w '.C.'dijtinuoLls:
"Delivery in
the Wild

Pete Hodgson

®2

REPORT

Skip the hotfixes and rollbacks
with Split’s Feature Delivery Platform.

Manage Monitor Experiment
feature flags release errors with A/B tests

Confidently release features as fast as you develop them.
Keeping your customers (and engineering teams) happy.

Try it for free at Split.io/signup

< split

http://split.io/signup

Continuous Delivery
in the Wild

Pete Hodgson

Beijing - Boston + Farnham - Sebastopol + Tokyo [K@AR{=IMNG

Continuous Delivery in the Wild
by Pete Hodgson

Copyright © 2020 O’'Reilly Media. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor-
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: John Devins Proofreader: Nan Barber
Developmental Editor: Sarah Grey Interior Designer: David Futato
Production Editor: Nan Barber Cover Designer: Karen Montgomery
Copyeditor: Christina Edwards lllustrator: Rebecca Demarest
February 2020: First Edition

Revision History for the First Edition
2020-02-11: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Continuous Deliv-
ery in the Wild, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Split Software. See our
statement of editorial independence.

978-1-492-07767-1
[LSI]

http://oreilly.com
https://www.oreilly.com/about/editorial_independence.html

Table of Contents

Cdntroduction. . ..o e e

What is Continuous Delivery?
Continuous Delivery in the Real World
Research Methodology

The Path to Production

. Branch Management and Code Review.....................

GitHub Flow

Trunk-Based Development

Minimal Branches

Cutting a Release Versus Promoting a Build
Code Review

Reducing Batch Size

. Running an Integrated System.........................

Continuous Delivery Demands Fewer Environments
Testing Changes Prior to Merge

. DeploymentandRelease..............covvvvivinnnn..

Single-Piece Flow

Release Buses

Coordinating Production Changes
Controlled Rollout

Incremental Deployment

Decoupling Deployment from Release
Correlating Cause and Effect

Moving Fast with Safety

—_
— O O 0 00 NN [SSIN NS S

[a—

15
15
16

21
21
21
22
24
24
25
25
26

LT Y1 111111 T /S

Shared Values

Two Modes of Continuous Delivery
Monoliths Versus SOA

Succeeding with Continuous Delivery

27
28
29
29

iv

Table of Contents

CHAPTER1
Introduction

Software companies are under constant pressure to deliver features
to their users faster, while simultaneously maintaining (or improv-
ing) the quality of those features. This may seem like an impossible
task, but many organizations have discovered that it is in fact ach-
ievable, using the practices of Continuous Delivery.

What is Continuous Delivery?

Continuous Delivery is a set of technical practices that allow deliv-
ery teams to radically accelerate the pace at which they deliver value
to their users. The core tenet of Continuous Delivery is keeping
your codebase in a state where it can be shipped to production at
any time. By working in this way, you can quicken the tempo of pro-
duction changes, going from infrequent, big, and risky deployments
to deployments that are frequent, small, and safe.

Humble, and Gene Kim, uses rigorous scientific meth-
ods to confirm many of the benefits of Continuous
Delivery, based on several years of the State Of Devops
Survey. The book shows that organizations practicing
Continuous Delivery have better software delivery per-
formance, which in turn drives greater organizational
performance. In other words, Continuous Delivery
leads to better organizational outcomes.

m The book Accelerate, by Nicole Forsgren, PhD, Jez

https://oreil.ly/g2wOV
https://oreil.ly/Y_N2h
https://oreil.ly/l4hw-
https://oreil.ly/l4hw-

Continuous Delivery in the Real World

A lot of the discussion around Continuous Delivery focuses on the
cutting-edge practices advancing the state of the art. In this report,
we will instead look at how a variety of organizations have imple-
mented Continuous Delivery in the real world.

We'll look at some of the common approaches these organizations
have found helpful. We'll also see how there are multiple ways to
achieve the same goal, depending on the organizational context. My
hope is that after reading this report you'll come away with some
actionable ideas for how to implement, or improve, Continuous
Delivery within your own organization.

Research Methodology

To understand how people have implemented Continuous Delivery
in the real world, I conducted in-depth interviews with a variety of
organizations with a rapid software delivery tempo, deploying code
into production at least daily. Some of these organizations have
practiced something akin to Continuous Delivery from the start,
while others have migrated to Continuous Delivery practices over
the last few years.

Throughout the rest of the report, I'll refer to the organizations
interviewed as “participants” The more interesting participants are
described as follows:

Payment Processor
Founded in 2009, with around 1000 engineers and Service-
Oriented Architecture (SOA) consisting of around 500 services.

Automotive Marketplace
Has had an online presence since the mid-1990s, with around
200 engineers and an architecture that's migrating from mono-
lithic web apps toward SOA, with currently around 300 services.

Online Retailer
Founded in the 1950s, with around 20 engineers working on a
monolithic web application, which is just starting to move
toward SOA.

2 | Chapter 1: Introduction

Food Delivery Service
Founded in 2012, with around 30 engineers working on an SOA
of 15 to 20 services.

Healthcare Provider
Founded in 2007, with around 100 engineers working on a
monolithic web application.

Print and Design Service
Founded in 2004, with around 50 engineers who are partway
through a migration from a monolithic web application to SOA,
with currently around 50 services.

Online Realtor
Founded in 1995, with around 450 engineers working on an
SOA made of up of both large monolithic systems and smaller
services.

Financial Services Startup
Founded in 2007, with around 800 engineers working on an
SOA with a large number of small services.

We'll learn more about how each of these organizations has
approached the challenges of Continuous Delivery throughout the
report.

The Path to Production

To understand how each participant does software delivery, I asked
them to describe the “path to production” for a small user-facing
feature. While the organizations vary broadly in terms of architec-
ture, industry, and organization size, there is a striking consistency
in the mechanics of how each organization has implemented Con-
tinuous Delivery.

Across all the organizations that I surveyed, the path to production
looks something like this (Figure 1-1):

« Engineer implements feature

+ Change is reviewed and merged to master

« Change is validated via automated tests

« Change is automatically deployed to a shared integration
environment

The Path to Production | 3

o Brief exploratory testing of change is done (if warranted)
« Change is deployed to production

« Controlled rollout of the change to users happens (if warranted)

@ | Path to Production >z

Feature User
Deploy to Spot Deploy Release
pre-prod | check[] to prod ™ touser

Implement —w Merge - Validate —

Continuous Continuous
integration delivery

Figure 1-1. The path to production: how a feature moves from an engi-
neer’s keyboard into a user’s hands

The first half of this path—building the feature, merging it, and per-
forming automated validation of the merged code—constitutes the
practice of Continuous Integration. The second half—flowing the
changes that make up the new feature through to production in a
safe, consistent way—constitutes Continuous Delivery.

We'll explore how different organizations implement this path to
production over the course of this report.

Continuous Delivery Versus Continuous Deployment

Every organization I surveyed has an automated deployment from
master' to a shared preproduction environment. Any change that
lands on master will automatically be deployed to the preproduc-
tion environment, as long as it passes Continuous Integration vali-
dation.

This approach is taken even further at the Online Realtor and the
Automotive Marketplace, where some teams automatically promote
changes to their production environment, with no human interven-
tion necessary, as long as it passes further automated validation.
This is an example of Continuous Deployment—every valid change

—

Going forward, I'll use “master” as a shorthand for the main development branch
where a team integrates their work, since that’s the most common nomenclature in
today’s git-centric world. This is sometimes referred to as “trunk” (i.e., in Trunk-Based
Development).

4 | Chapter1:Introduction

landing on master will automatically flow all the way through to
production.

However, most of the organizations that I talked with avoid full-on
Continuous Deployment. Instead, they institute some sort of man-
ual gate, requiring an engineer to explicitly promote their changes
into production from a preproduction environment. This wouldn’t
be considered Continuous Deployment, but it is still a form of Con-
tinuous Delivery.

The Path to Production |

5

CHAPTER 2

Branch Management
and Code Review

Continuous Delivery builds upon the practice of Continuous Inte-
gration, which is defined by the frequent integration of work into a
shared branch (with “frequent” often interpreted as “at least daily”™")
All participants I interviewed adhere to these principles, avoiding
long-lived feature branches almost entirely.

However, many participants are not meeting the strict definition of
Continuous Integration. Several reported that feature branches have
a typical lifetime of a few days to a week before being integrated into
their shared master branch.?

GitHub Flow

The majority of participants use a variant of the GitHub flow
branching model.* Engineers create a short-lived feature branch for
each change they are implementing, and create a pull request (or
merge request) once their work is ready to be integrated into master.

1 Accelerate, Chapter 4.

2 All participants were using Git for version control.

3 GitHub flow is defined here: https://oreil.ly/ocvBZ. While this definition specifies that
changes in a feature branch are deployed to production before being merged to master,

I have yet to encounter an organization that actually does this—besides GitHub them-
selves, presumably.

https://oreil.ly/ocvBZ

That pull request typically also serves as a mechanism for coordinat-
ing code review. Once a change has been approved it is merged into
master.

Participants using pull requests also typically leverage their Contin-
uous Integration infrastructure to run premerge validation, running
the same types of automated checks against the feature branch as
they would run against master once the branch is merged. Feedback
from these automated checks is then available for reviewers of the
change within the pull request UI.

Trunk-Based Development

Some participants forgo the use of branches entirely and work
directly on master, a practice known as Trunk-Based Development.
Engineers at the Online Retailer explained that they simply make
their changes directly to their local master branch, and push to the
shared remote repository once their changes are ready.

Participants that primarily use Trunk-Based Development do still
use short-lived feature branches on occasion. The Online Retailer
described using them when a change was risky, or being made by a
junior engineer. At the Automotive Marketplace, they are used when
an engineer from one team is making changes to a codebase owned
by another team. In that case the engineer would create a feature
branch and use a pull request to solicit feedback from the owning
team before landing the change into their master branch.

Minimal Branches

Across all participants there was universal agreement that long-lived
branches are detrimental to Continuous Delivery practices. Some
participants that had recently moved to Continuous Delivery were
still in the process of moving away from relying on long-lived
branches.

What were these legacy long-lived branches used for? At the Health-
care Provider and the Print and Design Service, there were some lin-
gering instances of team integration branches, a shared branch used
by engineers on a team in order to collaborate on a hairy code
change that would have destabilized their master branch. The
Online Retailer had another use case, where a long-lived release
branch was still part of their release engineering process. In all cases,

8 | Chapter2: Branch Management and Code Review

https://oreil.ly/e6bKo

participants were experiencing pain from these practices. Team inte-
gration branches are inevitably (and ironically) hard to integrate
with the shared master branch. Release branches have a variety of
drawbacks, as we’ll discuss next.

Cutting a Release Versus Promoting a Build

Traditionally, teams have used branches to orchestrate a software
release. The first step in getting a set of changes into production
might involve “cutting a release branch” off of the master branch.
That release branch freezes the version of the codebase that will be
deployed to production (often referred to as a release candidate).
This release candidate is isolated from potentially destabilizing
changes, which will continue to land on the master branch while the
various phases of a production release take place against the release
branch.

Modern CI/CD systems provide a better alternative to release
branches: the Delivery Pipeline. This moves the orchestration of a
release out of source control and into the CI/CD system itself. A
pipeline defines the various stages required to take a version of our
source code, gain confidence in it, and eventually deploy it into pro-
duction. These stages all operate on a static snapshot of the code-
base, which provides the same type of isolation as a release branch.
No matter what changes happen in version control after a pipeline
starts, each stage of the pipeline always works with the exact same
version of the codebase.

Because it’s working against a static snapshot of our code, a delivery
pipeline allows us to gain more and more confidence in that particu-
lar version of our code. As it moves through the various stages of
our pipeline it is subjected to a series of automated checks as it is
deployed into preproduction environments for further validation.
When the change is eventually deployed into production we can be
confident that what’s being deployed is the same code that has suc-
cessfully surmounted the obstacle course of quality checks put
before it earlier in the pipeline. This is in contrast to a release
branch, which often receives additional small changes (configura-
tion updates, bug fixes, and so on) as a release candidate moves
through the release process.

Another advantage of delivery pipelines is that they force a team to
automate the various operations involved in a release. With a

Cutting a Release Versus Promotinga Build | 9

traditional release branch approach, there is often a series of manual
steps involved in a production release—cut a branch, update config-
uration files to indicate that this is a release build, and merge any
hot-fix changes back into master. These manual steps add additional
friction to each release, as well as introduce a high risk of human
error—configuration changes inconsistently applied, bug fixes lost
after a release, and so on.

For these reasons, most participants use delivery pipelines, rather
than release branches. The few still using release branches, such as
the Online Retailer and the Healthcare Provider, are actively moving
toward the use of delivery pipelines.

Most CI/CD systems also provide a manual gating feature, which
prevents a pipeline from moving on to the next stage until it receives
approval to do so from a human operator. This feature is often used
to pause a pipeline right before a release candidate is deployed to
production. For any successful run of the pipeline, an engineer can
opt to “push the button” and deploy a change to production, typi-
cally after a quick spot-check of the change in a pre-production
environment. This act of approving a release candidate to move to
the next environment is often referred to as “promoting” the build.
The presence of a manual gate is what distinguishes Continuous
Delivery from Continuous Deployment, as discussed in Chapter 1.

Code Review

All participants using short-lived feature branches also use pull
requests to orchestrate their code review process. Several require a
change to be reviewed before it can be merged to master—a regula-
tory requirement for some—although the majority of participants
don’t systematically enforce this policy. Several teams reported chal-
lenges with code review turnaround time. A delay in a change being
reviewed often leads to an increase in feature branch lifetime, but
also tends to decrease engineer productivity as they attempt to jug-
gle multiple branches, working on a new change while waiting for
an existing change to be approved for merge.

Participants that work directly on master are more varied in their
code review practices. Teams at the Automotive Marketplace tend to
conduct code review in person, prior to pushing changes to a shared
master, either via pair programming or “over-the-shoulder” in-
person walkthrough. However this type of premerge code review is

10 | Chapter2: Branch Management and Code Review

typically only reserved for changes considered large or risky. Teams
at the Online Retailer practice postmerge code review, managed via
their project management tool, with review feedback captured via
commit annotations in GitHub. Whether practicing pre- or post-
merge review, teams working directly on master don't have a strict
policy that all changes should be reviewed.

Reducing Batch Size

Engineers at the Financial Services Startup describe its delivery
pipeline as being like a moving assembly line in a factory. If small
changes are constantly showing up on the conveyor belt (i.e., small
changes landing on master) then there is enough time to inspect
each change, and the team feels comfortable with those changes
flowing out to production (Figure 2-1). It is clear that teams work-
ing directly on master find it much easier to achieve this flow of
small changes.

Figure 2-1. A steady flow of small changes moving along the line
toward production

However, if a feature branch is allowed to live too long before merg-
ing then a large batch of changes accumulates (as shown in
Figure 2-2), making it hard to inspect each change once it lands on
the assembly line.

Reducing BatchSize | 11

Q= = (
z z ProdD
Q= = (

Figure 2-2. A big change landing on the line is harder to inspect

Similarly, if production deployments are held up for any reason—a
production issue, or bugs found on master—then again a large set of
changes will accumulate (Figure 2-3).

[] z Prod D

Figure 2-3. Lots of pending changes backed up in staging are also
harder to inspect

Several participants explicitly identified small batch size as a key to
making Continuous Delivery possible. Their software delivery pro-
cesses were contingent on a steady flow of small changes into pro-
duction. Given this, I asked participants what techniques they used
to reduce the size of each change going out to production, while also
avoiding exposing half-finished changes to end users.*

4 Paul Hammant has assembled an exhaustive collection of “Trunk-Correlated Practices”:
https://oreil.ly/63jQp.

12 | Chapter2: Branch Management and Code Review

https://oreil.ly/63jQp

Rather than releasing a feature as one large code change, teams
spend time breaking a feature down into a set of smaller changes.
These changes are also sequenced so that they can be built and
deployed into production one by one as latent code—code that is
tested and in production, but not exposed to users.

Incremental Feature Deployment

Let’s look at a simplified example of how you might safely deploy a
half-finished feature into production.

You're a product engineer for an online store, and youre working
on adding a “request gift wrap” feature. This will require adding a
new checkbox in the checkout UI, along with adding a correspond-
ing new field in the backend API that that checkout UT uses, as well
as further changes deep in the bowels of the order fulfillment
system.

You slice the engineering work up into a set of smaller changes that
will be deployed independently. You work on the backend changes
first, and deploy them to production. After deployment, the back-
end API supports gift wrapping requests, but no users can make
that request since the checkbox has not been added to the UL This
allows you to safely verify that the core functionality works in pro-
duction. Once you are comfortable, you make the final change,
adding the checkbox to the UI, exposing the new feature to users. If
you want extra safety, you might wrap that UI change in a feature
flag, a technique we'll discuss further in Chapter 4.

The Food Delivery Service uses branch by abstraction techniques as
a way to avoid long-lived feature branches. A large internal change
is implemented as latent code alongside the existing implementa-
tion, along with some internal plumbing that allows switching
between the old and new implementation at runtime, typically con-
trolled by a feature flag. Using this approach, large changes can be
made incrementally on master, tested along the way, but only
“turned on” once they’re complete.

Interestingly, several participants shared stories of tight-knit teams
working on a smaller codebase who would, at times, opt to simply
declare master temporarily unstable and put production deploy-
ments on hold while working on a large feature that was tricky to
break apart. The Food Delivery Service noted that in these cases a

Reducing Batch Size | 13

https://oreil.ly/2IQdr

team with mature Continuous Delivery practices was opting to
“know the rules well enough to break them” While a key tenet of
Continuous Delivery is that master should always be in a releasable
state, these teams decided that in some cases the trade-off was worth
it, as opposed to taking on the additional overhead of a full-blown
branch by abstraction process.

14 | Chapter2: Branch Management and Code Review

CHAPTER 3
Running an Integrated System

In Chapter 2 we saw that participants strive for a continuous flow of
small changes into production. This leads to two outcomes. First,
preproduction environments become less useful. Second, engineers
have to test their changes against an integrated system before merg-
ing those changes to master.

Continuous Delivery Demands Fewer
Environments

Participants that had recently moved to Continuous Delivery, such
as the Online Retailer, described a pre-CD world where engineers
and testers relied on multiple fully integrated preproduction envi-
ronments—environments running the full stack of software consti-
tuting the product, in a similar physical architecture to production
(although often at a smaller scale). These preproduction environ-
ments are used for different use cases: developer sandboxes, integra-
tion testing, exploratory testing, showcasing, and so on.

Multiple environments were necessary because these different activ-
ities required different versions of various codebases to be integrated
for inspection. For example, product manager might want to pre-
view an upcoming release in an environment running the current
release candidate for every codebase (a release candidate being the
version that has been identified as ready for release to production,
pending quality checks). An engineer might also want to work on a
new integration between two services by pointing a locally running

15

service to some feature branch version of a dependent service, run-
ning in a shared development environment. A tester might want to
validate a production hotfix—a minor release made outside of regu-
lar release cadence in order to apply an urgent production change—
by running the hotfix change against the production versions of
other systems.

These myriad different versions of different systems become less
important when practicing Continuous Delivery. Because the pro-
duction system is changing so frequently, it's only really interesting
to look at what’s currently in production, or what’s about to be in
production. To that end, many participants report operating just two
fully integrated environments: production itself and a shared pre-
production environment, which Tll refer to as “staging™ As
described in Chapter 1, the Continuous Delivery infrastructure
ensures that staging always contains the latest good version from
each codebase’s master branch, with the versions deployed in the
production environment typically lagging behind staging by a day or
two at most.

Testing Changes Prior to Merge

A central tenet of Continuous Delivery is that master should always
be releasable. This poses a paradox for an engineer: you want to test
how the changes that youre making work when integrated with the
rest of the system, but you don’t want to merge those changes to
master before they’ve been validated.

The participants resolved this paradox by:

 Running a full environment locally

o Running a partial environment locally, with stubbed out
dependencies

o Running a partial environment locally, integrated against a
shared environment

o Issuing a personal development environment to each engineer

—_

The nomenclature for environments is rather inconsistent across organizations. I've
typically seen the type of environment I'm referring to here as “stage,” “staging,” or “pre-
prod”

16 | Chapter3: Running an Integrated System

« Allowing engineers to stand up transient development environ-
ments on-demand

« Allowing engineers to inject custom versions of a service into a
shared environment

Running a Full Environment Locally

When working with a monolith (or smaller SOA systems) it can be
possible to run the entire product locally on a developer workstation
(Figure 3-1). Doing this allows you to assemble whatever set of ver-
sions is appropriate for the work at hand. However, as the number of
services in a product architecture grows beyond a certain size this
approach becomes infeasible.

Dev Workstation

Engineer
Debbie

Figure 3-1. Debbie Dev running the full product stack locally

Running a Partial Environment Locally

Some participants, such as the Food Delivery Service and the Pay-
ment Processor, invested a fair amount of engineering effort in
ensuring that individual services can stand up in isolation. This
meant that an engineer working on a service could stand up just that
service locally, or if necessary they could stand up that service plus
the services it depended upon (Figure 3-2). Those depended-upon
services would run in an isolated manner, preventing the entire
graph of transitive dependencies from being pulled in.

Testing Changes Prior to Merge | 17

Engineer
Debbie

Figure 3-2. Debbie Dev running a partial stack locally

Issue Personal Dev Environments

When the Healthcare Provider’s architecture became too large to
run locally, they opted to instead stand up a full-stack remote devel-
opment environment for each engineer (Figure 3-3). An engineer is
responsible for maintaining her environment, and can deploy differ-
ent versions of services in that environment using custom tooling
(command-line scripts and/or a web interface). This approach
involves significant management overhead, as well as a nontrivial
infrastructure cost.

Dev Workstation

Engineer
Debbie

Figure 3-3. Debbie Dev’s personal dev environment

Allow Transient, On-Demand Dev Environments

The Print and Design Service and the Financial Services Startup
opted for an alternative approach, where engineers can do self-
service provisioning of short-lived, full-stack environments, and

18 | Chapter3: Running an Integrated System

then manage them similarly to the personal dev environments
described above.

With this approach, environments are automatically torn down
every night. This reduces infrastructure cost, and also reduces the
amount of ongoing configuration and version drift. However, these
provisioning systems also allow engineers to request a “stay of exe-
cution,” which in some cases leads to the establishment of long-lived
environments serving as a sort of shared team integration
environment.

Allow Connecting Development Workstations to
Staging

At the Automotive Marketplace, engineers can integrate a service
running on their local development workstation directly into the
shared staging environment (Figure 3-4). This can work well when
the locally running service depends on one or more other service,
but doesn’t allow you to test the inverse integration, where other
services depend on your locally running service.

Staging Environment

‘ Dev Workstation

Engineer
Debbie

Figure 3-4. Debbie Dev connecting a locally running service into
staging

Overriding Service Versions in Staging

The Food Delivery Service and the Payment Processor also provide
engineers with the ability to override the version of a service run-
ning in the shared staging environment (Figure 3-5). An engineer
can take a feature branch build of a service (that has not yet landed
on master) and temporarily deploy that build into a staging environ-
ment. This capability is used sparingly—typically when an engineer

Testing Changes Prior to Merge | 19

has a particularly risky or complex change—but is very valuable
when needed.

Staging Environment

4

~
~
-
QI

Engineer
Debbie

Figure 3-5. Debbie Dev temporarily overriding the version of her ser-
vice in staging

20 | Chapter3:Running an Integrated System

CHAPTER 4
Deployment and Release

All the participants I surveyed are making production deployments
at least daily. In this chapter we'll look at the techniques they use to
achieve this release tempo.

In every single organization, the engineer who makes a change takes
ownership of moving that change into production. They are also
accountable for ensuring that the change does not cause production
defects.

Single-Piece Flow

For smaller codebases owned by a single team, such as microservi-
ces, each change landing on master preferably only sits in staging
briefly—just long enough for an engineer to make any last spot
checks—before being promoted to production by the same engineer.

Several participants shared a strong preference for single-piece flow,
a concept from Lean Manufacturing where batch sizes are reduced
down to the single item that’s actively being worked on. Teams apply
this concept in software by avoiding multiple changes batching up
in staging.

Release Buses

A larger, monolithic codebase make it much harder to achieve single
piece flow. It has such a broad scope that different teams own differ-
ent areas (this diffused ownership is, in my mind, a good working

21

definition of a monolith). At any one time, changes will be landing
from multiple teams, and they’ll be arriving at a rapid pace, since a
large number of engineers are all targeting their changes at the same
monolithic codebase.

Organizations handle this scenario by batching production changes
up into a release candidate. One engineer referred to a Release Bus
approach, and describes it as follows: every hour, an automated sys-
tem identifies changes that have landed in staging but have not yet
been promoted to production.' These changes constitute the “pas-
sengers” on the next release bus, which is getting ready to head off
to production. The system identifies the engineers who own these
changes, and asks them all to confirm that their respective changes
are good to go to production by performing whatever spot checks
are necessary in the preproduction environment where that bus has
already been deployed. If any engineer spots a problem the entire
release is abandoned, and the bus is sent back to the depot. If all
engineers give the thumbs up the bus is deployed into production,
and engineers are notified so that they can ensure there are no pro-
duction issues.

The organization that described the Release Bus system to me has
made a large investment in automation. Other participants reported
a similar approach, but orchestrated by an engineer, rather than
automation, as part of a rotating Release Raccoon role. Once a day,
this engineer would identify the batch of changes for the next release
bus, coordinate with engineers and testers to validate that the bus is
good to go, and then orchestrate the bus’s journey into production.
The delightful Release Raccoon nomenclature comes from the
Amplify team in this blog post, although the etymology is murky.

Coordinating Production Changes

Regardless of their investment in automation, every participant
reported manual coordination and orchestration from time to time
around production deployments.

1 Iassume that the Release Bus naming is a play on the traditional Release Train
approach, where an extremely large batch of changes accumulates over a multiweek
period, with a cut-off date at which the “train leaves the station” and no further changes
are allowed into that batch.

22 | Chapter4: Deployment and Release

https://oreil.ly/toe35

An engineer might want to request a temporary pause on deploy-
ments while they investigate a production issue. As stated in Chap-
ter 2, some teams will on occasion want to declare master as
unstable (and thus not deployable). There are also situations where a
change in one service depends on another change being deployed
first, even though engineers agree that this sort of release coupling
should be avoided as much as possible.

Participants have various mechanisms to manage this coordination,
with the most common being communication over shared chat
channels, often augmented with bots that contribute context such as
deployments and alerts, along with low-friction remediation, an
approach sometimes referred to as Chat Ops.

Participants with a large number of engineers invest significantly in
custom release tooling, which includes coordination capabilities. For
example, at the Food Delivery Service, engineers have the ability to
“thumbs up” a specific build within a release dashboard, as well as to
request a hold on production deploys for a service (with a note
explaining why).

Custom Delivery Platforms

A common theme among participants was an investment in custom
tooling to automate deployment processes. This appears to be an
expensive but necessary investment to empower engineers to man-
age their own releases, which is widely regarded as extremely
valuable.

This tooling provide a variety of capabilities, such as:

o Tracking which version of each service is deployed into an
environment

o Reporting which new versions of a service are available for
deployment

« Signing off on a version as being ready for production
 Requesting a hold on production deployments

« Deploying a new version of a service into an environment,
including in some cases capabilities for things like incremental
rollout or blue/green deployment

« Rolling back to a previous deployment

o Showing a history of previous deployments

Coordinating Production Changes | 23

o Performing data management tasks in an environment (such as
reseeding test data or importing scrubbed production data)

 Reporting overall service health in an environment

« Providing a Service Registry—a way to view metadata about
the service in an environment, such as team ownership, service
dependencies, and quick links to production dashboards

Controlled Rollout

A faster release tempo means less time to test changes before they
are put in front of users. You might think this means a higher likeli-
hood of production defects, but research has in fact shown the
opposite—deploying more frequently has a positive relationship
with both a lower change-failure rate and a lower mean time to
recovery (MTTR).?

Nevertheless, all participants do have mechanisms in place to reduce
or mitigate the risk of a change causing a production defect, by
allowing fine-grained control over how a change is rolled out to
users in production. I collectively refer to these mechanisms as Con-
trolled Rollout.

In Continuous Delivery there is a distinction between the technical
act of deploying a build artifact and the user-facing act of releasing a
feature to users. There are techniques to control rollout at both
levels.

Incremental Deployment

At a low level, the deployment of a specific version of an artifact can
be performed incrementally, using techniques like blue/green
deployment (sometimes called red/black deployment, because nam-
ing things is hard), rolling deployment, and canary deployment.

You need some form of incremental deployment in order to perform
a deployment without downtime. All participants are deploying to
production very frequently, and incurring downtime as part of each
deployment is not an option. Therefore, they all use some form of

2 Accelerate, Chapter 2.

24 | Chapter4: Deployment and Release

https://oreil.ly/3I_7o
https://oreil.ly/3I_7o
https://oreil.ly/MhBXP
https://oreil.ly/6E40g

incremental deployment. Engineers at the Financial Services Startup
can directly control that incremental deployment, as a way to man-
age the impact of a risky change. However, this is fairly unusual. For
most participants the actual act of deploying a new build is an all-or-
nothing operation as far as the engineer deploying is concerned,
with no fine-grained control over the rollout.

Decoupling Deployment from Release

Its possible to deploy the implementation of a feature without
exposing that feature to users. Feature flagging is the technique that
enables this decoupling of deployment from release. An engineer
can deploy a half-finished feature into production, but hide it from
users behind a feature flag, a mechanism that decides at runtime
whether a given feature should be enabled for a user, based on some
configuration.

Once the feature is complete, they can use that same feature flag to
manage a controlled rollout of that feature. They might decide to
initially expose it to 5% of users (a canary release), or they can opt to
expose it to a specific cohort of users (an A/B test).?

All participants report that feature flagging is an important part of
their Continuous Delivery practice, for two reasons. First, feature
flags allow engineers to develop larger features incrementally—an
engineer can integrate half-finished work to master, allowing one
big, risky change to be sliced into multiple small, safer changes. Sec-
ond, feature flags provide the safety net of controlled rollout, allow-
ing risky changes to flow quickly into production with less risk of
users being exposed to defects.

Correlating Cause and Effect

Engineers are responsible for rolling out production changes—and
checking for any negative impacts from those changes—at all partic-
ipating companies. This means they keep an eye on dashboards
showing production metrics for some time after deploying a build
or rolling out a feature.

3 Feature flagging enables a bunch of additional controlled release patterns. The Manag-
ing Feature Flags report from O’Reilly is a good resource for more details.

Decoupling Deployment from Release | 25

https://oreil.ly/oLSIH
https://oreil.ly/oLSIH

In order to figure out whether a change has a negative impact an
engineer needs to be able to correlate the observed impact (say, an
increase in error rates) with a change (rolling out a feature). In other
words, they need to be able to connect cause and effect. The most
obvious way to do this is with temporal correlation—I see that error
rates increased at 10:24 am, and I know that I rolled out a code
change at 10:23 am. Environments with a rapid deployment tempo
make this correlation more challenging. If I see a production issue
and there’s been one deployment in the last few hours then I have a
place to start looking. If there’s been 10 deployments in the last hour
my job is a little harder.

Incremental rollouts bring further challenges when it comes to cor-
relating cause and effect. After rolling out a risky change to a canary
population (5% of users, let’s say), an engineer needs some way to
compare and contrast metrics for that canary population versus the
general population. Rather than solving this correlation problem in
a general way—which would require a large technical investment—
most participants achieve this correlation via proxy attributes. For
example, the Healthcare Provider and the Food Delivery Service
both roll out risky changes to a canary market, rather than a random
sample of their user base. An engineer would roll out a change to all
users in Denver, lets say, and then keep an eye on whether metrics
for users in Denver are changing relative to the metrics in other
cities.

Moving Fast with Safety

We've seen that participants achieve the most rapid release tempo by
maintaining a continuous flow of small, independent changes into
production. This requires a set of practices and techniques, as well
as discipline, but the outcomes are worthwhile. The same tools that
allow a team to make small, incremental changes also reduce the
risk associated with a feature release, and greatly improve the team’s
ability to react to a bad change when it does occur.

26 | Chapter4: Deployment and Release

CHAPTER 5
Summary

We've looked at how a variety of organizations achieve a rapid
tempo of production changes using the principles of Continuous
Delivery. We've seen some common themes across that wide range
of organizations—fundamental values of Continuous Delivery that
seem to be universal. We've also seen some interesting variations in
practices.

Shared Values

As we saw in Chapter 2, all organizations have found value in reduc-
ing the size of each production change. Ideas like Trunk-Based
Development and decoupling deployment from release allow engi-
neers to get closer to their ideal of single-piece flow.

Organizations that excel at Continuous Delivery all empower prod-
uct engineers with autonomy, as well as accountability for their
changes. The engineer who authors a change is the person responsi-
ble for shepherding that change into production and watching for
any potential defects. Product delivery teams also have a lot of
autonomy in terms of how they work—I repeatedly heard from par-
ticipants that it was hard to describe the delivery process since dif-
ferent teams within the organization work in different ways.

In order to achieve this level of autonomy, there is a noticeably
heavy investment in custom delivery platforms that provide self-
service capabilities to product engineers (there is a summary of the
capabilities of these platforms in Chapter 4). Many organizations

27

make a distinction between their Continuous Integration system
and their Continuous Delivery infrastructure, where their Continu-
ous Integration system is responsible for initially validating a change
and building a deployable artifact, while the Continuous Delivery
infrastructure is responsible for moving a build artifact through var-
ious environments and monitoring those environments for potential
issues. The Automotive Marketplace is the only organization I spoke
with that has a unified system providing both Continuous Integra-
tion and Continuous Delivery.

Two Modes of Continuous Delivery

While participants shared a lot of software delivery practices, I did
notice that all fell into one of two distinct modes of Continuous
Delivery.

One mode is Branch-Based Continuous Delivery, where a team uses
short-lived feature branches as their unit of change and manages
code review with pull requests. The other mode is Trunk-Based Con-
tinuous Delivery, where teams practice Trunk-Based delivery, work
directly on master, and do ad hoc code review.

Trunk-Based teams have a more rapid deployment tempo than
Branch-Based teams with multiple new deployments per hour for
Trunk-Based versus once or twice a day for Branch-Based.

There is an even starker distinction in the typical cycle times for a
production change between these two modes, with changes being in
progress for much longer for Branch-Based teams. This is partly
because the unit of change for Branch-Based teams is much larger—
often an entire feature, rather than an individual commit. In addi-
tion, Trunk-Based teams are typically doing code review out-of-
band, rather than blocking a change from going out.

Trunk-Based teams also tend to rely much less on preproduction
environments for quality checks, instead of testing in production. I
suspect this is because faster change makes the sort of manual vali-
dation that is done in preproduction environments a lot less feasible
or valuable.

Most of the larger engineering organizations I talked to had teams in
both of these modes. Generally the teams working with larger, older
systems use Branch-Based Continuous Delivery while teams work-

28 | Chapter5: Summary

ing on new, smaller systems operate using Trunk-Based Continuous
Delivery.

Monoliths Versus SOA

The high-level architecture of a system has a marked impact on how
Continuous Delivery is implemented. Most notably, as discussed in
Chapter 4, teams working on large, monolithic systems are forced to
batch production changes up using mechanisms like Release Buses.
This is due to the rate of changes from multiple teams, a relatively
slow deployment, and cross-team coordination challenges. In con-
trast, in SOAs a team typically has full ownership of a small code-
base, and can often achieve single-piece flow, where each unit of
change rolls out to production independently. Several participants
highlighted this as a big advantage of working in a service-oriented
system.

Succeeding with Continuous Delivery

After studying how teams are succeeding with Continuous Delivery
in the wild, themes emerged which inform your strategy.

Reducing batch size should be a guiding principle. Trunk-Based
Development practices like Feature Flagging and Branch by
Abstraction are also key. Keep the size of each unit of change as
small as possible (e.g., by aggressively focusing on short feature
branches), and avoid batching up production changes whenever
possible. The ideal is to get all the way to pure Trunk-Based Devel-
opment, eschewing feature branches entirely and reaching single-
piece flow.

In general, branches should be viewed with suspicion. Long-lived
feature branches should certainly be avoided, but so should the use
of branches for release management. Instead, prefer delivery pipe-
lines that flow a build artifact through environments, and eventually
into production, as discussed in Chapter 2.

Organizations who want to move toward Continuous Delivery
should plan to invest quite a lot in a delivery platform with self-
service tooling for product engineers. Rather than having infrastruc-
ture or operations engineers manage deployment and monitor
production themselves, they should focus on building the tools that
enable product engineers to do this work.

Monoliths Versus SOA | 29

The most consistent thing I heard from the participants was that
Continuous Delivery has resulted in overwhelmingly positive out-
comes. I hope that the experiences of those organizations will help
you achieve the same.

30 | Chapter5:Summary

About the Author

Pete Hodgson is an independent software delivery consultant, based
near San Francisco. He teaches teams to deliver awesome products
at a sustainable pace, by leveling up their engineering practices and
technical architecture. Before going independent, Pete spent several
years as a consultant with ThoughtWorks, leading technical practi-
ces for their West Coast business, in addition to several stints as a
tech lead and architect at various San Francisco startups.

	Copyright
	Table of Contents
	Chapter 1. Introduction
	What is Continuous Delivery?
	Continuous Delivery in the Real World
	Research Methodology
	The Path to Production

	Chapter 2. Branch Management and Code Review
	GitHub Flow
	Trunk-Based Development
	Minimal Branches
	Cutting a Release Versus Promoting a Build
	Code Review
	Reducing Batch Size

	Chapter 3. Running an Integrated System
	Continuous Delivery Demands Fewer Environments
	Testing Changes Prior to Merge
	Running a Full Environment Locally
	Running a Partial Environment Locally
	Issue Personal Dev Environments
	Allow Transient, On-Demand Dev Environments
	Allow Connecting Development Workstations to Staging
	Overriding Service Versions in Staging

	Chapter 4. Deployment and Release
	Single-Piece Flow
	Release Buses
	Coordinating Production Changes
	Controlled Rollout
	Incremental Deployment
	Decoupling Deployment from Release
	Correlating Cause and Effect
	Moving Fast with Safety

	Chapter 5. Summary
	Shared Values
	Two Modes of Continuous Delivery
	Monoliths Versus SOA
	Succeeding with Continuous Delivery

	About the Author

