conclusion……………………………………………………. p. 51 
Abstract…………………………………………………………...p. 53 
Acknowledgements……………………………………………..p. 53 
Bibliography……………………………………………………...p. 54 
Product Appendix……………………………………………….p. 55 
Appendix…………………………………………………………. p. 57 

  

1 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

1.0 Introduction 
1.1 Motivation & Problem Statement 
A common saying in the audio industry is that game audio is 30% sound design and 

70% implementation and communication. But why do we as sound designers spend 

so much time on implementation and communication, instead of designing sounds 

and what can be done to reduce the time spend on implementation and 

communication and make more room for working creatively. 

 

The motivation behind this thesis is that, while a lot of available information can be 

found on how to make sound design for video games, not much can be found on the 

subject of creating efficient workflow and pipelines. If the communicative and 

technical aspect of working in game audio makes up 70% of the time spend, then it 

should be at least as important, as the time spend on making sound design. But it’s 

rarely documented and often something you will have to get taught, when you start 

working at a game developer. Our own experience is that, if you are not thinking 

about your workflow and pipeline, it will cause problems during production, even if 

you work as the sole sound designer at an indie company.  

  

This study aims to provide the reader with an understanding of How to create a 

game audio pipeline, that streamlines and optimizes workflow and game audio 

implementation? To do this we will be addressing the following subquestions: 

- What considerations are made in the development of a game audio pipeline?  

- What importance does it have for the development of a video game, when 

audio is a part of the pre-production.  

- What does AAA companies have in common in their game audio pipelines 

and what are they doing differently?  

- Is it possible to develop reusable software for general workflow improvement 

in game audio? 

 

2 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

1.2 Methodology 

The thesis will be split into two different sections. 

 

The first section will be focused on the different stages and practices of a pipeline. It 

will start out with an description of what a game audio pipeline is, followed by a 

presentation to the history and evolution of game audio. Then we will look at the 

different key points in a game audio pipeline, including the practice of organization. 

The purpose is to lay the foundation and outline the various principles and elements 

that goes into creating a game audio pipeline. At the end of the section we will 

summarize the key takeaways. 

The data provided in this section will be based upon literature and qualitative 

interviews with mainly audio directors from AAA studios. The reason for us to make 

use of audio directors is, that we want our data to be backed up by experience and 

knowledge on the subject. Most of these people have 10-20 years of experience 

developing pipelines and working within the video game industry, making them 

experts in the creation of game audio pipelines.  

 

In the second section we will use the knowledge and conclusions from the precious 

section to exemplify how we would plan a game audio pipeline. We will be using the 

Unity template project The Explorer: 3D Game Kit  as a prototype case. Additionally 1

we will be using Reaper, Wwise and Unity as our DAW, middleware and game 

engine solutions. All audio assets in the finished product will be produced by us. 

The case will be treated as a prototype in pre-production and our approach will be 

according to this, the challenges the project might give us and how we will manage 

our pipeline to accommodate it.  

We will produce and exemplify various pipeline tools, for export/import improvement 

and implementation. The examination and descriptions of these tools will be focused 

on why we created them and how they work, with remarks on how these tools fit into 

the decision making of planning our pipeline. Video demonstrations of each tools will 

be provided. The tools will mainly be written and authored by ourselves, but some 

1 https://learn.unity.com/project/3d-game-kit (17-12-2019) 

3 

https://learn.unity.com/project/3d-game-kit


Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

will be built upon pre-existent content. If a specific part of a tool isn’t made by us, it 

will be mentioned clearly. Credit is given where it is due. 

This section will end with a reflection of our closing thoughts on the subject. 

 

Game audio pipelines is a big and broad determined subject. To cover all aspects 

isn’t possible within the boundaries of this thesis. We have made a number of 

demarcations to keep the thesis as focused as possible. 

 

In this project we will not go into details with pipelines of other departments and the 

collaboration with other departments. We will not cover design documents, 

production management, documentation and source control. Note, that these are all 

very important subjects to discuss when talking about game audio pipelines. 

 

We will not be composing music for our case study, because it isn’t in the focus of 

the subject. 

 

We will not make use of surveys or user test. The information in this thesis will only 

be based upon the expertise of our interviewees, literature and our own experience 

and knowledge. 

  

4 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

2.0 Game Audio Pipelines 
2.1 Definition 
In order to give a better understanding of a software development pipeline we first 

need to understand the term itself. In its most basic form a pipeline is basically a 

chain of processes that are arranged, so that the output of each element is fed 

straight into the input of the next. Much alike a real physical pipeline transportation.   2

 

Especially in a cross disciplinary field like game development, pipelines are used 

extensively. Almost every discipline in game development have some sort of pipeline 

in order to get content into the game. 

 

So what does a game audio pipeline look like? The most basic form of game audio 

pipeline starts with a concept and stops when that concept can be heard by the 

player in game. It could look like this: 

 

 

In the concept phase you might work on a broader level of design, establish a tone 

and mood. From there you go into your preferred Digital Audio Workstation (DAW) 

and create audio assets. The assets are then exported to a library and imported into 

the game engine where they are integrated into the game. 

 

2 https://en.wikipedia.org/wiki/Pipeline_(software) (09-12-2019) 

5 

https://en.wikipedia.org/wiki/Pipeline_(software)


Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Another very common pipeline includes one additional step, which is the audio 

middleware. The middleware is a tool that sits in between the asset creation and the 

game engine implementation.

 

 

The audio middleware is a type of software tool that is integrated into the game 

engine and is giving the sound designer common audio functionalities out of the box. 

The concept itself will be explored in a chapter later in this thesis.  

 

From the outside these models seem very simple, but in truth there is a lot more to it. 

When you compare this kind of pipeline to the movie production pipeline,  

one major difference is apparent. In movies, the design process ends when the 

audio has been exported from the DAW. Meaning that the whole implementation part 

is taken out of the equation.  

 

When designing game audio, you might design assets to gameplay footage, but you 

will have to integrate those assets into the game. Not only to hear them in the right 

context, but also to make sure they are played back the way they were intended. 

This means that instead of having a creative iteration process that only happens in 

the DAW, you have an iteration process that happens over several steps in the 

pipeline, as shown in the pictures above. A more detailed example of a game audio 

pipeline can found in Appendix 7 p. 58. 

 

 

6 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

This added layer of abstraction from the creative aspect of working straight in your 

DAW makes it very important, that each step between the various pipeline elements 

are as frictionless as possible. The fewer questions that needs to be answered the 

better the pipeline.  3

“For me, it is important that my team is able to spend their time working on the 

sound and iterating on that sound, so it is fundamental that the tools and 

asset creation / execution pipeline is as frictionless as possible. (...)If my team 

spend all their time fighting with the tools to get their initial sound to play, this 

subtracts greatly from the amount of enthusiasm, time and creativity that 

remains for work on the sound itself.”  4

 

So in order to provide your sound designer with the best creative environment, you 

have to spend time on how you manage your pipeline. From asset creation, to 

implementation, to iteration, to finished product. The way this is done, is wildly 

different from studio to studio. In the following chapters we will go more into these 

different steps and describe how different studios does it and how we can use this 

knowledge to develop our own pipeline.  

 

 

2.2 Historical Context 
The development of games is in constant change. Hardware is getting better, bigger 

and faster and the software is following this development. The possibilities for the 

game developers is expanding and demands from the audience too. Seen from the 

perspective of a sound designer, this means that we need to be able to adapt, learn 

and follow the trend of new tools, new techniques and at the same time manage the 

projects we are working on. In other words, pipelines and the role as sound designer 

is in constant change.  

 

3 Appendix 3, p. 57, Interview_DICE_01.mp3 (2:00) 
4 Appendix 2, p. 57, Interview with Rob Bridgett p. 1 

7 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

When we asked Lydia Andrew, the game audio director at Ubisoft Quebec City 

Studio, about the difference in game audio, from when she started working in the 

industry 18 years ago compared to today, she described it like this. 

“The pipelines have changed completely, since I joined games. When I first 

joined games you couldn’t really integrate your audio, a programmer had to 

do it. Even if you could integrate your audio, you couldn’t change any 

parameters, a programmer had to do it. And the parameters you could change 

were very limited, so maybe pitch, maybe volume. Was it a loop, was it a 

one-shot. That was pretty much it. So the tools and pipelines have changed 

massively in terms of what you can actually do.”  5

 

In the early days of game development, most game developers would build their own 

sound engines, inside of their own game engines. Building your own tools was an 

expensive and time consuming job resulting in fluctuating quality, depending on if the 

programmer/s responsible for creating these tools had experience working with 

audio and DSP . Some companies would have dedicated audio programmers, who’s 6

job would be to create audio engines and other audio tools. Everything from mixers, 

filters, randomization and other DSP would have to be written from scratch. Having 

to write it all from scratch meant, that time was taken away from being creative and 

that every company would have unique game audio pipelines tailored for the tools 

and audio engines they created.  7

The sound designers job would be to create the assets and deliver them to a 

programmer, together with a description of their behaviour. The audio programmer 

would then implement them. The systems and tools wasn’t necessarily capable of 

real-time processing and the memory allocated for sound was limited. Effects like 

reverb would be baked into the assets and typically there wouldn’t be room for much 

variations.   8

 

 

5 Appendix 4, p. 57, Interview_Lydia_15.mp3 (00:50 - 01.28) 
6 Digital Signal Processing 
7 Appendix 5, p. 57, Interview_Guy_Somberg_15.mp3 (01:47- 02:30) 
8 Somberg, Guy, 2017, p. 165 

8 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

As the processing and hardware got better, so did the need for better tools.  

“(...) a need to speed up production time and save valuable programming 

resources, while simultaneously increasing immersion and quality. So, to 

cater to both demands, a game-specialized audio toolset, production pipeline, 

and workflow needed to be developed.”   9

And the audio middleware was born.  

 

First and foremost, audio middleware has changed the role of the sound designer. 

Suddenly the sound designer is capable of controlling everything from recording to 

implementation. The tools that the middleware is offering, are available from day one 

and not something that needs to be developed in the course of production. Having 

this control is giving the sound designer the freedom and creativity to create with a 

different set of limitations, push these limitations and the boundaries of what game 

audio is, even further. 

When it comes to the audio programmer, the power and tools that the middleware is 

offering means, that the audio programmers no longer have to build any of the 

fundamental functions and can focus their time on creating the features that will 

make the game sound unique and solve hard problems that they didn’t have time to 

do before. The easy integration of most middleware even mean that you don’t 

necessarily need a dedicated audio programmer.  10

 

 

  

9 Somberg, Guy, 2017, p. 165 
10 Appendix 5, p. 57, Interview_Guy_Somberg_16.mp3 

9 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

2.3 Pre-Production 
The production of a video game starts with pre-production. This is the initial phase, 

where the team will come together and scope the project. It is also in this phase that 

the production pipeline should be planned out.  

Typically a video game production will consist of three major stages:  11

- Pre-production. The planning and concept phase. This is done to prove out 

pipelines and also team dynamics and metrics. The pre-production ends with 

a demo or prototype of the game.  

- Production. In this phase the learnings from the pre-production is used to 

build the game and make it playable. The production phase ends with 

post-production 

- Post-Production. This phase consist of several stages. Pre-alpha stage is 

when all features are completed. Alpha stage is when the game is playable, 

but not polished. Beta stage is the end of the polish phase. Gold stage is the 

launch of the game. 

 

In most media productions, sound is usually thought of as a post-production process. 

There is a tendency at some game developers to do this and at the same time start 

defining the audio in pre-production, without including a sound designer. This is 

doomed to create problems down the road. It goes with other departments as well. 

Every person on the pre-production are there to understand and reinforce the vision 

and to talk about and share their experiences, for the sake of the game. 

“They should have experiences of what goes wrong in pre-production, where 

you waste your time, what you’re going down, how you brainstorm ideas, how 

you work out if ideas are good enough”.  12

 

That being said, when having sound designers join the pre-production, they aren’t 

only there to talk audio. Being an audio specialist, working with video games makes 

11 Appendix 2, p. 57, Interview with Rob Bridgett, p.4 
12 Appendix 3, p. 57, Interview_DICE_13.mp3 (02:30 - 2:40) 

10 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

you an expert in making games. Not only are you developing games, but you are 

passionate about games. “You opinion about anything in the feature is valid”.   13

 

Creating a pipeline is a planning process and deciding on every aspect as early as 

possible is going to save time and make the process of creating a video game more 

transparent for everybody involved. 

“(...)having the audio pipeline thought through, laid out, and proven at the 

beginning of a project provides higher planning stability and a more reliable 

schedule without last-minute surprises. It also gives audio design and audio 

technology the time to build a trustworthy collaboration(…)”  14

In the following sections we will look at the different steps in this process and 

therefore also the decision making of making a pipeline. 

 

  

13 Appendix 4, p. 57, Interview_Lydia_13.mp3 (5.45 - 06:15) 
14 Somberg, Guy, 2017, p. 166 

11 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

3.0 Tools & Software 
3.1 DAW 
One thing that hasn’t changed much over the years, is the use of DAW for creating 

assets. Although, when the subject comes to DAWs, sound designers have a 

tendency to become religious. The amount of DAWs and plugins available is 

extensive. They all have the same functionalities while offering unique or different 

ways of working. 

 

Throughout our interviews with various audio directors and leads, when the subject 

landed on DAWs, there seemed to be two different company approaches. A 

structured approach and a free approach 

 

Structured approach 

The companies using the structured approach, have a policy about having every 

sound designer working in the same DAW, often with the same suite of plugins. 

The reason for doing this, is to create transparency. Having the same setup on every 

workstation means that as a sound designer you are not limited to only work on one 

workstation. It also means that people can share sessions and take over the work of 

other sound designers, without having problems opening them because of missing 

plugins, samples, etc. Some companies work in very modular ways, where sharing 

sessions and accessing old projects is part of the everyday work. Not having 

streamlined this process, would result in a lot of problems. 

 

Another reason is economy and maintenance. The one responsible for the licenses, 

has less to manage, when everybody is working in the same software, and you don’t 

have to tailor a new workstation every time a new sound designer joins the company.  

 

Free approach 

The idea with the free approach is to let sound designers work in the tools that they 

are most comfortable working in. The point is to help creativity, by allowing people to 

12 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

work with the tools they have their muscle memory in. By forcing people to work in a 

specific DAW with specific plugins, you run the risk of losing those edge skills that 

people have.  15

 

Ben Minto from DICE explains another reason for them to be using the free 

approach. At DICE they don’t really do finished sound design inside of their DAW. 

Differently from most other companies, they are not using audio middleware, but 

they are using the audio engine inside of Frostbite . The way that the audio engine 16

works is very different from the pipeline of most popular middleware. Most of their 

sound design happens inside of the engine. Their point of reference is the engine 

and not the exported assets. Where the assets come from then doesn’t matter as 

much.   17

 

Mixing the approaches 

The cons of these two disciplines usually comes down to the advantage of the other. 

This doesn’t mean that you can’t make exceptions and create hybrids of the 

approaches.  

 

Ubisoft Quebec City Studio is an example of this. They used to have everybody work 

in Nuendo, but gradually this have changed into a mix between Nuendo and Reaper. 

Reaper is integrated into their voice pipeline, because of the scripting and 

modification possibilities that Reaper offers. Slowly Reaper has spread to some of 

the sound designers, who like to work in Reaper because of these possibilities. But 

they are still practicing a structured approach. In the case of plugins and libraries. If 

sound designers want individual plugins or libraries, it needs to be very specific for 

their work and it needs to be valuated and tested, before they buy copies for all 

workstations.  18

 

15 Appendix 3, p. 57, Interview_DICE_02.mp3 (01:50 - 02:30) 
16 https://www.ea.com/frostbite/engine (17-12-2019) 
17 Appendix 3, p. 57, Interview_DICE_05.mp3 
18 Appendix 4, p. 57, Interview_Lydia_04.mp3 (01:56 - 02:45) 

13 

https://www.ea.com/frostbite/engine


Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Another example is at IO Interactive. The audio lead Jonas Breum believes in giving 

the individual sound designer freedom in the way they choose to work. 

“Because we want people to work fluently and work expressively, more than 

efficiently. So it’s import that people can go to their weapon of choice and 

bring their own kind of working. That’s the kind of balance that we are trying to 

hit.”  19

 

But he also sees the advantage on having everybody working in the same DAW. 

Which is why they are now transitioning towards a more structured approach.  

Jonas is seeing the benefits from working with Reaper, because of the built-in 

functions and possibilities it creates, in terms of scripting and pipeline improvements, 

to be bigger than the benefits of working in individual DAWs. At the same time, with 

the amount of new people starting in the office, in many cases Reaper will already be 

their primary DAW. So it makes sense to kind of follow the new tendencies with the 

people who are going to do the bulk of the hands on work.  20

 

Reaper and Nuendo 

Through our interviews with various audio leads and directors. Reaper and Nuendo 

seemed to be the most popular DAWs. The reason for this popularity is foremost 

their in-built export options. When working in game audio a lot of time goes into 

exporting and importing assets. This time could be considered a waste, especially if 

it involves a lot of manual work. Most popular DAWs doesn’t support the option of 

batch processing and having to export many files then becomes a tiresome and 

time-consuming task. Both Nuendo and Reaper offers the sound designer multiple 

ways of batch processing. Furthermore, both Wwise and FMOD offers additional 

tools, that can communicate with Nuendo and Reaper to reduce this even further. 

 

In the case of Reaper there is another reason for its popularity. Reapers extensive 

customization opportunities makes it an ideal DAW for pipeline and workflow 

improvements. It is possible to customize key bindings, interface layout and build 

19 Appendix 6, p. 57, Interview_Jonas_Breum_Jensen_02.mp3 (01:15 - 01:55) 
20 Appendix 6, p. 57, Interview_Jonas_Breum_Jensen_04.mp3 

14 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

custom scripts, which makes it possible to integrate Reaper into the pipeline of other 

software. Reaper supports all plugin formats and furthermore the cost of licensing is 

low compared to most popular DAW’s. 

 

But the development of DAW’s and other audio software is in constant change. New 

developers, new versions and the demand for new functionalities from sound 

designers is making the market in a constant change. Right now Reaper and 

Nuendo seems to be popular, in a couple of years this might change and game 

developers might consider adapting. 

 

 

3.2 Audio Middleware 
An audio middleware is a third party software that is connected to a game engine 

and provides common audio functionalities. As the name specifies it sits in between 

something. In this case it is building bridge between the audio assets and the game 

engine. The sound designer will typically be working inside the GUI  of the 21

middleware. The middleware is giving the sound designer a big assortment of 

baseline functionalities, tools and other options for the playback and behaviour of 

audio assets. Inside the engine, the programmer can access the API  of the 22

middleware, making it possible to integrate and specify the behaviour of audio 

playback. 

 

An advantage with the transition to audio middleware, that wasn’t mentioned in the 

Historical Context chapter is the cross-platform flexibilities. Since the middleware 

isn’t hard coded into the engine, it makes it easy to reuse and adapt systems and 

code, into new projects, engines and platforms. The cross-platform possibilities 

together with audio middleware being used in the vast majority of studios,  is 23

making sound designers working with middleware solutions very versatile within all 

companies using the same middleware. Companies might have different ways of 

21 Graphical User Interface 
22 Application Programming Interface 
23 Appendix 5, p. 57, Interview_Guy_Somberg_04.mp3 (00:50 - 01:00) 

15 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

structuring their middleware project. But the fundamentals will be the same. In this 

way, audio middleware provides a shared language between sound designers. 

Creating flexibility in the industry and encourage the sharing of knowledge.  

 

Wwise & FMOD 

The two most popular audio middleware are Audiokinetics Wwise and Firelight 

Technologies FMOD. They have in common, that they both offer a lot of the same 

fundamental tools and functionalities, but they also differ greatly in terms of interface, 

API, pipeline and execution. 

 

FMOD 

FMOD is one of the older audio middleware. It has been re-written and re-designed a 

couple of times. The current version is FMOD Studio 2.0. FMOD is an easy 

accessible middleware for people transitioning into game audio. The reason for this 

is the layout of the GUI. The layout is visually resembling the layout of a typical 

DAW. The event system looks similar to the typical arrangement view, with tracks, 

timeline and your effects placed in a tap below the arrangement. The same goes for 

the mixer. Furthermore there is a heavy use on buttons, knobs and tabs, which 

makes it user-friendly for sound designers.  

FMOD used to be the biggest player back at FMOD Designer. It didn’t have the 

design described above and in general sound designers started to get tired of the old 

design. During this time Wwise appeared and really talked the language of the sound 

designer.  24

 

Wwise 

Wwise is currently the most popular of the two middleware solutions. The GUI layout 

isn’t as user-friendly as the one in FMOD, which makes it a little harder to learn. But 

the possibilities and build in functions exceeds those of FMOD, making it a powerful 

tool in the hands of the sound designer.  

Wwise comes with the Wwise Launcher, which is a great app for managing projects. 

In the launcher the sound designer is able to upgrade to new versions and make 

24 Appendix 5, p. 57, Interview_Guy_Somberg_04.mp3 (03:10 - 04:05) (06:10 - 06:35)  

16 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

project integrations into Unity and Unreal Engine, more or less with the click of a 

button. This is very friction free and easy to use. 

 

The event system in Wwise is different from FMOD. The event system of FMOD can 

be compared to the Mixer-Hierarchy of Wwise. This is where you set up your assets, 

containers and build your systems. Events in Wwise, on the other hand, is used to 

run specific actions, like play/stop, set states, RTPC, switches, change DSP values, 

etc. By customizing the actions of events, is empowering the sound designer. 

Because of this event behaviour, in many cases the programmer can get away with 

only having to post events in the engine, without having to specify the behaviour in 

the engine. 

 

One big difference between Wwise and FMOD is the different degrees of control 

from the sound designer and the programmer.  

The tools and functions available out of the box in Wwise exceeds the ones in 

FMOD. This combined with the behaviour of events, mentioned above, makes 

Wwise way more appealing to a lot of companies, because the need of an audio 

programmer isn’t as vital.  

 

The API of FMOD is superior, compared to the API of Wwise. The API of FMOD is 

split into a high level API and a low level API. With the high level build on top of the 

low level. The high level allows the programmer to play events, set RTPCs and so 

forth, similar to the API of Wwise. Having access to the low level, allows the 

programmer to manipulate the DSP-graph directly. This makes it possible to build 

very unique systems and tools inside the engine. This control is empowering the 

programmer.  The API of Wwise on the other hand doesn’t allow programmers the 25

same degree of control and changing something is more likely to start a chain 

reaction of problems, instead of offering the tools of creation. In that way you can say 

that in Wwise the sound designers is the one in control and in FMOD it is the 

programmer that is in control. 

 

25 Appendix 5, p. 57, Interview_Guy_Somberg_04.mp3 (04:00 - 04:50) 

17 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Alternative Middleware Solutions 

Although Wwise and FMOD is the industry standards, a lot of other competitors exist 

or are making their way into the market. These companies are bringing new 

pipelines, new tools and are inspiring new ways to think about game audio. It is 

worth mentioning a couple of these.  

Fabric from Tazman-Audio is an audio tool for Unity, that works like an extension or 

package integrated directly into the Unity Project. It is probably more an audio 

tool/engine than a middleware. But in 2020 Tazman-Audio is releasing Fabric 3.0 

which is going to be a stand-alone audio middleware for Unity and Unreal Engine.  26

ADX2 from Criware is another middleware, which is used in a lot of Asian titles.  27

Tsugi-Studio which is producing different asset- and pipeline tools for game audio, 

probably best known for their GameSynth Tool, is also offering a middleware solution 

with their GameSynth Engine that is capable of generating procedural audio.  Elias 28

Software is a audio middleware mainly focused on adaptive music, but in 2020 they 

will release a new middleware that also focus on sound design.  29

 

Even though middleware is becoming industry standard, some companies still work 

with built-in audio engines. A good example of this is Frostbite, which is the game 

engine of DICE. Frostbite provides unique functionalities that is hard to replicate in a 

middleware.  30

 

  

26 https://www.tazman-audio.co.uk/copy-of-fabric (06-12-2019) 
27 Appendix 5, p. 57, Interview_Guy_04.mp3 (06:45 - 07:10) 
28 http://tsugi-studio.com/web/en/products-gamesynth-runtime.html (06-12-2019) 
29 https://www.eliassoftware.com/ (06-12-2019) 
30 Appendix 3, p. 57, Interview_DICE_04.mp3 

18 

https://www.tazman-audio.co.uk/copy-of-fabric
http://tsugi-studio.com/web/en/products-gamesynth-runtime.html
https://www.eliassoftware.com/


Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

3.3 Implementation 
The simple definition of implementation is the process of moving an idea from 

concept to reality. In this thesis we use the word to describe how you put your sound 

into the game. An example could be how you choose to implement a footstep sound 

system. You could choose to do it through animation, it could be done with physics 

or maybe by using the footfall curve of a character. The point is, that there are many 

different ways of implementing sound and how each game studio implements can be 

very different depending on the game engine, the middleware and personal 

preferences. So it is hard to determine the best way of implementation. 

 

Sound as a gameplay feature 

A traditional approach to implementing audio, is to think of it as something you 

implement “on top” of a system, meaning that sounds are often tied to objects or 

motion and then driven by this object or motions behaviour. In other terms, the sound 

is driven by the gameplay. 

Another approach is allowing the sound design to control gameplay, motion or 

objects. Because of the way sound is implemented into Frostbite, the engine used at 

DICE, it allows the sound designer to make visual and gameplay content on the 

basis of sound. Frostbite and DICE is giving a lot of power to the sound designer 

through its modular audio/scripting system and build-in audio engine. This is giving 

the sound designer control of many aspects of the game. Like being able to control 

the visual intensity of an in game bonfire or the amount of camera shake.  31

 

This way of thinking audio as interconnected with the gameplay of the game can also 

be a great help to other departments. In Game Audio Tales of a Technical Sound 

Designer Volume 1 by Damian Kastbauer, he explains how they build a system that 

allowed fire particles to be controlled by the RMS of the wind .wav files. Not only did 

they create a more realistic environment, but they also managed to fix a problem that 

the people working on particles wasn’t able to solve.  

31 Appendix 3, p. 57, Interview_DICE_04.mp3 (0:44 - 00:55) 

19 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

“We were really excited at this point, but even I was concerned about how this 

would go over with the artists(…)Surprisingly enough, they loved it. (…)the 

particle guys had been struggling big-time with issues like short loops and 

repetition; and their only real tool to combat this was to add more particles or 

systems to a given effect to make it appear moving and somewhat 

random–which of course hurt performance(…)We weren’t a threat–we were 

problem solvers.”  32

 

This fear or misinterpretation of audio being something that is added to the game, 

instead of seeing it as something that can actually drive the gameplay, solve 

problems and give something unique to the game, is not helping game studios. 

Having the open mind for experimenting and interconnecting disciplines can create 

great results when building implementation systems and might end up helping 

instead of being a threat. 

 

 

  

32 Kastbauer, Damian, 2016, p. 197-198 

20 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

3.4 Tools 

Another very important technical aspect of creating a good pipeline is creating tools 

for the sound designer to use. While Implementation into the game engine also 

depends on a lot of different tools, tools does not have to belong in an engine. Many 

tools are also developed for other certain parts of the game audio pipeline, and 

comes in different sizes and shapes. In a way, a tool can be seen as the thing in our 

pipeline that makes it run smoothly from concept to implementation as stated by Guy 

Somberg:  

“The goal (of a game audio pipeline red.) is to facilitate the flow, from ideas in 

the sound designers head. All the way through to get content into the game”.   33

 

Like implementation, the amount of tools needed are different, depending on the 

need of the studio. Tools however can be shared across multiple projects, especially 

if the same middleware and game engine is being used. But it is important to 

constantly review and evaluate on what tools are needed and how to improve on 

existing tools. Ubisoft Quebec City Studio is using a review system of their pipeline 

tools, that they call Start, Stop, Continue.  

“It is what we should start doing. What we should try to stop doing and what 

we should continue to do and build on, and then we used those approaches 

throughout the project and in the post-mortem meeting.”   34

 

The idea is to always be aware of what works and what doesn’t. If the need for a 

new tool arises, it gets added to the technical backlog and prioritized depending on 

how urgent it is.  This way a company can be aware of what problems lies ahead 35

and be able to react in time.  

 

Through our interviews we have found some common guidelines that a good tool 

should adhere to:  

 

33 Appendix 5, p. 57, Interview_Guy_Somberg_01.mp3 (00:40 - 00:50) 
34 Appendix 4, p. 57, Interview_Lydia_Andrew_03.mp3 (04:55 - 05:15) 
35 Ibid (04:55 - 05:15) 

21 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

1) The tool should try and ease one or several pain points in the pipeline.  

This could be reducing the complexity of a task or reducing the number of clicks 

needed to perform an action. The first task when designing a tool is to sit down and 

ask yourself, what are you trying to archive. If the creation of the tool requires help 

from a programmer, it is essential to focus on the problem you are trying to solve, not 

necessarily the solution you have in mind. 

“I encourage sound designers to bring me problems, not solutions. What that 

does, it encourages them to go back to the original problem that they are 

having when they approach me. And then what i can do is listen to the 

problem and try to find a better solution than they might have come up with 

ordinarily.”   36

 

2) The tool should be able to speak the language of the user and help the 

user fulfil their creative potential. 

It is important that the tools created are easily understood by the people using them. 

For example making sure the UI/UX is understandable and that features are named 

accordingly to what they do. Otherwise it can cause frustration by the end user . 37

“Good word working tools should feel like an extension of the crafts person’s 

hands, and here in audio it is the same, but more an extension of the crafts 

person’s imagination ”.  38

 

3) The tool should be expandable and be able to be constantly iterated on. 

The tool should likewise be granular and easy to update and maintain, often times 

they will get developed early in the production so it is important that they are flexible 

so that they can evolve.  

“The only solution to this unpredictable situation is granularity—that is, the 

goal to build a flexible set of tools that are constantly able to update, evolve, 

and adapt to the needs of various projects and in their different stages of 

production.”  39

36 Appendix 5, p. 57, Interview_Guy_Somberg_02.mp3  (02:52 - 03:17) 
37 Ibid (01:00 - 02:00) 
38 Appendix 2, p. 57, Interview with Rob Bridgett, p.1  
39 Guy, Somberg, 2017, p. 165 

22 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Storyteller 

A good example of a tool, that adhere to above guideline are Ubisoft's Storyteller.  
Storyteller is a tool developed at Ubisoft for their Assassin's Creed Franchise. It was 

specifically created for their game Assassin's Creed Odyssey. Unlike the other 

games in the franchise, the game is made as an open world RPG and features a 

vast branching narrative. This lead to a massive increase in the amount of dialog that 

had to be produced and managed. 

 

Ubisoft was facing multiple problems with the choice of narrative branching. 

- They couldn’t necessarily have the voice actors in the same studio, at the 

same time. This meant that they needed a tool, that would allow the voice 

actors to play up against each other. 

- Each line of dialogue could have multiple answers, resulting in tons on lines. 

So it should be easy to navigate. 

- Not only sound designers were going to work with and implement voice over, 

but also quest designers, game designers and other people dealing with 

gameplay. So the tool should be accessible and speak a common language.  

 

To combat this, Ubisoft made Storyteller. The tool works similarly to “choose your 

own adventure” books. All dialogue lines are accessible and you can go back and 

forth to check the other branching options. This makes it easy to navigate and 

understand the manuscript, instead of having to manually search through tons of 

pages. The voice lines are store in a database where they get an ID and are named 

appropriately. This is pushed all the way through the process of production.   40

 

On top of this, Storyteller is hooked up to Reaper. From Storyteller you can get direct 

access to a Reaper project for each specific line. In these Reaper projects, the 

dialogue is recorded and saved within a region. The region is making sure the 

recording gets the correct name and ID. This way the recordings are accessible for 

everybody involved in the pipeline, and slowly over the various recording sessions, 

40 Appendix 4, p. 57, Interview_Lydia_Andrew_07.mp3  (01:02 - 02:15) 

23 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

references are getting filled out. This means that the voice actors are able to play up 

against actual recorded dialogue, making the dialogue more coherent.   41

 

Ubisoft has taken a problem, and found a solution that not only reduces the amount 

of management needed to be done by the team, but also inspires and helps the 

voice actors and enables a clear creative vision for the voice directors, sound 

designers and everybody else involved.  

  

41 Based on Lydia Andrews presentation at the “Leading With Sound” Conference at Den Danske 
Filmskole (06-10-2019) 

24 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

4.0 Organization 
The size of video game companies can span from everything between one person 

working on one project up to hundreds of people working on multiple projects. The 

time span also goes from short periods up to many years of development. Many 

companies see big changes in their staffs. Employees leaves, new joins in, 

companies expand, companies shrink. Planning and organizing is core to keeping 

the projects on track all the way through production.  

When developing your pipeline it is important to plan out how you want to organize 

your project from day one. Most of the previous chapters have already been touching 

on the subject of organization. Will you be using a structured or free approach to the 

use of DAW? What audio middleware will you use or maybe you will not use a 

middleware? What tools will you have to create, to streamline the pipeline? These 

are all decisions you will have to take, when designing a pipeline and in this 

perspective organizing your pipeline.  

In this chapter we will look at organization from the point of how to keep consistency 

throughout production. We will look at how you make your pipeline transparent, the 

importance of establishing a naming convention and use categorization, and we will 

look at how you organize you audio team and the importance of cross-disciplinary 

communication. 

 

 

4.1 Transparency 
The word has been used a couple of places throughout the project, so first of all it is 

important to understand what we mean with transparency. In the first chapter we talk 

about what a game audio pipeline is. It is mentioned that working in between the 

different parts of the pipeline needs to be frictionless. An import part of making the 

pipeline frictionless, is to make the pipeline transparent. To do this, you need to 

organize and come to agreement with both the audio team and everybody involved 

in the process of the game audio pipeline, how the pipeline is going to be executed.  

25 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

This involves figuring out the steps explained through this project, create a 

consistent naming convention (which we will talk about shortly), what format should 

different types of assets be exported as, what is the hierarchy structure in the 

middleware and what tools are available and how should they be used. 

Gustav Rathsman from DICE uses the term “One True Source”, which is a great way 

to describe this need for coherence and transparency throughout a project: “That is a 

classic problem, where people have different sources of truth and then you end up 

with something that doesn’t align in the end.”  42

The keyword here is communication. Communication is absolutely essential to 

keeping everyone in the loop on what is happening.  Having these steps laid out as 43

early as possible, makes it much easier to adapt changes and when something is not 

working (and something won’t work), a transparent project is going to make the 

problem solving much easier.  

 

 

4.2 Naming Conventions & Categorization 
“Naming conventions are one of the cornerstones of an organized project, and 

whatever your discipline, a solid, sensible naming convention will save your skin as 

you hit full-on production.”  44

 

When we asked our interviewees about naming conventions, it became clear that 

organizing your assets is very important and a system needs to be established as 

early as possible. 

 

The naming convention needs to be carried all the way through the game audio 

pipeline. From the moment the creation of assets starts and all the way to the end of 

implementation. It is therefore recommended to keep the same naming convention 

all through this process. This goes for the assets, the folder structures of your library, 

42 Appendix 3, p. 57, Interview_DICE_06.mp3  (2:45) 
43 Bridgett, Rob, 2019, p. 64 
44 Ibid, p. 84 

26 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

the hierarchy structure in your middleware, the events in you middleware and the 

implementation in your engine.  

But it doesn’t have to stop there. Many game audio departments try to maintain a 

naming convention in the studio and not only for their current project.  

DICE is using a folder structure for their assets that goes all the way back Battlefield: 

Bad Company (2008). By doing this they have a type of folder structure that 

everybody are familiar with, and they don’t have to re-learn a new structure every 

time they start working on a new project. On top of that, their naming convention for 

assets is following this folder structure. The reason for doing this, is because it’s 

stupid simple, and when it’s stupid simple, it is less likely that anybody is going to 

make mistakes.  This is a great example of transparency.  45

 

But how should a naming convention be structured? Our interviewees have given us 

a lot of great examples of naming conventions, but there is no magical solution for 

this and often it can vary, depending on the type of game you are working on. 

But the two of the most import rules when establishing a naming convention, is to: 

1. Make it very clear what the asset or file is and what is it connected to. 

2. Have it appear in sorted order, for easy search and browsing. 

 

Stephen Hodde provided us with this template for the naming convention he is using: 

Category_Subcategory_Name_Layer_VariationNumber  46

 

A example of this naming convention in practice, could be: 

Weapons_Pistol_Glock_Impact_010 

  

Using this naming convention makes it easy for everybody to understand the 

purpose of the file, and when sorted in order it will be easy to find. 

A lot of the naming conventions we were provided with had similar structure, but the 

categorization and additional categories is often where games will differ.  

 

45 Appendix 3, p. 57, Interview_DICE_08.mp3 (3:30) 
46 Appendix 1, p. 57, Interview with Stephen Hodde p. 2 

27 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

This is an example from DICE: 

SW02_Planets_Takodana_Shared_Ambience_SoundArea_UnderForestCano

pyLightBirds_01  47

 

In this case they start by defining the title origin of the asset. In this case Star Wars 

Battlefront 2. Followed by specifying the planet. In this case there is multiple map 

levels on the planet Takodana, and this sound is Shared between these levels. This 

it then followed by a categorization similar to the one of Stephen Hodde. 

 

Often companies will use abbreviations to minimize the length of characters. 

Examples of this would be CHA for Character or AMB for Ambience. It can be more 

manageable with shorter names. But, when using abbreviations it is very import to 

agree on the abbreviations used. Having some sound designers name their sound 

effects SFX while others name them FX, can end up creating a lot of problems. 

Agreeing on the One-True-Source is important when creating a naming convention. 

 

Other typical additions to the naming convention is remarks on dynamics and 

velocity, typically described with “small, medium, large” or with the dynamic marking 

used in classical music “pp, p, mp, mf, f, ff”, and the use of numeric to distinguish 

variations. Rob Bridgett advises the use of additional numeric to prepare for 

iterations and in the case with dialogue lines, prepare for changes in the manuscript. 

Rather than use 01, or even 001 with leading zeros only, then allow an extra decimal 

place in all numerical file naming:  48

Amb_Day_Bird_Dove_pp_0010 or Amb_Day_Bird_Dove_pp_001_0 

 

“Precise audio terminology is the key to improving communication and achieving a 

more granular and detailed level of information, regardless of the target platform or 

development software used. Be it Event, Soundbank, Sound Definition, Parameter, 

RTPC, Preloading, Trigger, or Area Shape, reinforcing the precise usage of these 

terms will help to identify, debug, and resolve potential issues much faster.”   49

47 Example provided by Ben Minto, see Appendix 3, p. 57, Interview_DICE_08.mp3 (4:30) 
48 Bridgett, Rob, 2019, p. 87 
49 Somberg, Guy, 2017, p. 170 

28 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

4.3 Generalist vs. Specialist 
In the game industry there exist a career hierarchy much similar to that of the 

software industry. In the game audio department this is also the case. Depending on 

the size of the sound department these roles can vary a lot. But typically from the top 

down you would have audio directors, audio leads, senior sound designers, sound 

designers, junior sound designers, audio interns. Furthermore the team would have 

technical sound designers, composers, audio programmers, audio QA and so on. 

 

When it comes to hiring new sound designers for the team and distributing the work, 

there seems to be two different approaches. Either you sound department consist of 

specialists or it consist of generalists. 

 

Specialist 

When a game audio department works with specialist, every person working on the 

audio team will either be responsible for a specific task or category of sound. These 

can be in broad terms, down to more narrow subjects. Typically this will be areas like 

dialogue, foley, cinematics, music and implementation. The more narrow subjects 

could be environment, characters, weapons, UI, vehicles and so forth.  

The idea with this approach is to create the best possible sound design in the 

individual areas by having people work with subjects that they are experts in. It is 

also a way of delegating the work, to make it clear who is responsible for what 

 

This way of thinking in specialists probably derives from the classical film production, 

which consist of a lot of specialist working with their individual part of the audio. The 

creative problem with this, both in terms of film and video game production, is that 

the specialist can have a hard time understanding or adapting their work to the wider 

contextual elements of the production. 

“if someone is just doing Foley recording to picture, but never hears or is able 

to get a sense of their work in context of the rest of the soundtrack, like the 

music cues, the SFX cues, ambience and so on, then they are going to do 

much more than is necessary and spend 100% of their time and effort and 

29 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

storytelling in the creation of the Foley track. The majority of this work is then 

going to be removed during the mixing phase of the project. This is an 

example of a very inefficient working method whereby someone responsible 

for each element of the soundtrack, attempts to tell 100% of the story with the 

one area they are responsible for.”  50

 

It is therefore important to regularly make gameplay sessions, meetings and other 

ways of involving and keeping everybody on track with the creative direction of the 

project. This goes without saying no matter what type of approach is used, but the 

remark is important. 

 

A disadvantage of the specialist approach is the risk of becoming to specialised. This 

is both on an individual level and on a company level.  

Companies working with many specialists are putting them self at risk. If a specialist 

gets sick, then the knowledge they hold isn’t accessible. Even worse if a specialist 

leaves the company then the knowledge might be lost.  

A good example of a specialist could be a composer. Composers usually gets hired 

as specialists, not only because they are specialised in composing music for games, 

but often also because of the style of music they are specialised in. The need of this 

specialisation will in most cases be freelance hiring in short periods of production.  51

 

Generalist 

Rob Bridgett is a big advocate for the generalist approach. He describes the 

generalist approach like this: “that any one person in the team does not monopolize 

knowledge, expertise or techniques that the other does not possess.”  52

The generalist contra the specialist, is a person who is able to do anything on the 

game audio team. It is a balance between being creative, technical and 

collaborative. Each element ideally at 33.3% of the person's ability and focus.  

50 Bridgett, Rob, 2019, p. 36 
51 Ibid, p. 38 - 39 
52 Ibid, p. 36 

30 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

“These three things will all feed into each other - a discussion (collaborative) 

can spark an idea (creative) which then will be prototyped (technical), 

discussed (collaborative) and refined (creative) and iterated upon (technical) - 

and so on.”  53

 

When having the generalist approach, the sound designer should be able to go into 

any particular map or element of game and start working, without the need of 

consulting a specialist beforehand. 

  

What approach to use is also a question of scale. The smaller the team, the more 

areas does the sound designer have to cover. This makes the generalist scalable. 

The generalist can function as the only sound designer during a whole project, but 

can also be part of a bigger team of multiple sound designers. The specialist on the 

other hand is only applicable in bigger teams or as a short term freelancer on smaller 

projects. 

 

 

4.4 Collaboration 
Even though it was stated that the thesis won’t go into details when it comes to 

collaboration with other departments, it is still important to emphasize on the need of 

collaboration between departments, when talking about organizing a project. 

Creating a video game is a group effort of many different disciplines coming 

together. The pipeline of each department doesn’t exist in isolation and treating it as 

so will defeat the goal in the pursuit of transparency. It is therefore important to plan 

meetings, stand-up, communicate and use shared documentation throughout 

production, to make sure that everybody involved stays informed on the direction, 

both within the audio team and across disciplines. 

 

53 Bridgett, Rob, 2019, p. 38 
 

31 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

“Regardless of whether you are a small group of independent developers or part of a 

big production team, there is no excuse for not having a structure! At the end of the 

day, game development is a team effort where very specialized and passionate 

people come together to create a product. We need to use all the tools that are 

available to us to make production as simple and efficient as is possible. We need to 

build a solid production framework where we can maximize the time we spend on the 

creative part of the job.”  54

 

 

  

54 Somberg, Guy, 2017, p.175 

32 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

5.0 Key Takeaways 
In the first section of this thesis the focus has been on the different stages and 

practices of a game audio pipeline. The purpose of this has been to create the 

foundation and outline the principles and elements that goes into creating an game 

audio pipeline, by examine each element and the different ways of solving them. 

 

Working in game audio is a balance between working creatively, technically and 

collaborative. You need to establish a good pipeline that is as frictionless as 

possible. The fewer questions the sound design needs to ask the better. So in order 

to provide your sound designer with the best creative environment, you have to 

spend time on how you manage every step in your pipeline from asset creation, to 

implementation, to iteration, to finished product. 

 

By looking at the evolution of game audio, we understand how game development is 

in constant change. Pipelines have changed completely over the last decades with 

the advancement in hardware and the introduction of better tools, like the audio 

middleware. As the scope of games are changing so is the need for optimization and 

streamlining. 

  

The pipeline starts with a concept and it stops when that concept can be heard by 

the player in game. How this process is managed is different from company to 

company. But creating a pipeline is a planning process and deciding on every aspect 

as early as possible is going to save time and make the process of creating a video 

game more transparent for everybody involved. 

 

When it comes to working with DAW’s we see two approaches. A structured 

approach where all sound designers on the team are working in the same DAWs 

with the same plugins. This approach is focused on modularity and transparency. 

A free approach where sound designers work with their preferred DAWs, and 

plugins. This approach is focused on helping creativity and productivity, by having 

people work with the tools they have muscle memory in. 

33 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

But we see a tendency that people are preferring DAWs that are modular and offers 

pipeline functionalities like batch processing and middleware integration. 

 

The advancement of audio middleware has had a big impact on the possibilities for 

game audio. It has provided sound designers with a shared language. Day-one 

implementation of fundamental features and cross-platform flexibilities, means that 

sound designers and audio programmers can spend their time coming up with better 

and more creatively and technical solutions. Most middleware offers the same 

fundamentals, but their pipelines differ greatly. The decision on which one to use 

should be made according to the composition of the audio team. But even though 

middleware has become industry standard, game engines like Frostbite do offer 

unique pipeline and implementation possibilities, that shouldn’t be underestimated. 

 

The way game studios implement sound into their games is very different from studio 

to studio, project to project, and no system is alike. But having an open and creative 

mind while developing these system, is helping audio get better connection with the 

other disciplines in a game development environment.  

 

Tools are an important technical part of a pipeline, and can be shared between 

different projects in the studio if needed. When developing a new tool, it is important 

to try and adhere to these three basic guidelines:  

1. The tool should try and ease one, or several pain points in the pipeline.  

2. The tool should be able to speak the language of the user and help the user 

fulfil their creative potential. 

3. The tool should be expandable and be able to be constantly iterated on. 

 

When developing your pipeline it is important to plan out how you want to organize 

your project from day one. All of the above mentioned subjects and the options 

presented offers different solutions, but they are all decisions that needs to be made 

when organizing a pipeline.  

 

34 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Striving for transparency is a subject that resonates throughout the thesis. 

Transparency is achieved through communication, planning and organization. By 

making sure that everybody stays consistent and follows the One True Source, that 

was decided upon in the pre-production, mistakes and questions are less likely to 

occur and easier to treat. 

  

Having a naming convention and sticking to it, all the way through production is very 

important. We have shown some examples of how a naming convention could look 

like and how it could be used. There is no golden solution, but a good naming 

convention needs to follow these guideline: 

1. Make it very clear what the asset or file is and what is it connected to. 

2. Have it appear in sorted order, for easy search and browsing. 

 

We have presented two different ways of approaching the people working on the 

audio team. The Generalist approach and the Specialist approach. The decision on 

which to go for, depends on the needs of the company. 

 

Game development is a team effort spread over many different disciplines. This 

makes communication a vital part of the daily work and a key to success. This both 

goes within the audio department and cross-discipline. Establish ways of 

communicating to keep everybody informed about the state of production, is an 

essential part of planning a pipeline. There are many ways to this and will typically 

be in form of meetings, stand-up and shared documentation. 

 

 “I do think that the concepts of pipelines are very interesting, because it’s not just 

what tool I’m using, what game engine I’m using. Am I using Wwise. Am I using 

FMOD. Am I using Frostbite. It’s not that. Pipelines really for me are about that 

system, that systemic or holistic approach of how are we organizing ourselves. 

Physically, creatively, technically, in order to optimize our work, to optimize our 

player experience. Because ultimately that’s what gets into the game, what the 

player sees, which is what you are aiming for.”  55

55 Appendix 4, p. 61, Interview_Lydia_Andrew_15.mp3 (18:55 - 19:45) 

35 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

6.0 Pipeline Development 

Now that we have explored the concepts of a game audio pipeline, it is time to take 

what we have learned and apply it to our case study.  

The game we have chosen as our case study, is the 3D Game Kit from Unity. The 

game is a third person adventure game, that features some minor puzzle and 

combat elements. The game takes place on a foreign jungle looking planet, where 

you have to explore the ruins of an ancient civilization. The game is made in Unity, 

so that will be our game engine. We will use Reaper as our DAW and Wwise as our 

Middleware. The reason for this will be elaborated.  

 

To try and make the case as realistic as possible, we have chosen to view the game 

itself as a vertical slice of a bigger production. The company is in pre-production and 

our goal as sound designers is to make a robust game audio pipeline, but also a 

pipeline that is easily expandable to accommodate the extra features that might be 

available in the full game. A playthrough of the finished product can be found in 

Product Appendix 10 p. 56. 

 

6.1 Organizing 
The first thing we are going to decide on is how we organize the project. At some 

point the game is going to scale and more sound designers might join the team. 

Therefore it is important that our project is transparent from day one. We are also 

going to work closely with other departments, so naturally the company will already 

be planning meetings, documentation and deciding on a product pipeline that also 

includes audio. In the case of the audio department we have decided to use Jira for 

backlogging and keeping track of tasks.  

 

Naming convention and categorization 

Another important aspect to decide upon before we start producing is how we want 

to organize the project when it comes to categories, hierarchies and naming 

conventions.  

36 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

For naming convention we have chosen to go with a modified version of Stephen 

Hoddes naming convention, with the option for adding a Dynamics category and a 

remark that a file can have multiple Subcategories.  

 

Category_[Subcategories]_Name_Layer_[Dynamics]_VariationNumber 

 

The reason for this style of naming convention is because it is flexible and can easily 

be expanded as the game grows in scope.  

We have decided to not use numeric for iteration, this is because our Reaper to 

Wwise export/import tool, that will be explained later, doesn’t allow additional 

symbols after the variation number. But this will happen if we were to include voice 

over in the project.  

 

This naming convention is used all through our pipeline. This means that our 

Originals folder, Wwise hierarchy and our Wwise event folder will follow the same 

structure. This is with the purpose of making it transparent and easy to navigate. 

 

6.2 Choice of Daw 
We have decided to use the structured approach, when it comes to the use of DAW. 

Ideally we would also use the same suite of plugins, but because of financial 

limitations we will be using the plugins that each of us has available. 

The DAW that we will be using is Reaper. This is foremost because we both are 

quite used to working in Reaper, but also because of the deep automation and 

scripting possibilities within the engine. We want to reduce the time spend on 

exporting assets and importing them into Wwise. This is because it is a very time 

consuming part of the pipeline, that we know we are able to improve significantly on, 

with the help of existing tools. Below is a description of the tools that we will be using 

to streamline this process. 

  

37 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

6.2.1 Reaper Export/Import Pipeline 

We have chosen to focus on two points of improvements for Reaper. A shortcut to 

easily make a endless loop from a media item and a collection of tools that makes 

naming and exporting assets from Reaper into Wwise easy.  

 

Seamless Loop Shortcut 

The first tool is quite simple and just makes a loop from a media item by cutting the 

file in half at nearest zero point crossing and moving the left half across to the other 

side and make a crossfade. This tool is a collection of scripts built into Reaper and 

made into an action. It is a quick improvement of a task that will be done many times 

in the course of production.  

See Product Appendix 1 p. 55 for a video demonstration of the tool. 

 

Reaper to Wwise system 

This system is a bit more complex and is made up by a set of tools made by others. 

It consists of three independent scripts or systems and utilises the region render 

functionality to export and it makes naming multiple assets very fast. Unlike the 

standard way, this method is also able to easily export sounds that consists of 

several layers.  

 

The first step in the process it to create some tracks and have one of them be a 

folder for the others. This track must be renamed the following way: Regions 100 

NameExample. The naming itself won’t matter but are used by one of the scripts 

later in the process to determine what regions to create. You then go on and create 

the sound how you normally would. You can layer sounds and do as you normally 

would.  

The next process is to create text items on the folder tracks, so that we later can use 

these to make render regions. This is done by an action that consists of several 

different scripts put together. You highlight all the media items you want to name and 

call the action. This prompts a dialog that is used to name the text items files. They 

will all get a number added as an Affix e.g. “Item01, Item02, etc.” These scripts are 

38 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

part of a packages you can download off the internet and is not written by us they 

can be found here.  A big thanks to X-Raym and spk77 for making these available 56

for free.  

After this, another script made by HeDa then takes these text items and creates 

regions around them. Now all there is left is to open the Regions Render Matrix, add 

the tracks you want to export and then open then Renderer, select the appropriate 

setting and add the regions to the Render Queue. For the last part, you open the 

WAAPI Transfer Plugin from Karl Davis and import you sound into Wwise. 

Unfortunately  this tool is only available on windows due to the different file structure 

that Mac OS uses. 

This workflow enables the user to fast and efficiently name, manage and import 

several audio assets into Wwise, while making sure that there are minimal mistakes 

in the naming convention. One thing that could be made better in terms of workflow 

is, that you still must go into the Wwise project and select the containers you want to 

import into. It would be great if you could do that directly in Reaper.  

See Product Appendix 2 p. 55 for a video demonstration of the tool. 

  

ReaOpen system 

Our pipeline between Wwise and Reaper is also able to go the other way around 

thanks to the ReaOpen app made by Nikola Lukic from Audiokinetic. It works by 

tagging all the exported files with metadata of the project location on the hard drive. 

Wwise then reads these and puts them in the notes of the sound. When you want to 

open the project your sample was created in, it reads the note and opens the .rpp  57

file at the appropriate place. This is quite useful if you quickly want to make changes 

to your sound inside Reaper. However, you need to share your projects with 

colleagues if you want to open each others sessions, which won’t necessarily be 

completely beneficial for us, since we might be using different plugins.  

56 https://www.extremraym.com/en/my-reaper-scripts/ (18-12-2019) 
57 Reaper Project File 

39 

https://www.extremraym.com/en/my-reaper-scripts/
https://www.extremraym.com/en/my-reaper-scripts/
https://www.extremraym.com/en/my-reaper-scripts/


Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

With the implementation of these systems in our pipeline, we have considerably 

reduced the export/import time, even when it comes to iteration, while also reducing 

the risk of making naming mistakes.  

See Product Appendix 3 p. 55 for a video demonstration of the tool. 

 

 

6.3 Choice of Middleware 
As our middleware we have chosen to use Wwise. This is primarily because of the 

control that Wwise is giving the sound designer, when it comes to build-in features. 

Especially in terms of working on a 3D game. Wwise offers many tools, such as the 

ability to use obstruction, occlusion and set multiple positions of a sound. This is 

compared to FMOD that also has a lot of these functionalities, but it would require a 

programmer to get all features implemented. Based on our mutual interest for 

programming and system creation, we believe that we will be able to utilise Wwise, 

the pre-existing Wwise tools in Unity and additionally build the tools and systems 

inside Unity without the immediate need of a dedicated audio programmer. 

 

One could argue that Unitys own audio system would be viable. Partly because of 

how you’re able to export audio assets directly into the game engine with no need for 

soundbanks. But the amount of time we would need to spend on designing and 

implementing even simple features like pitch variation, does simply not hold up 

against the amount of features we get out of the box, when using a middleware 

solution. And with the export/import workflow between Reaper and Wwise that we 

have developed, we already have a fast iteration process.  

 

As mentioned earlier, the structure of our Wwise project, when it comes to the 

hierarchy and event folder, is following our naming convention. Additionally we have 

decided that the bottom layer is made with folders and the second layer is Work 

40 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Units.  What this means is that it reduces the chances of us overwriting each other's 58

work and it saves time and focus, by reducing the chance of us having to wait and 

get distracted, when a Work Unit is occupied by another sound designer. 

Pictures of how this looks like can be viewed in Appendix 8 p. 59. 

 

6.4 Tools and Implementation 
In terms of audio implementation, most of the logic such as the behaviour of triggers, 

monsters and pickups, has already been set up by the programmers. The game itself 

is designed to be very modular, so in terms of implementing sound on the different 

objects it was a matter of creating a new system to replace the old and additionally 

look at what tools we would have to create, to make the implementation as 

transparent and creative as possible. 

We started by brainstorming different ideas that we either saw an immediate need 

for, read/heard about or in general was missing in our usual pipelines.  
When mapping out the tools, we wanted to follow the guidelines presented earlier in 

the thesis. 

1. The tool should try and ease one, or several pain points in the pipeline.  

2. The tool should be able to speak the language of the user and help the user 

fulfil their creative potential. 

3. The tool should be expandable and be able to be constantly iterated on. 

 

But we also wanted these tools to be reusable. Being able to reuse a tool for 

different projects is valuable for a company, because it eliminates the need of 

recreating everything from scratch, every time a new project is started and the staff 

doesn’t have to relearn new tools as well. 

In the following pages we will present the different tools we created, with a focus on 

why we made them, and how they work.   

58 When working with version control and Wwise, Work Units functions as the base file, which is 
overwritten when changes has been made. Therefore you can’t have two people work in the same 
Work Unit. 

41 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

6.4.1 WwiseType System 
Why? 

Implementing events, RTPC, states and switches into the rest of the code of the 

game can be done in many ways. With the introduction of WwiseTypes  this 59

implementation has become easier, because the need of using strings or custom ID 

systems has become unnecessary. We wanted to further develop on this system and 

minimize the amount of information and communication needed between the sound 

designer and the programmer, and the amount of code the programmer needs to 

write every time he/she is implementing WwiseTypes. When setting up an event 

through code, the programmer needs to at least specify what emitter the sound 

should play from. If the event should override the event action or have a value 

assigned, then the programmer needs to write even more additional code. All this 

information should be communicated from the sound designer to the programmer 

and if something changes, some of the code may need to be revisited.  

How it works 

The idea with this system is, that the only information the sound designer needs to 

give the programmer is what type (event, RTPC, state, switch, bank, auxbus) should 

be used and when it should be played. The only code the programmer then needs to 

write is a declaration and a call of the declaration, as shown in Appendix 9.1 p. 60. 

 

All the code determined behaviour of the WwiseType is nested inside the serialized 

WwiseEvent class. This is deriving from the parent WwiseSystem class. Similar child 

classes for RTPC, state, switch, bank and auxbus is also available. The behaviour of 

the derived class is then exposed in the inspector (as shown in Appendix 9.2 p. 60), 

giving the sound designer the control to setup and change the behaviour without 

having to communicate with the programmer.  

 

When it comes to the three guidelines of what makes a good tool. 

First of all it is fixing a common problem/question, which is the question of how 

59 https://www.audiokinetic.com/library/2017.1.9_6501/?source=Unity&id=unity__wwise__types.html 
(10-12-2019) 

42 

https://www.audiokinetic.com/library/2017.1.9_6501/?source=Unity&id=unity__wwise__types.html


Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

should audio be implemented into the game. It is providing a simple solution, which 

is reducing the amount of time it takes to set up WwiseType behaviour. It reduces 

the amount of detailed communication needed between the sound designer and the 

programmer. It reduces the amount of maintenance, by giving the responsibility of 

sound maintenance to the sound designer, who is the one who ideally should be 

responsible. 

Secondly it is speaking the language of the sound designer by shifting the setup from 

the code and out in the inspector. Typically the programmer would try to make 

normal integration look good in the inspector for the sake of transparency. But this 

isn’t needed, because the setup has already been decided within the system. This is 

saving a lot of the programming time.  

Further it comes with highlight tooltips that explain the behaviour of the different 

functions, as shown in Appendix 9.3 p. 65. 

 

Thirdly the tool is expandable. It is already being used in multiple of our other custom 

tools, WwiseAnimation, WwiseAmbienceFollower and WwiseTrigger, which makes it 

an integrated part of our implementation pipeline. The tool is still in an early 

development phase and could be expanded to include all WwiseTypes in one single 

class, the UI could be improved with custom drawers and it could include an in built 

callback system, making it very useful for music implementation. 

But this isn’t a tool that is going to remove the need of writing WwiseType behaviour 

ever again. Currently it isn’t applicable in our WwisePainter and 

WwiseMaterialSwitch tools, because of the specific ways they are accessing and 

using WwiseType. 

The idea for this system comes from the event action system developed at 

ThroughLine Games. The big difference between the system of ThroughLine Games 

and the system we built, is that we implement the WwiseType System directly into 

the code of the component we want the behaviour to come from. The system used at 

ThroughLine Games is sitting on its own component and is then referenced by other 

components. Using our system reduces the number of components and game 

43 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

objects in the project, making it more manageable and more transparent when it 

comes to eliminating the confusion of the pipelines execution. 

See Product Appendix 4 p. 55 for a video demonstration of the tool. 

 

 

6.4.2 Custom Third-Person Listener 

Why?  

This custom Third Person Listener we have implemented is one that Guy Somberg 

mentioned in his book and in our interview with him. Since our game case is a third 

person listener game, we thought we would give this method a try, and it turns out 

this implementation made a dramatic difference, compared to simply placing the 

listener on the camera. Since we need to get the players position and that the way 

you would expose this would be different from every game, it can’t really be 

considered a tool but rather an implementation.  

How it works 

Having the listener attached to the listener or player creates some artefacts in the 

way you would expect to hear the 3D sounds in the game world. Having the listener 

on the camera causes the sounds to be oriented correctly but throws off the distance 

attenuation. Doing the opposite and placing the listener on the players head would 

create the opposite problem and make the orientation wrong, but make the 

attenuation correct.   

Instead, what you want to do is to place the listener at the position of the player but 

use the camera as the method of rotation. In Wwise this can be done by simply 

calling Aksoundengine.SetPosition(). This method takes in a transform and a 

Vector3.forward and a Vector3.up.  All you must do is set the listeners transform to 60

be equal to the player position and then set the orientation to be equal to that of the 

camera. See Product Appendix 5 p. 55 for a video demonstration of the tool. 

 

  

60 https://docs.unity3d.com/ScriptReference/Vector3.html (18-12-2019) 

44 

https://docs.unity3d.com/ScriptReference/Vector3.html


Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

6.4.3 Wwise Material Switch 

Why? 

The main idea with the Wwise material switch is to give the sound designer an easy 

way of organizing materials and different Wwise switches. It is designed to be as 

agnostic as possible meaning that it does not decide how you want to “get” the 

material from the unity game object. This opens the possible of reusing the tool for 

not just footsteps, but also for different applications like Weapon impacts where you 

would need a material to determine what sound to play. . 

 

How it works 

On the outside the setup is made as simple as possible and consist of a 

scriptableobject where you assign materials to an array and a corresponding switch. 

The idea is that you just needs to assign a switch and the materials you want the 

switch to trigger on. As shown in Appendix 10.1 p. 61.  

On the implementation side you create a WwiseMaterialSwitch variable and call the 

Initialize() function when the game object is enabled. This function can be 

seen in Appendix 10.2 p. 62. Wherever you do your material check, call the 

CheckMaterial() function. This function takes in a material and a game object. It 

will try to change the switch, to the matching material. If it can’t find the material, it 

will keep the material switch set as default. This function can be seen in Appendix 

10.3 p. 62. 

The reason for having to provide a game object is to give the option of specifying 

what game object you want to change the switch on. Again, the idea is not to retrieve 

the material itself, because the way it is done can vary from implementation to 

implementation. The way it is done for a footstep system, may not be the same for a 

weapon impact system. See Product Appendix 6 p. 55 for a video demonstration of 

the tool. 

  

45 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

6.4.4 Wwise Ambience Follower 
Why? 

The idea behind the ambience follower is to have a way of creating “zones” you can 

move in. This could for example be a forest. Here you typically want the sound to be 

3D the further away you are, but 2D when you are “inside” the forest. This tool 

makes it easy to define areas, but also makes sure that they fade correctly and 

reduces time the sound designer has to spend on making overlapping ambience 

zones fade correctly 

 

How does it work? 

The component works by spawning an emitter inside a collider. The emitter will try to 

follow the player, but confines itself to only move inside the collider. In Wwise you 

define a RTPC that changes the sound from 2D to 3D based on the distance to the 

player, to get the feeling of “entering” the area. It can also be used with only distance 

but no panning, to make 2D ambiences fade in and out over distance. It is possible 

to set the update interval, to optimize the performance, since there is no need for 

updating the position every frame. Inspector values can be seen in Appendix 11 p. 

63. The max distance is also a performance optimizer. It makes sure that the event 

isn’t playing and the position being updated, when the player is further away than the 

max distance. See Product Appendix 7 p. 56 for a video demonstration of the tool. 

 

6.4.5 Wwise Sound Painter  
Why? 

The Wwise sound painter is made as a tool to help sound designers quickly marking 

areas that should make up a volumetric sound area, such as water areas. Without 

this tool, you would manually have to place game objects by hand, where you want 

the area to be, often leading to a very tiresome and slow process. This tool 

significantly reduces the time spend doing this by enabling you to place the emitters 

where you want them, simply by clicking in the scene view. Making it simple and very 

intuitive, even for people not used to place game objects in a 3D environment.  

46 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

How does it work? 

At it most basic level this uses the Wwise provided 

AkSoundEngine.SetMultiplePositions() function to set multiple positions for 

one emitter, enabling the sound designer to make entire area that share the same 

instance of a sound, improving performance a great deal. 

 

The tool itself is split up into a standard scripted component and 3 editor scripts. The 

component added to the game object lets you select what sound you want to play 

and manages the multiposition game objects. As shown in Appendix 12 p. 63. 

Selecting the game object on which this script resides in the unity hierarchy, gives a 

“Stamp” when hovering above your scene viewport. Left clicking when this stamp is 

active, creates a point in the scene. This is done by doing a raycast down from the 

scene camera and then spawning a game object with the 

AkAmbientLargeModePositioner component on itself, allowing Wwise to correctly 

add it to the AkPositionArray it uses to compute the different positions. 

The layer you can “paint” on can be specified by the Layer Mask. And the max slope 

determines the about of degrees you can paint on, meaning if walls and structures 

should be taken into consideration. The tool is also able to show you the attenuation 

curves of the points, enabling the sound designer to see the extent of the sound, and 

could in the future be extended into a prefab painter, allowing you to paint more than 

just multi position emitters. See Product Appendix 8 p. 56 for a video demonstration 

of the tool.  

  

47 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

6.4.6 Wwise Animation 
Why? 

In many games it is normal to have audio being played at specific points in the 

timeline of animations. In Unity this is done using animation events. This is events 

that can be placed on the animations timeline. These events activates a specified 

function, that can take in one variable, when the animation is being played. Creating 

a new function for each event is ineffective and can easily become chaotic when the 

numbers of animations and events grows. We wanted a flexible system that can 

adapt to an increase in animation events and it should be reusable for every model.  

How does it work? 

The WwiseAnimation script is a modification of a system from ThroughLine Games. 

By creating a list of WwiseEvents using the WwiseType System described, the 

sound designer can specify the number of events that is going to be needed directly 

in the inspector. The sound designer then chooses the Wwise event that each 

WwiseEvent in the list should play. An OnValidate function then automatically 

renames each WwiseEvent in the list, to the name of the event chosen.  

Mentioned before, the animation event in the animation timeline takes a function and 

a variable. The function is called WwiseAnimEvent and the variable we are using, is 

a string with the name of the WwiseEvent, that we renamed in the OnValidate 

function. The function is shown in Appendix 13 p. 64.  

When WwiseAnimEvent is called from the animation timeline, an enumerable 

FirstOrDefault method runs through the list of WwiseEvents until it finds the one that 

matches the string value of our event.  

 

A problem with this pipeline is that the function and the string name needs to be 

manually written in the animation event. To improve on this we have added the 

option of copying the Wwise event name to clipboard. This eliminates the chance of 

mistyping the event name and it slightly improves the time spend on setting up 

animation events. See Product Appendix 9 p. 56 for a video demonstration of the 

tool.  

48 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

7. Closing Thoughts 
Taking a step back and evaluating what we would need, and how we were going to 

organize the audio pipeline, helped us immensely during the creative process. 

Deciding on One True Source in terms of a clear naming convention, a transparent 

pipeline execution, deciding and building the tools we knew we would need, has 

made the process from idea to execution faster and more transparent. 

By using the Reaper to Wwise tools, we were able to drastically decrease the time 

spend when exporting assets from Reaper, compared to using a DAW without batch 

processing or similar tools. The Unity tools we created made the implementation 

quick and easy to do. It offered us ways of speeding up the process, like painting 

multiposition emitters and quickly set up simple things like animation events. While 

also improving the listener experience, like the custom third-person listener. 

In the end, these ways of working is letting us get much more creative, because of 

the shorter iteration and implementation time and the lesser time spend on patching 

bad management. 

 

In our case study we haven’t been part of production from day one, but probably 

pretty late in the pre-production. If we were part of the production from day one, we 

would probably have done a lot differently. Coming into a project where many things 

have been decided upon in advance, will make the process harder. 

An example could be the fact that all animations in our case study, were imported as 

read-only, which makes the implementation of animation events more time 

consuming. Being able to plan the best practice with the animation department 

before they started working on the assets or we started working on our tools would 

be ideal. This goes with many things and it only emphasizes the fact that audio 

should be part of production as early as possible. 

 

As mentioned earlier many of the tools we have designed are designed with the 

purpose of being reusable in other games. Most of our interviewees mentioned that 

they reuse tools between projects. As a freelancer, you might not be able to reuse 

tools from one project to another. Many studios are using different game engines 

49 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

and middleware, and the way they are structuring their code may also be very 

different. But with the growing popularity of general game engines like Unity and 

Unreal Engine. We could potentially see a future where freelancers more easilier can 

bring in their way of working and the tools they have created, onto new projects. 

 

 

  

50 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

8. Conclusion 

Through the thesis we have presented some of the key-points of consideration, 

when developing a pipeline and we have given multiple ways of approaching these. 

But it is important to emphasize the fact that first of all, there is no right way of doing 

this. It is rather a question of making the decision on how to do it. Secondly, there is 

much more going into the development of a pipeline, then what we have been able 

to present. Because of the scope limitations of this thesis we haven’t been able to 

make room for working with moodboards, documentation and cross disciplinary 

pipeline development. But to get a full understanding of how to develop a pipeline, 

these subjects should be taken into consideration. 

 

When developing a pipeline, that is going to stay organized, transparent and stick to 

the idea of One True Source, having audio be part of pre-production is vital. It is 

impossible to prepare for every situation, but having outlined and tested the pipeline, 

is going to provide higher planning stability. That being said, being part of 

pre-production is also a question of acknowledging everybody working in the game 

industry as being experts in video games. The knowledge they bring to the 

production, is more than just their field of expertise. 

 

We see a lot of commonalities and differences in the pipeline execution of our 

interviewees. But we do also see a tendency that studios are starting to use the 

same middleware solutions and uniform their use of DAW’s. In the case of indie 

companies, this also goes with game engines. With more studios starting this 

progression towards the same tools, we could see some kind of global pipeline 

streamlining, especially when it comes to tech.  

 

It is possible to develop reusable tools. But not only is it possible, it is also something 

that should be striven for. When developing a pipeline and the respective tools, it is 

important to treasure it as something that is going to last beyond the current project. 

The game audio pipelines and tools at many of our interviewees respective 

51 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

companies, have been developed over the course of many years and projects, and 

they still find ways to improve upon them. 

 

The hardest part of working with a determined pipeline, is keeping it consistent if 

things should change, which inevitably will happen. There is no universal answer to a 

perfect pipeline, and the pipeline we have built is by no means tested and true and a 

lot of things could still be improved upon it. A pipeline is developed through 

experience, trial and error. That is also why it is important to be aware of how you 

are working, what steps you need to go through from A to B and then try to find ways 

of improving it. Time spend working against the pipeline, is time you could have 

spend on being creative. In the end, that is what the player experiences. 

  

52 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Abstract  
This thesis aims to provide the reader with an understanding of the importance of 

designing a game audio pipeline and how to create a pipeline, that streamlines and 

optimizes workflow and game audio implementation. To do this, an examination of 

the various elements that goes into creating a pipeline and what considerations to 

take into account, is made. This information is then exemplified in a case study of a 

third person adventure game. The game is treated as a prototype in pre-production 

and aims to showcase how a pipeline could be designed. This includes various 

pipeline and implementation tools, designed with the case study in mind.  

 

The study concludes that there is no universal answer to building a pipeline, but that 

it is important to be aware of how you are working, what steps you need to go 

through and then find ways to improve upon it. Building a pipeline is a question of 

organizing, outlining and testing, with the purpose of providing higher planning 

stability. It is impossible to prepare for every situation, which is why the importance 

of having game audio be part of the pre-production phase of game development is 

being argued. Pre-production is the initial phase of production and deciding upon a 

pipeline this early and keeping it consistent through production is vital. It will make 

problem solving easier and create more room for creativity.  

 

The thesis is based primarily upon interviews with various game audio directors and 

game audio professionals. The reason for this is the value of expertise on the subject 

these individuals have been able to provide us and the limited pre-existent material 

available on the subject. 

 

Acknowledgments 

We would like to express our sincerest gratitude to Ben Minto, Gustav Rathsman, 

Guy Somberg, Jonas Breum Jensen, Lydia Andrew, Rob Bridgett and Stephen 

Hodde. Without your contribution this thesis wouldn’t have been possible. 

  

53 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Bibliography 
 

Bridgett, Rob, 2019: 100 unusual, novel and surprising way to become a better 

sound designer in video games, Rob Bridgett  

 

Kastbauer, Damian. 2016: Game Audio Tales of a Technical Sound Designer 

Volume 1, Damian Kastbauer  

 

Somberg, Guy, 2017: Game Audio Programming: Principle and Practices, London: 

CRC Press, Taylor & Francis Group.  

 

 

 

 

 

 

 

 

 

  

54 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Product Appendix 
Product Appendix 1: Seamless Loop Shortcut 
Video example of tool 

https://www.youtube.com/watch?v=Ys7NKG2gPbY 

 

Product Appendix 2: Reaper to Wwise system 

Video example of tool 

https://www.youtube.com/watch?v=cGZRgcZvnLk 

 

Product Appendix 3: ReaOpen system 

Video example of tool 

https://www.youtube.com/watch?v=jLkoypSyK5Y 

 

Product Appendix 4: WwiseType System 
Video example of tool 

https://www.youtube.com/watch?v=Pd4eYPv1G4M 

 

Product Appendix 5: Custom Third-Person Listener 
Video example of tool 

https://www.youtube.com/watch?v=myuOvg6ibag 

 

Product Appendix 6: Wwise Material Switch 
Video example of tool 

https://www.youtube.com/watch?v=i7bxsXQr21g 

 

  

55 

https://www.youtube.com/watch?v=Ys7NKG2gPbY
https://www.youtube.com/watch?v=cGZRgcZvnLk
https://www.youtube.com/watch?v=jLkoypSyK5Y
https://www.youtube.com/watch?v=Pd4eYPv1G4M
https://www.youtube.com/watch?v=myuOvg6ibag
https://www.youtube.com/watch?v=i7bxsXQr21g


Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Product Appendix 7: Wwise Ambience Follower 
Video example of tool 

https://www.youtube.com/watch?v=7e6MXlNjiHI 

 

Product Appendix 8: Wwise Sound Painter 
Video example of tool 

https://www.youtube.com/watch?v=65MO97XnWb0 

 

Product Appendix 9: Wwise Animation 
Video example of tool 

https://www.youtube.com/watch?v=9AEcd0Qu1b4 

 

Product Appendix 10: Playthrough of product 
Video playthrough of case study 

https://www.youtube.com/watch?v=-xCvy3IjzGk 

  

56 

https://www.youtube.com/watch?v=7e6MXlNjiHI
https://www.youtube.com/watch?v=65MO97XnWb0
https://www.youtube.com/watch?v=9AEcd0Qu1b4
https://www.youtube.com/watch?v=-xCvy3IjzGk


Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Appendix 
Appendix 1: Interview with Stephen Hodde 
Stephen Hodde, Audio Director at PolyArc 

This file isn’t publicly available. 

 

 

Appendix 2: Interview with Rob Bridgett 
Rob Bridget, Audio Director at EIDOS Montreal  

This file isn’t publicly available. 

 

Appendix 3: Interview with DICE 
Ben Minto and Gustav Rathsman, Audio Director and Sound Designer at DICE. 

This file isn’t publicly available. 

 

 

Appendix 4: Interview with Lydia Andrew 
Lydia Andrews, Audio Director at Ubisoft Quebec City Studio. 

This file isn’t publicly available. 

 

Appendix 5: Interview with Guy Somberg 
Guy Somberg, Lead & Audio Programmer at Echtra. 

This file isn’t publicly available. 

 

 

Appendix 6: Interview with Jonas Breum Jensen 
Jonas Breum Jensen, Lead and Principal Sound Designer at IO Interactive. 

This file isn’t publicly available.  

57 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Appendix 7: Illustrated pipeline process 

From Bridgett, Rob, 2019: 100 unusual, novel and surprising way to become a better 

sound designer in video games, p. 59 

  

58 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Appendix 8: Example of Wwise structure 

 

  

59 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Appendix 9.1: WwiseType System 

 

 

Appendix 9.2: WwiseType System 

 

Appendix 9.3: WwiseType System 

 

 

  

60 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Appendix 10.1: Wwise Material Switch 

 
 
 
 

61 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Appendix 10.2: Wwise Material Switch 

 
 

Appendix 10.3: Wwise Material Switch 

 
 
 
 
 
 

62 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Appendix 11: Wwise Ambience Follower 

 
 

Appendix 12: Wwise Sound Painter 

 

63 



Jeppe Emil Lindskov MS16100 Bachelor’s project  19-12-2019 
Mads Vesterager Riddersholm MS16104     UCSYD Haderslev 

Appendix 13: Wwise Animation 

 

 

64 


