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1. Introduction 

 

The tadpole shrimp Lepidurus arcticus (Branchiopoda, Nostostraca) lives in 

freshwater lakes and temporary ponds in the Arctic region, where it has a 

circumpolar distribution (Arnold 1966). L. arcticus has been found all over the 

Arctic region including northern Norway, Finland, Iceland, Greenland, Russia and 

Canada (Fox 1949, Koli 1955, Arnold 1966, Bushnell & Byron 1979, Einarsson 

1979, Vekhoff 1997, Bennike & Hedenäs 1995, Jeppesen et al. 2001, Hessen et al. 

2004, Mantovani et al. 2004, Rautio et al. 2009 and Wojtasik & Brylka-Wolk 

2010). It has also been observed outside the Arctic region in the South Norwegian 

Mountains (Fjellheim et al. 2001, Sars 1896) and Kuril Islands in the North Asia 

(Sayenko & Minakawa 1999). L. arcticus is the only notostracan species found in 

permanent and temporary ponds in Svalbard. The lack of morphological changes 

since the past 250 million years has lead to the description of Notostraca species 

as living fossils (Korhola & Rautio 2001). L. arcticus can be considered as a relict 

species over its southern range of distribution, where it is commonly threatened 

due to extensive stocking and immigration of fish, acidification and global 

warming (Hessen et al. 2004). L. arcticus is also an important food item for birds 

such as arctic terns (Sterna paradisaea) and purple sandpiper (Calidris maritime) 

(Summerhayes & Elton 1923, Montague 1925), and also for fish such as brown 

trout (Salmo trutta) (Sømme 1934, Borgstrøm et al. 1985), Arctic charr 

(Salvelinus alpinus) (Jeppesen et al. 2001) and minnow (Phoxinus phoxinus) 

(Borgstrøm et al. 1985).  

 

Information on the biology of Lepidurus sp. is in general limited and incomplete. 

In particular little is known about the L. arcticus populations on Spitsbergen, 

Svalbard in the European High Arctic. Only a few studies of seasonal occurrence 

of L. arcticus have been conducted in lakes and ponds in Greenland (Poulsen 

1940a, b, Arnold 1966), in Norway (Sømme 1934), Lepidurus lemmoni in a large 

alkali lake in California (Lynch 1966) and Lepidurus packardi in temporary ponds 

in northern California, U.S.A (Ahl 1991). 
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The polar region is a unique environment characterized by an annual freeze- thaw 

cycle coinciding with a cycle of constant winter darkness and summer daylight. 

High-latitude biota and environments have been considered relatively stable 

compared with those of more temperate regions, where human civilization has a 

greater impact. However, Arctic regions have been warming since the mid-1800s 

(Overpeck et al. 1997) and the warming has significantly accelerated during the 

recent decades (Overpeck et al. 1997, Serreze et al. 2000, ACIA 2004) and is 

expected to continue throughout this century (Overpeck et al. 1997, IPCC 2001). 

Although the Arctic is one of the least disturbed regions on Earth, it may also be 

one of the most susceptible to both natural and human-induced climate change. 

Overpeck et al. (1997) conclude that Arctic temperatures are in the 20th century 

the highest in the past 400 years. The mean air temperature on Spitsbergen during 

the summer months (June–August) was 1.4–6.5 °C between 1961–1990 

(Norwegian Meteorological Institute 2011). The summer temperature of surface 

waters and air has increased by approximately 2 °C since 1962 in the High Arctic 

Lake Kongressvatn on Spitsbergen (Holm et al. 2011). Current global circulation 

models predict 2–2.4 ºC increase in summer temperatures on Spitsbergen (IPCC 

2007). Water temperature may rise above 19 °C in some shallow ponds. This will 

create a great danger for L. arcticus, because it requires cold 3–19 °C (Arnold 

1966) and clean water (Fjellheim et al. 2001). Hence, L. arcticus may potentially 

act as an indicator species to environmental change in the Arctic freshwaters. 

 

L. arcticus has a pelagic life style until it reaches the 5th instar when it becomes 

benthic and starts preying primarily on other invertebrates (Arnold 1966, Miller 

1980). Stomach content analyses suggest that L. arcticus can also feed on detritus, 

bacteria and different kinds of plants and algae including moss leaves, lichens, 

diatoms, green algae and other larger algae (Sømme 1934, Einarsson 1979). L. 

arcticus can feed effectively on zooplankton including both cladoceran (e.g. 

Alona rectangulata, Acroperus harpae and Daphnia pulex; Einarsson 1979, 

Christoffersen 2001) and copepod species (e.g. Cyclops and Heterocope; Sars 

1896). The large (>12.5 mm) L. arcticus can consume even up to 18 Daphnia 

individuals per hour (Christoffersen 2001). A close relative species of L. arcticus, 
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Triops longicaudataus (Notostraca), has even been proposed as a biological 

control agent of mosquitoes (Tietze & Mulla 1991). L. arcticus has also been 

observed to feed on mosquitoes (Johansen 1922, Einarsson 1979) and carcases of 

other L. arcticus in laboratory experiments (Johansen 1911, Arnold 1966). L. 

arcticus can also consume fish eggs (Sars 1896) demonstrating an interesting 

predator–prey relationship between this crustacean and various northern fish 

species. Various, but limited, food resources are available for L. arcticus at 

different times of open-water period in the severe High Arctic conditions. Food 

intake studies indicate that the L. arcticus should non-selectively feed as various 

food items as possible (Sømme 1934, Einarsson 1979). 

 

Animals have receptors to sense the world around them. In some crustaceans, 

olfaction senses may be more important in terms of survival. Invertebrates have a 

good sense of smell (Nuorteva 1963) and this sense helps many species to find 

their food or mating partner. It has been known for a long time that invertebrates 

have a sense of smell, but due to experimental difficulties, this sense has been 

poorly studied. However, olfaction abilities of Colorado beetle (Leptinotarsa 

decemlineata) have been studied extensively. De Wilde et al. (1969) and Visser & 

Nielsen (1977) reported attraction of Colorado beetles by volatiles of potato plant 

(Solanum tuberosum). Only a few studies have investigated the olfactory ability of 

crustacean species. It is known that olfaction is located in specialized sensory 

cells, for example in the antennae of invertebrates. L. arcticus does not make an 

exception to this. The end of first pair of antennae has numerous small olfactory 

papillae (Sars 1896). For aquatic organisms (e.g. crustaceans and fish) the water-

soluble chemicals are present in the surrounding water. Because smell is evidently 

an important sense for various aquatic organisms (Dittman & Quinn 1996, Barbin 

1998, Raethke et al. 2004), L. arcticus may also use it to locate food as well as 

predators and mating partners in the relatively unproductive Arctic ponds.  

 

Bait traps attract predatory aquatic insects such as larval and adult stages of water 

beetles (e.g. Dytiscus marginalis) and adult water scorpions (e.g. Nepa cinerea). 

L. arcticus can also be captured using traps with dead fly as bait (Olga Makarova 
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personal communication 2011). Thus, olfaction may also be a critical factor for 

the L. arcticus survival and reproduction success of L. arcticus in the oligotrophic 

High Arctic ponds. Therefore, it is important to study whether L. arcticus can use 

olfaction. The olfaction can play an important ecological role in the L. arcticus 

population dynamics, if this sense helps the animal to find food such as injured 

conspecifics. 

 

L. arcticus lives in ponds and lakes located close to the sea on Spitsbergen. As a 

consequence, some lakes and ponds are slightly saline, especially when they are 

located near the sea level and have a connection to the sea like in lake 

Kongressvatn located southeast of Kapp Linné (Holm et al. 2011). On Spitsbergen 

many lakes and ponds inhabited by L. arcticus are located near (50–4200 m) to 

the Arctic Ocean. Hence, it is possible that the salt concentration in these ponds 

can be altered due to sea spray. Paleolimnological studies have shown that L. 

arcticus have occurred in ponds located on former sea beds (Bennike & Hedenäs 

1995). The sediment in former sea beds may contain salt and thus make the water 

saline. In such habitats L. arcticus have probably had to adapt to increased water 

salinity. Lakes and ponds in the Arctic regions also experience considerable 

evaporative water loss, sometimes resulting in the formation of athalassic (i.e. not 

of marine origin) saline systems (Prowse et al. 2006). Paleolimnological data 

indicates increased water salinity due to a recent shift to drier conditions or 

increased evaporation in a small athalassic lake located in the subarctic Yukon 

Territory, Canada (Pienitz et al. 1992). Like in other Arctic areas, precipitation on 

Spitsbergen is low (often less than 350 mm annually) and the permafrost seals the 

subsoil. The snow- and ice-melt provide a flush of water and nutrients to rivers 

from late June to early August, whereas melting of glaciers accounts for most of 

the water run-off in August and September (Svenning & Gullestad 2002). 

However, some ponds can dry out during the short Arctic summer and before the 

ponds dry completely the salinity concentration can rise remarkably. Therefore, it 

is important to study the tolerance of L. arcticus to potential changes in water 

salinity induced by global warming. 
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A characteristic of oligotrophic lakes on Spitsbergen is their high transparency 

(Hessen 1996). The colouration of aquatic animals may have major biological 

relevance in these transparent waters, because these animals are clearly visible to 

their aquatic and terrestrial predators. Cryptic colouration or camouflage is an 

adaptation that decreases the predation risk of an animal (Edmunds 1974, 

Merilaita 2003). Colour can also protect the animal against UV radiation, heat and 

cold. Camouflage can also be important for predators because the predator can 

hide both their own predators and preys. For example, the females of crab-spider 

(Thomisidae) can change their body colour to match with the flowers they sit on 

while hunting (Oxford and Gillespie 1998). Crustaceans have also been shown to 

be able to form different, seasonally-varying colour morphs (Bishop 1969, Heath 

1974). Some colour morphs imitate natural microhabitat mosaic more than the 

others (Salemaa 1978). An interesting example of crustaceans’ capability to 

camouflage is the numerous colour morphs of a marine isopod (Idotea baltica) in 

the highly varying microhabitats of Baltic Sea (Salemaa 1978). Unlike 

morphological variables such as carapace length or width, colour is not an 

inherent property of the object, but in contrast a product of the brain of the animal 

perceiving the object (Thompson et al. 1992). For example, birds and fish (Jacobs 

1992) and even some crustaceans (Cronin and Marshall 1989) can see ultraviolet 

wavelengths of light. In the constant daylight of the Arctic summer, both cryptic 

coloration and camouflage and even mimesis might be functionally important 

features for crustaceans. However, little is known about the cryptic colouration of 

L. arcticus in the Arctic areas. 

 

Living Notostraca are often brightly coloured due to two main pigments in the 

body and the brown colour of the exoskeleton (Longhurst 1955). The internal 

pigments are haemoglobin (Régnard and Blanchard 1883) and a dark blue-green 

pigment which occur in many parts of the body (Longhurst 1955). The blood of 

crustacean species contains low amount of viscous, copper-based respiratory 

pigment called hemocyanin, which is dissolved in the haemolymph (Thorp & 

Covich 2001). More recently Rautio et al. (2009) showed that L. arcticus usually 

have five major carotenoid pigments: fucoxanthin, zeaxanthin, canthaxanthin, 
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astaxanthin and cyanobacterial pigment echinenone, which was the primary L. 

arcticus carotenoid pigment. Differences in colouration are likely to be dependent 

on variations in the physical environment, L. arcticus genotype and the 

differences in L. arcticus diets. Nonetheless, the underlying controls on the 

colouration, growth rate and size of L. arcticus remained unclear.  

 

Little is known about the responses of Notostraca species to the highly fluctuating 

conditions in Arctic freshwater ecosystems. This study describes the ecology of L. 

arcticus in permanent and temporary ponds on Spitsbergen. The material was 

collected from 23 ponds all over the Spitsbergen in summer 2010. This study aims 

to review the existent literature on the ecology of L. arcticus and other Notostraca 

species as well as to collect physical, chemical and biological data from several 

ponds on Spitsbergen inhabited by L. arcticus. The main objective was to provide 

information on the distribution and ecology of L. arcticus in the High Arctic 

region of Spitsbergen. The second purpose was to study the morphology of L. 

arcticus and to compare the results with previous observations from other Arctic 

regions. Finally the study focused on four main study hypotheses:  

 

1.) Acidification and increased water salinity and temperature induced by 

global warming can lead to higher mortality and potential extinction of L. 

arcticus in Arctic ponds.  

2.) L. arcticus can be used as an indicator species of environmental change in 

Arctic regions. 

3.) L. arcticus is cannibal and can use chemical cues to localize injured 

conspecifics. 

4.) Camouflage is an important characteristic for L. arcticus and this 

crustacean´s colouration varies within and between Arctic ponds.  
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2. Material and methods 

 

 

 2.1. Study area 

 

This study was conducted on the western and northern parts of Spitsbergen, 

Svalbard, Norway (78°–79° N, 11°–16° W) (Figure 1). Western coast of 

Spitsbergen is a mountainous area, whereas the other areas are mostly flat plateau 

land or raised beach. The annual precipitation is very low and mostly accumulates 

as snow during the winter. The climate of Spitsbergen can be characterized as an 

“Arctic semi-desert” with short cool summers, long winters and an annual 

precipitation of only 200–300 mm (Van Geest et al. 2007). Most ponds are 

situated on lowland areas close to the Arctic Ocean. Spitsbergen is also 

characterized by extreme seasonal changes in light conditions, varying from the 

constant daylight in summer to the complete darkness in winter (polar night 

lasting from 26th October to 15th February). There is no diurnal photoperiod 

gradient in the lakes during the ice-free season because Spitsbergen is located at 

such high latitude. The coastal regions of Arctic are often foggy and thus much 

less favourable areas for plants than the clearer and sunnier interiors of the fjords 

(Summerhayes & Elton 1923). 

 

The climate on Spitsbergen is relatively mild for a region at such high latitude due 

to the Gulf Stream drift approaching the west coast. However, the air temperature 

may be below the freezing point even in summer. The climate in Arctic regions 

has warmed since the late 1800s and the global warming is likely to continue in 

the future. On Spitsbergen the mean annual temperature in 1872–1922 was -8.0 

°C, while the mean temperature in July was 4.6 °C (Summerhayes & Elton 1923). 

In 1961–1990 the mean annual temperature on Spitsbergen had risen to -6.1 °C 

(Norwegian Meteorological Institute 2011) and in 1981–2010 the mean 

temperature was -4.6 °C (Førland et al. 2011). During the last two decades, the 

annual temperature has increased by 1.0–1.2 °C per decade and the winter 
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Figure 1. Ponds on the Spitsbergen Arctic Archipelago, Norway. Location map 

and detail maps of Ny-Ålesund, Reinsdyrflya; Kilneset, Mosselhavøya; Polheim, 

Kapp Linné, Pyramiden and Longyearbyen areas. The letters on the map represent 

the locations of ponds. A=Brandallaguna, B=Trehyrdingen 2, C=Trehyrdingen 1, 

D=Kolhamna, E=Storvatnet, F=Tvillingvatnet, G=Goose pond, H=Solvatnet, 

I=Gluudneset, J=Kilneset, K=Polheim, L=Pond 2, M=Pond 1, N=Pond 3, O=Pond 

4, P=Pond 5, Q=Pond 6, R=Longyearbyen, S=Nybyen, T=Adventdalen first pond, 

U=Adventdalen second pond, V=Adventdalen third pond and X=Dammyra. Note 

that the scale differs between the maps. 
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temperature has increased by 2–3 °C per decade on the Spitsbergen region 

(Førland et al. 2011). 

 

The mean temperature in July is not the same in all areas on Spitsbergen, being 

6.5 °C in Longyearbyen, 4.9 °C in Ny-Ålesund and 4.8 °C in Kapp Linné in 

1961–1990 (Norwegian Meteorological Institute 2011). In July 2010 the air 

temperatures were 0.1–0.9 °C above the mean on Spitsbergen (Table 1). 

Longyearbyen is situated further up the fjord than Kapp Linné and consequently 

has a more continental climate. The Kapp Linné region is often foggy, because the 

coast is exposed to the open ocean without any protection. Also the annual 

precipitation on Spitsbergen shows remarkable spatial variation and a gradual 

decrease eastwards towards the interior of the island, being 480 mm in Kapp 

Linné, 385 mm in Ny-Ålesund and 210 mm in Longyearbyen (Norwegian 

Meteorological Institute 2011).  

 

 

Table 1. Mean summer temperature (Temp., °C) and precipitation (Prec., mm) on 

Spitsbergen in 2010 (Norwegian Meteorological Institute 2011). Precipitation is 

the sum of the mean precipitation during the summer months (June–August). 
 

Place 

 

Temp., °C  

in  

June 

 

Temp., °C  

in  

July  

 

Temp., °C 

in  

August 

 

Temp., °C 

in 

September 

 

Prec., 

(mm) 

 
Svalbard Airport, 
Longyearbyen 

 
3.5 

 
6.6 

 
4.8 

 
2.0 

 
37.9 

 

Ny-Ålesund 

 

2.8 

 

5.7 

 

3.4 

 

1.2 

 

40.3 

 

The study was conducted in 23 shallow (<3 m) ponds situated at low altitudes 

(<100 m a.s.l.) in five different areas around the Spitsbergen (Figure 1). L. 

arcticus was present in 20 ponds. Ponds without L. arcticus population were 

located in Ny-Ålesund (Gluudneset and Geese pond) and in Pyramiden (pond 5). 

In this High Arctic tundra region, all trees are small (<1 m high) (Väre and 

Partanen 2009) and thus do not prevent the prevailing winds around the ponds. All 

the study ponds most likely freeze solid during the winters and thus are fishless. 
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The pond shores are dominated by mosses and stones and some areas are exposed 

to strong wave action from the prevailing winds. Water mosses colonize only 

relatively small areas of the ponds because of the frequent periodicity of high 

turbidity. Water mosses (Bryophyta) are important habitats providing a physical 

refuge for L. arcticus against predators and UV-radiation. The sediment in the 

ponds consists of mud, clay, stones, gravel and even coal (Appendix 3). All 

ponds, except in Reinsdyrflya (Kilneset), were clear and the bottom was easily 

seen from the water surface. The water in Kilneset was turbid due to suspended 

clay. Only two ponds (Kolhamna and Adventdalen first pond) were temporary 

annual pools that dried completely during the summer. Other study ponds were 

permanent ponds. All the study ponds were situated relatively near the sea (0.05–

4.2 km) and a glacier (0.7–12.2 km).  

 

Ponds and wetlands on Spitsbergen provide important habitats to a wide variety of 

waterfowl and other bird species as well as to some mammals. Typical bird 

species living near the Spitsbergen ponds include barnacle goose (Branta 

leucopsis), arctic tern (S. paradisaea), purple sandpiper (C. maritima), dunlin 

(Calidris alpina), grey phalarope (Phalaropes fulicarius), common eider 

(Somateria mollissima), red-throated driver (Gavia stellata), black-legged 

kittiwake (Rissa tridactyla), glaucous gull (Larus hyperboreus), ivory gull 

(Pagophila eburnea), arctic skua (Stercocarius parasiticus), northern fulmar 

(Fulmarus glacialis), long-tailed duck (Clangula hyemalis), black guillemot 

(Cepphus grylle) and snow bunting (Plectrophenax nivalis). Typical mammals on 

Spitsbergen are Svalbard reindeer (Rangifer tarandus platyrhynchus), arctic fox 

(Alopex lagopus) and polar bear (Ursus maritimus) (Appendices 1). Some species 

are rare worldwide such as the ivory gull and grey phalarope. Polar bear is 

classified as a vulnerable species. Wetlands, deltas and ponds in the coastal and 

inland regions are common feeding and breeding grounds for many waterfowl 

species during the spring and summer months (Prowse et al. 2006). 

 

The riparian vegetation surrounding the Arctic ponds is often dominated by a high 

moss cover. Other typical plants include the mountain sorrel (Oxyria digyna), 
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purple saxifrage (Saxifraga oppsitifolia), tufted saxifrage (Saxifraga cespitosa), 

brook saxifrage (Saxifraga rivularis), dooping saxifrage (Saxifraga cernua), polar 

willow (Salix polaris), arctic meadow-grass (Poa arctica) and hair grasses 

(Deschampsia) (Appendix 2). In many places the vegetation has a mosaic 

character (Jónsdóttrit 2005). Mosaic vegetation is quite common near to the study 

ponds, partly because the permafrost can cause structural changes on the surface, 

the water table is high or even reaches the surface, and there are early traces of 

surface erosion in the soil. Arctic vegetation is largely controlled by summer 

temperatures (Rønning 1996). Since the research area was so extensive, the study 

areas are described as circumpolar Arctic Bioclimate Subzones A–E, with A 

standing for the coldest and E for the warmest subzones. The Svalbard 

archipelago encompasses the three coldest zones: A= Arctic polar desert, B= 

northern Arctic tundra and C= middle Arctic tundra (Jónsdóttir 2005). All study 

ponds located in the northern Arctic tundra, subzone B. The characteristic species 

of subzone B are Salix polaris and Saxifraga oppositifolia, the vegetation cover is 

>50 % and the soil organic content is 5–25 % in Svalbard (Jónsdóttir 2005). Mean 

July temperature is 2.5–4 °C and length of the growing season is 1.5–2.5 months 

in this subzone. As in other biomes, herbivores may affect the tundra ecosystem 

by grazing, trampling and manuring. Droppings of reindeers and geese can often 

be found abundantly along the pond shores (Appendices 4–9). Arctic ponds are 

important resting and drinking areas for many terrestrial animals. 

 

 

2.2. Site description 

 

2.2.1. Longyearbyen 

 

Longyearbyen (78°13´N, 15°42´E) is the largest settlement and the administrative 

centre of Svalbard located on the western coast of Spitsbergen, which is the 

largest island of Svalbard (Figure 1). Longyearbyen is one of the world´s 

northernmost towns. There are seven coal mines present, but only one is still 
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operating. A total of six ponds were studied in Longyearbyen region: 

Longyearbyen, Nybyen, Adventdalen first, second and third pond and the slightly 

saline Dammyra pond (Figure 2). Vegetation types were defined separately for 

each pond (Appendices 2). Vegetation type was the willow-field horsetail 

community in Dammyra, Longyearbyen and Nybyen ponds. The Nybyen pond 

was a permanent water body for whole summer, even though the pond was 

remarkably small, only 6 m2 (Figure 2). Adventdalen first pond was a temporary 

annual pool that dried up during the summer. Adventdalen second pond located 

near to a dog kennel where human impact was clearly visible and the vegetation 

covered only 0–5 % of the ground (Figure 2). Poorly developed plant cover is 

probably due to disturbance by humans and birds, not due to lack of nutrients or 

extreme climate. Vegetation type was the shore meadow community in 

Adventdalen third pond and the poorly developed vegetation describes best the 

surrounding of Adventdalen second pond. The nutrient-rich delta area of 

Adventdalen is an important nesting place for many bird species such as arctic 

terns (S. paradisaea), purple sandpiper (C. maritima) and common eiders (S. 

mollissima). In this area dunlin (C. alpina), arctic tern and purple sandpiper 

evidently feed on L. arcticus. Goose droppings were common near all the study 

ponds in Longyearbyen and two pairs of barnacle geese were nesting near the 

Longyearbyen pond. More detailed descriptions of the ponds can be found in the 

Appendices 1–9. 

 

2.2.2. Kapp Linné 

 

Kapp Linné (78°04´N, 13°42´E), Basecamp Isfjord Radio, is situated on the 

outermost part of the Isfjord on the western coast of Spitsbergen (Figure 1). The 

old radio station was built in 1933 at Kapp Linné and later provided 

telecommunications between the Norwegian settlements and the mainland of 

Norway. Since late 1990s, the radio station buildings have been used as a hotel 

during the tourist season. Kapp Linné is a very important nesting area for birds 

and has a sanctuary facilitating the breeding of Common eiders and other bird 

species during the nesting period. There are numerous ponds and the wetlands 
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have thick moss beds that are easily damaged by footsteps. Four ponds (Pond 1, 2, 

3 and 4) were studied in Kapp Linné region (Figure 2). Vegetation type was moss 

tundra community in all study ponds in Kapp Linné. Goose droppings were found 

in shores of all the studied ponds. Reindeer droppings were found only in the 

Pond 2 shore.  

 

2.2.3. Pyramiden 

 

Pyramiden (78°39´N, 16°11´E) is an old Russian settlement and a coal mining 

town but is nowadays uninhabited. It is located in Billefjord on the western coast 

of Spitsbergen (Figure 1). Materials from coal mining and an evident human 

impact were clearly visible around the ponds in Pyramiden (Figure 2). The ponds 

have been used as a source of drinking water and traces of this activity are still 

visible. Two ponds (Pond 5 and Pond 6) were studied in Pyramiden region. L. 

arcticus occurred only in Pond 5, where only a single specimen was found. 

Vegetation type was moss tundra community near the ponds in Pyramiden. No 

other vegetation except moss was found around Pond 6, and a large part of the 

moss cover was dead (35–95 %). There were plenty of goose droppings along the 

shores of Pyramiden ponds.  
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Figure 2. Photographs taken from the study ponds in Longyearbyen, Kapp Linné 

and Pyramiden. (A) Longyearbyen pond is situated near to two glaciers and thus 

the water temperature was low early in the field season. (B) Dammyra pond was a 

bit saline and in this small pond L. arcticus were exceptionally large. (C) Small 

permanent pond in Nybyen in the end of the field season. (D, E) All ponds in 

Adventdalen were located near to a dog kennel. (F, G, H, I) Kapp Linné ponds 

were good habitats for L. arcticus and surrounded by abundant moss vegetation. 

(J, K) Human impact was evident in Pyramiden area. Only one L. arcticus 

individual was found from Pond 5 whereas no L. arcticus was observed in Pond 6. 
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2.2.4. Kilneset 

 

Kilneset (79°42´N, 13°22´E) is situated in Reinsdyrflya near to the Liefdefjorden 

on the northern coast of Spitsbergen (Figure 1). The area is part of the Northwest 

Spitsbergen National Park. Kilneset is in northern Arctic tundra, subzone B, but is 

located close to polar desert area, the coldest subzone A. One pond was examined 

in Reinsdyrflya region. Vegetation near to the Kilneset pond was only moss (75–

100 % cover) and thus vegetation type was moss tundra community. Reinsdyrflya 

has a large population of reindeer and common eiders and arctic terns breed on the 

Reinsdyrflya islands (Stange 2009). Kilneset was the only turbid pond due to clay.  

 

2.2.5. Polheim 

 

Polheim (79°53´N, 16°02´E) is situated in Mosselhalvøya near the Mosselbukta 

on the northern coast of Spitsbergen (Figure 1). Polheim is historically important 

site, but only little is known about its nature. The famous polar explorer Adolf 

Erik Nordenskiöld started his expedition from Polheim in 1872 to the totally 

unknown interior of Nordaustland. In Mosselhalvøya region, only one pond 

(Polheim) was examined. The vegetation type was moss tundra community near 

to the Polheim pond.  

 

2.2.6. Ny-Ålesund 

 

Ny-Ålesund (78°55´N, 11°56´E) is located on the Kongsfjorden on the west coast 

of Spitsbergen. Ny-Ålesund is an old coal mining town. Since 1964, the place has 

been developed as an international research village. The local reindeer population 

had collapsed completely, but 15 reindeer were moved to the region in 1978 and 

since then the reindeer population has grown (Stange 2009). Nine ponds were 

studied in the Ny-Ålesund region: “Goose pond”, “Gluudneset”, Tvillingvatnet, 
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Storvatnet, “Kolhamna”, “Trehyrdingen 1”, “Trehyrdingen 2”, “Brandallaguna” 

and Solvatnet. L. arcticus were not found from the Goose pond nor from the 

slightly saline Gluudneset pond. There were many barnacle geese (Branta 

leucopsis) in Goose pond and Arctic terns in Gluudneset.  

 

Kolhamna was a temporary annual pool that dried up in three weeks during the 

summer (Figure 3). Cyanobacteria grew near to the Kolhamna pond indicating 

that the pond had already begun to dry out early in the summer. The bottom of the 

dried pond was full of footsteps of purple sandpipers. The birds had probably 

eaten all L. arcticus and only D. pulex were still alive in the moist sediment in late 

summer. Ponds in the Trehyrdingen area (Trehyrdingen 1 and 2) looked quite 

similar, but L. arcticus lived in different habitats. In Trehyrdingen 1 L. arcticus 

were found among rocks whereas in Trehyrdingen 2 L. arcticus seemed to favour 

the water mosses and soft sediment.  

 

Tvillingvatnet is a source of drinking water and plumbing repairs were done at the 

pond shores in summer 2010 (Figure 3). Brandallaguna is located in a very windy 

area near to sea. In this unusual pond, the sediment released large quantities of 

methane and L. arcticus lived at an unusual depth ≥1.5 m. Solvatnet was a 

nutrient-rich pond located near to the sea. In this pond L. arcticus were large and 

served as an important food source for arctic terns and purple sandpipers. Purple 

sandpipers also seemed to eat D. pulex during windy days, when these small 

crustaceans were clustered among the submerged mosses close to the shore. The 

vegetation type was moss tundra community in Storvatnet, Brandallaguna and 

Solvatnet ponds.  
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Figure 3. Photographs taken from the study ponds in northern part of Svalbard and Ny-

Ålesund. (L) Mosselhalvøya in Polheim was the northernmost pond in the studied ponds. 

(M) Reinsdyrflya in Kilneset was the only pond with turbid water. (N, O) No L. arcticus 

were found in Goose pond or in Gluudneset. (P) Ny-Ålesund settlement used the water of 

Tvillingvatnet for drinking. (Q) Storvatnet was located near the Ny-Ålesund airport. (R, 

S) Kolhamna temporal pond dried up completely in three weeks. (T, U) Ponds in 

Trehyrdingen area looked quite similar. (V) Branddallaguna area was very windy and the 

pond bottom released a lot of methane. (X) Solvatnet was a nutrient-rich pond where L. 

arcticus were exceptionally large.  
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2.3. Sampling  

 

L. arcticus were sampled from a total of 19 ponds on six locations around the 

Spitsbergen (Figure 1). Samples were collected between July 6th and September 

6th in 2010. The density of L. arcticus was determined using traps (see 

Christoffersen 2001) and a “peltipelle-sampler” which was burrowed 

approximately 5 cm into the sediment, lift up and the captured animals were 

counted (Figure 4). Peltipelle-sampler can be used for taking an undisturbed 

sediment and/or invertebrate sample from a certain area of lake or pond bottom. 

The sampler has two components: a bottomless bucket and a metal base plate with 

a handle. This sampler can be used on soft bottoms where it can be carefully set 

and pushed to a depth of few centimetres. After the base plate is inserted into the 

slot, an undisturbed sediment sample can be lifted up. Additional samples of L. 

arcticus were collected gently using a hand net and a spoon. A total of 60 

individuals were collected from each pond. Half of the animals were preserved in 

80 % ethanol and half were frozen. Animals used in laboratory experiments were 

transported alive to the laboratory in 200 ml bottles, which had a maximum of 

five individuals per bottle and 150 ml of pond water. 15 extra animals were 

collected for each laboratory experiment. It should be noted that the water 

temperature in the bottle should not rise when animals are collected. Human hands 

can easily raise the temperature of the water, resulting in lower oxygen content 

and, in the worst case, to the death of animals. The bottles were kept in dark 

because darkness seemed to reduce the cannibalistic behaviour of L. arcticus. 
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Figure 4. Peltipelle-sampler on the shore of Kapp Linné pond. The sampler is 

composed of a bottomless bucket and a metal paddle. Photo taken by Anni 

Pulkkinen. 

 

 

2.4. Morphological analyses 

 

Morphological analyses were performed on a total of 791 L. arcticus sampled 

from six areas: Longyearbyen (5 ponds), Kapp Linné (4 ponds), Pyramiden (1 

pond), Ny-Ålesund (7 ponds), Reinsdyrflya (1 pond) and Mosselhavøya (1 pond). 

Total of 19 different L. arcticus populations were included in these analyses. 

Individuals from Adventdalen first pond were not included to this data because 

the pond is connected to the near Adventdalen second pond by a water pipe. The 

animals were preserved in 80 % ethanol and later examined under a Wild 

Heerbrugg stereomicroscope at 6x magnification to the nearest 0.1 mm. The 

following parameters were measured: length and width of carapace (CL and CW), 

length of telson (TL) from carapace to the end of supra-anal plate, length of intact 

telson setae (TS), length of supra-anal plate (SP) and number of posterior 

segments not covered by the carapace (PS) (Figure 5). L. arcticus has been shown 
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to have five different haplotypes (Hessen et al. 2004). A unique L. arcticus 

population occurs in the alpine Hardangervidda area, southern Norway. This 

special B2 haplotype population has a remarkably short telson relative to the 

length of carapace (Hessen et al. 2004). Therefore, the ratio of TL: CL was 

calculated from each individual. L. arcticus has two major haplotypes (A1 and 

B1) and only the haplotype A1 has previously been found on Spitsbergen (Hessen 

et al. 2004). The supra-anal plate is significantly smaller in haplotype A1 relative 

to the carapace length (Hessen et a. 2004). Therefore, the ratio of SP: CL was also 

calculated from each individual. L. arcticus sex and size and the number and 

colour of eggs were determined. The mean number of eggs was calculated from 

all mature females with eggs in their egg-capsules, so that it represents the mean 

number of eggs per mature and fertile female, not the mean egg number carried by 

the total female population. Differences between males and females are 

demonstrated in Figure 10. Animals were photographed under a microscope for 

later analysis of colour morphs. Red and green pigments disappeared from the L. 

arcticus body when the animals were preserved in 80 % ethanol. Therefore, 

colour morphs were recorded from living animals which were collected from each 

study population. 
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Figure 5. Examined morphological parameters of L. arcticus and the differences 

between female and male supra-anal plates and the place of female egg-capsule 

(A). CL=Carapace length, CW=Carapace width, TL=length of telson from 

carapace to the end of supra-anal plate, TS= length of intact telson setae, SP= 

length of supra-anal plate and PS= number of posterior segments not covered by 

the carapace. Modified from Hessen et al. (2004), Longhurst (1955) and Sars 

(1896). 

 

 

2.5. Preliminary laboratory experiments 

 

Because L. arcticus has been only rarely studied under laboratory conditions, it 

was important to first optimize the laboratory conditions before starting the actual 

experiment. For example, the water and air temperature, the chemical properties 

of the water and the diet of L. arcticus were optimized prior to the experiments. 

Preliminary experiments showed that the final experiments cannot be carried out 

if the animals are kept in the same container. The reason for this was the 

cannibalistic behaviour of L. arcticus. The animals seemed to be intolerant to long 

transportation and they required cold water. The water temperature should not rise 

too high at any stage of the experiment nor during the sampling or transport of L. 
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arcticus. The water used in the experiments should be taken from the home pond 

of the animals. The pH varies between the ponds on Spitsbergen and therefore one 

should pay attention where the water has been taken for the experiments. 

 

 

2.6. Culturing of the L. arcticus 

 

In the laboratory, the animals were put individually into 100 ml bottles filled with 

pond water. Animals were kept in a temperature controlled laboratory (air 

temperature 8–11 °C). The water temperature was 3.1–4.9 °C in ponds where the 

animals were collected. The temperature in climate room was higher than in the 

ponds because the temperature in UNIS climate room cannot be set below 8 °C. 

24-hours sunlight is typical of the High Arctic regions and thus animals were kept 

in constant day light also in the laboratory. L. arcticus with injuries such as 

broken telson setae were excluded from the experiments. The broken telson setae 

encumbered swimming and hampered returning of L. arcticus from water surface 

back to the water column. Dead L. arcticus were removed after 24 hours and 

possible reasons for death were determined (e.g. possible diseases and failed 

carapace moult was recorded, and the water temperature, pH and dissolved 

oxygen were measured). The activity of the animals was also visually examined 

every 24 hours. 

 

During the actual experiments the animals were kept in 100 ml bottles and the 

water was changed daily. 50 ml of water was changed on the first day and 100 ml 

on the second day. No air pump was used in the experiments because it seemed to 

decrease the water pH. 

 

Diet was one of the most important elements in maintaining L. arcticus in the 

laboratory. Preliminary experiments showed that the more diverse diet was 

offered, the more animals survived in the laboratory. Not all L. arcticus seemed to 

feed on D. pulex as only 60 % of individuals (n=31) had eaten D. pulex during the 

24 hour experiment. The best diet for L. arcticus was a four-day rotating menu 
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switching from 1 ml of concentrated phytoplankton, to one D. pulex , then to one 

crustacean food tablet, and on the fourth day the animals were not given any food. 

Although four-day diet was best for the animals, a two-day rotating menu was 

used in the actual experiments due to the challenge of finding the right food for 

long experiments. In the two-day rotating menu the animals were first given one 

crustacean food tablet and the following day they were left without food. It should 

be paid attention to what kind of crustacean food tablet is used in experiments. A 

sinking food tablet seemed to be the best, because then the food was available for 

all animals, including the ones in poor condition laying on the bottom of the 

container, and not only for those used to forage (e.g. on Daphnia) in the water 

column. During the experiment, water was changed every day: 50 ml when the 

animals were fed and 100 ml on the fast day. The water was taken from the same 

pond as the animals. Faeces and uneaten food were removed when all the water 

(100 ml) was changed. L. arcticus should not be overfed and the containers must 

be kept clean to prevent bacterial and fungal growth. In the laboratory Ciliates 

(Ciliophora) began to grow easily on the surface of L. arcticus, because the 

animals had no opportunity to dig into the sediment. 

 

 

2.7. Red Carapace Disease 

 

When L. arcticus samples were collected from the study ponds, some animals 

were observed to be sick and to have a swollen, red carapace. Some healthy-

looking animals became ill in the laboratory, apparently if the water temperature 

increased in the aquarium. The sick animals were preserved in 80 % ethanol for 

later examination of a possible parasite. Later the cadavers of the sick animals 

were autopsied and the organs and body liquids were examined under a stereo 

microscope. Then the animals were crushed between two 1 cm thick glass plates 

and examined more carefully under the stereo microscope. Since no parasite was 

found using this method, the preparations were made from different tissues 

including the fluid between the carapace and from haemolymph, egg cells and 

ovaries. The preparations were examined and photographed under a light 
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microscope. Organisms with an interesting shape were found from the eggs and 

ovaries and therefore these organs were further examined using an electron 

microscope at the University of Jyväskylä, Finland. 

 

 

2.8. Water chemistry in the High Arctic ponds 

 

Water samples were collected from a total of 23 ponds in different locations 

around the Spitsbergen. L. arcticus were found in 20 study ponds. Note that L. 

arcticus was present in Adventdalen first pond, but this pond was not studied 

intensively because it was connected by a pipe to Adventalen second pond. 

Samples were collected between July 6th and September 6th in 2010. The ponds in 

Ny-Ålesund were sampled twice in the beginning and in the end of August. Ponds 

in Longyearbyen were monitored throughout the summer 2010. 

 

In each site, water temperature was measured using a hand held thermometer held 

both on the bottom of the pond (at sediment surface) and approximately 15 cm 

below the water surface. Sediment temperature was also measured by putting the 

same thermometer approximately 10 cm into the sediment. Conductivity (Cond), 

salinity (‰), pH and the concentration of dissolved oxygen (O2 % and mg l-1) 

were measured using a Mettler Toledo InLab 781 conductivity meter, a Mettler 

Toledo Gmbtl pH meter and a Mettler Toledo In Lab 681 oxygen meter 

respectively. The location of the pond (i.e. latitude and longitude) was measured 

in the field with a handheld GPS receiver (Garmin e-trex; uses WGS84 coordinate 

system). The altitude and the distance from the sea and from the nearest glacier 

and permanent snow cover were estimated from 1:100 000 topographic maps C9 

(Longyearbyen), C8 (Pyramiden), B9 (Kapp Linné) A7 (Ny-Ålesund), B4 

(Reinsdyrflya) and C4 (Mosselhalvøya) published by the Norwegian Polar 

Institute, Tromsø. 

 

Water samples were collected for five water chemistry variables, which were later 

analysed in the laboratory. Water samples were taken from the littoral zone at 15–
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44 cm depth. Water samples were stored frozen. Total nitrogen (totN), total 

phosphorus (totP), total organic carbon (TOC) and dissolved organic carbon 

(DOC) were analysed at the Department of Environmental Sciences, University of 

Helsinki, in Lahti, Finland, using standard protocols. Marianne Lehtonen analysed 

the total nitrogen (totN) using the QuickChem ® METHOD 10-107-04-1-1 and the 

total phosphorus (totP) using the SFS 3026 standard. Nitrogen and phosphorus 

concentrations were measured from each pond. totN and totP concentrations were 

measured twice in three ponds (Storvatnet, Trehyrdingen 1 and Brandallaguna) in 

Ny-Ålesund. Santeri Savolainen analysed the total organic carbon (TOC) and the 

dissolved organic carbon (DOC) using the European standard SFS-EN 1484:1997. 

TOC and DOC concentrations were measured from all other ponds except from 

pond 6 in Pyramiden and from Gluudneset in Ny-Ålesund because all water was 

needed for the nutrient analysis and thus no water was left for the carbon analysis. 

 

For the analysis of chlorophyll-a (Chl-a) in ponds in Kapp Linné, 80 ml of water 

was first filtered through a GF/F filter with a pore size of 3.0 μm and then through 

another GF/F with 0.7 μm pore. Unfortunately, the 3.0 µm GF/F filters were 

lacking and thus 2.7 μm GF/D filters were used for rest of the samples. Chl-a was 

extracted with methanol and filtered using the syringe filter and finally the extract 

was analysed with 10-AU Fluorometer. Three replicate measurements were done 

from each sample. 

 

To study the amount of organic matter in the sediment of each study pond, three 

replicate samples were collected by digging the bottom with a 0.01 mm metal 

mesh. The stratification in the sediment was retained in the obtained samples. 

Samples were collected from different types of bottoms from 3–40 cm depth. 

Each sample contained 3–5 cm of surface sediment, which was homogenized 

before analysis. In the laboratory, 20 g of the sediment was dried in aluminium 

foil at 105 °C for 24 hours. Crucibles were burned at 540 °C for an hour and then 

let to cool in a desiccator for 30 min. Subsamples of 1–2 g of dry sediment were 

weighed, placed in crucible, burned at 450 °C for 4 hours, cooled in a desiccator 
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and weighed again. The obtained results are expressed as per cent of organic 

matter (OM %) of the total sediment matter. 

 

The cover of moss vegetation was estimated up to a distance of approximately 25 

m from the shoreline of the pond. The moss cover around the ponds was defined 

into four classes: 0–10 %, 11–30 %, 31–60 % and 61–100 %. A more detailed 

survey of the vegetation surrounding the ponds was performed in five 40x40 cm 

vegetation squares, from which the number of reindeer and geese droppings was 

also calculated. The density of droppings at a distance up to approximately 25 m 

from the shoreline was used as an indicator of faecal input of barnacle geese and 

reindeer into the ponds. Density of goose droppings in this area was recorded 

using a semi-quantitative scale (none, low, medium and high) and converted into 

an ordinal scale ranging from 0 to 3 for statistical analyses. A similar method has 

been used by Van Geest et al. (2007). Fresh water ponds and wetlands are 

important habitats for a wide variety of birds and mammals, which can act as 

dispersal agents for L. arcticus. Hence, all observations of birds and mammals 

near the ponds were also recorded. 

 

 

2.9. Olfaction 

 

The olfaction experiment was carried out to find out if L. arcticus can trace prey 

using their sense of smell. The two different kinds of odour sources used were 

artificial algae and crushed L. arcticus. The artificial algae was a crustacean food 

tablet which is commonly used as food for freshwater shrimps maintained in 

aquaria. All test animals were collected from Adventdalen third pond the day 

before the start of the olfaction experiment. The animals were acclimated 24 hours 

in 100 ml bottles in the temperature-controlled laboratory until the water 

temperature was stabilized to 8.5–9.2 °C. Three different kinds of odour 

treatments were used: 1. control = no odour, 2. crushed L. arcticus = the odour 

source was crushed L. arcticus, and 3. algae = the odour source was artificial 

algae (i.e. crustacean food tablet). All odours were tested with 15 different 
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animals and different animals were used in different treatments. The experiment 

was carried out in an 18x18 cm plastic container filled with 500 ml of filtered 

(GF/F) water. The water temperature was 8.5 °C and the water depth was 2.3 cm 

in the container. The water and the cotton with the source of odour were changed 

for each animal. The container was changed for all treatments. 

 

The crustacean food tablet and L. arcticus which were used as the sources of 

odour were first crushed and then centrifuged to obtain clear liquid that was 

soaked in cotton. Four pipette tips with cotton inside were put in each corner of 

the three containers. After the container was filled with 500 ml of water the 

“smelling” cotton was placed in one corner whereas the pipette tips with clean 

cotton balls were put in the other corners. The pipette tips were perforated so that 

the odour of the liquid could diffuse from the cotton to the water. The containers 

were divided into nine numbered sections. The source of odour (no odour, crushed 

L. arcticus or crustacean food) was inserted to section one and the L. arcticus was 

released in the middle of the container (i.e. section five) (Figure 6A & 6B). Prior 

to the actual experiment the dissolution of odour substances was tested by using 

red watercolour and to ensure that the red pigment did not spread over other 

sections except the number one. It was important to put “the odour pipette” into 

the container after the container was filled with water. To prevent the animal from 

seeing the container, the animal was put into a black, bottomless bottle in the 

section five for one minute prior to the experiment. The experiment lasted 15 

minutes. During the experiment, the sections in which the animal was moving and 

attaching to cotton balls was monitored (Figure 6C). Number of visits and the 

time that the animal spent in different sections was recorded. 
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Figure 6. The study setting in the olfaction experiment. A: Experiment was done 

in 18x18 cm containers divided into nine sections. B: The test animal was released 

in the middle of the container. C: The time the L. arcticus was attached to the 

pipette tip was also monitored. 

 

 

2.10. LC50  Salinity and pH 

 

In this study the aim was to study the tolerance of L. arcticus to potential natural 

stressors including the water acidity (pH) and water salinity (‰). In toxicology, 

the median lethal concentration (LC50) of a toxin or radiation is the dose required 

to kill half of the individuals of a tested population after a specified test duration. 

For the LC50 experiments L. arcticus were collected using a hand net and a spoon 

at 5–60 cm depth from the Adventdalen third pond in Longyearbyen. The animals 

were collected gently from the sediment and from the water column, placed in 

pond water and transported to the laboratory. The animals were acclimated 24 

hours in 100 ml bottles in the temperature controlled laboratory prior to the 

experiments. Only animals in good condition were selected for the experiments. 

All animals were females, of similar size and collected from the same population. 

Animals were kept in 100 ml bottles during the experiment and fed using a two-

day rotating menu. Fifteen L. arcticus were placed individually into the 100 ml 

exposure solutions (i.e. into different treatments), including a pond water sample 

for control held at temperature controlled room (air temperature 8–11 °C, water 

temperature 8–9.5 °C). Water was changed every day and the faeces and uneaten 
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food was removed. 50 ml of water was changed when the animals were fed and 

100 ml was removed during the fast days. Air and water temperatures were 

measured daily. At the beginning and in the end of the experiments dissolved 

oxygen, pH and salinity were measured. The survival of animals was determined 

as the number of dead organisms after every hour for the first two days and then 

once a day till the end of the experiment. LC50 was determined by the computer 

program DEBtox application. The safe salinity concentration for L. arcticus was 

calculated using empirical formula. The safe salinity concentration was defined to 

be equal to 96 h-LC50 x 0.1 (Sprague 1971). 

 

In LC50-salinity experiment, the survival of L. arcticus was examined in 13 

different treatments with varying salinity (0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

‰). Each treatment consisted of 15 replicates. In the salinity experiment the 

control group was held in water with a salinity concentration (0.1 ‰) 

corresponding to the salinity in the pond. Water salinity was adjusted using 

filtered sea water (1 µm) and confirmed using a salinity refractometer (model 

InLab 781 Conductivity Sensor Module, Mettler Toledo). The salinity experiment 

lasted for 23 days. In the LC50-salinity experiment the salinity was measured 

every day with a digital meter (model In Lab 781 Conductivity Sensor Module, 

Mettler Toledo). 

 

In LC50-pH experiment, the survival of L. arcticus was examined in different 

treatments with varying pH (7.6, 8.5, 8.0, 4.5, and 4.0). Fifteen replicates of five 

different pH were tested. Animals maintained in the pond water with a pH of 7.6 

were considered as the control group. In the LC50-pH experiment the pH was 

measured every day using a digital meter (Mettler Toledo Gmbtl). The water pH 

was adjusted using HCL and NaOH and was confirmed using the same pH meter. 

The pH experiment lasted for two days. 
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2.11. O2 consumption at different temperatures 

 

Individual evaluations of oxygen consumption (i.e. respiration) were done by 

putting five L. arcticus individuals for each of the following temperature 

treatments: 3.5, 10, 16.5, 20, 25 and 30 °C. The antioxidant solution (NaOH 0.1 M 

and sodium ascorbate 0.1 M) were considered as a calibration sample. Filtered (2 

μm) pond water was used as a control sample. The oxygen sensor was polarized 

because the electrolyte contains oxygen. The polarization of the oxygen sensor 

lasted for 3 hours until the desired signal of 11 pA (less than 20 pA) was reached. 

Stirring was used inside the test chambers in all treatments. A glass ring, a 

magnetic flea and a metal net were placed inside the 4 ml test chambers (Figure 

7A). The metal net protected the animals from being damaged by the rotating 

magnetic flea (Figure 7A & 7B). For each treatment, animals were acclimated for 

24 hours in 100 ml bottles at the temperature controlled laboratory (water 

temperature 8.5–9.2 °C) before starting the experiments. It was not possible to 

adapt the test animals into the test temperatures for longer time, because the 

animals died soon in 30 °C. Eriksen and Brown (1980b) also had problems to 

acclimate L. lemmoni to high water temperatures, being intolerant to 35 °C. 

Hence, the test animals were held only for 1 minute in the selected test 

temperatures before each measurement. Individual oxygen consumption 

measurements were determined in a 4 ml closed respirometry system filled with 

filtered pond water (2 μm filter). Respirometers were maintained in a water bath 

(Julabo F34 HL) at the selected test temperature (Figure 7C). The water in the 

bath was filtered through a 0.7μm filter and boiled to avoid contamination. The 

respiration activity experiment lasted for 15 minutes. Control value was measured 

in each temperature and the control value was reduced from the test result at the 

same temperature as the control value was measured. Oxygen consumption was 

measured throughout the experiment using Unisense A/S PA2000 Micro-

Respiration system (Figure 7C). Oxygen consumption was determined by the 

computer program MicOx software.  
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Figure 7. Oxygen consumption experiment. A: Test animal in the 4 ml chamber. 

B: Empty chamber with a magnet, a glass ring and a metal net. C: Unisense A/S 

PA2000 Micro-Respiration system and Julabo F34 HL cold and hot antifreeze 

circulation system. 

 

 

The temperature coefficient (Q10) values were calculated using the mean of the 

respiratory activity with the formula (1.) 

 

(1.) Q10 = (R2 / R1)
10 / ( T

2
–T

1 
) 

 

Q10= the relative change of a physical property when the temperature is changed 

by 10 °C. 

R1= the measured reaction rate (nmol/h) at temperature T1 (where T1< T2). 

R2= the measured reaction rate (nmol/h) at temperature T2 (where T2>T1).  

T1= the temperature (°C) at which the reaction rate R1 is measured. 

T2= the temperature (°C) at which the reaction rate R2 is measured. 

 

 

2.12. Statistical analyses 

 

Oxygen consumption was calculated using the computer program MicOx 2.9 

software and the temperature coefficient (Q10) values were calculated using 

Microsoft Office Excel 2007. The statistical analyses were done with PASW 

Statistics 17 and IBM Statistics 20 software’s. All variables were tested for 

normality. Differences in L. arcticus oxygen consumption in different 

temperatures (3.5, 10, 16.5, 20, 25 and 30 °C) were tested using one-way analysis 
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of variance (one-way ANOVA). When significant differences (p < 0.05) were 

found, Tukey pairwise tests were performed. 

 

Correlations between L. arcticus main morphological variables (CL, CW, TL, SP, 

TS and PS) were studied using Pearson correlation. Regression curve estimations 

between CW and CL and between TS and CL were made using the power 

regression curve (y = axbc), and between TL and CL, CW and SP, CL and SP, TL 

and SP, number of eggs and CL, TL and water surface T (°C), TL and sediment 

surface T (°C) and between TL and sediment T (°C) were made using the 

polynomial regressions curve (y = a + b1x + b2x
2+c). Egg distributions in the right 

and left foot capsules were tested using Wilcoxon signed-rank test. Differences 

between males and females total length were tested using Mann-Whitney U-test. 

Non-parametric tests were used because the data did not meet the assumptions 

(i.e. normality and homoscedasticity) of parametric tests. Differences in total 

length between sick (Red Carapace Disease) and healthy animals were tested 

using Kruskal-Wallis –test. 

 

In the olfaction experiment, the differences in activity of animals between 

treatments (algae, Lepidurus and control) were tested with one-way ANOVA. 

When significant differences were found Tukey pairwise tests were performed. 

Differences in animals’ swimming speed and in the use of different squares (1–9) 

were tested using Kruskal-Wallis -test and when significant differences were 

found pairwise tests (Mann-Whitney U-test) were made. 

 

The differences of the first and second ecdysis of L. arcticus in different salinity 

treatments (control, 1 ‰, 2 ‰, 3 ‰ and 4 ‰) were tested using Kruskal-Wallis -

test. When significant differences were found Mann-Whitney U-test pairwise tests 

were performed.  
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3. Results 

 

 

3.1. Ecology of L. arcticus 

 

3.1.1. Aggression and body damage 

 

L. arcticus usually avoided other conspecifics. Cannibalism was common in L. 

arcticus populations on Spitsbergen and evasive behaviour of L. arcticus seemed 

to be a good way to avoid predation. Aggressive behaviour was common when the 

animals were put in the same bottle during the sample collection. Sometimes a 

smaller animal attacked a larger animal and started to eat it alive. L. arcticus often 

behaved aggressively towards other L. arcticus in the laboratory. An exception to 

this aggressive behaviour was only the interactions between females and males 

(Figure 8).  

 

 

Figure 8. Interaction between L. arcticus female and male. 

 

 

L. arcticus carapaces were sometimes injured and these injuries were observed in 

five study ponds: in Pond 2, in Kolhamna, in Trehyrdingen 1, in Storvatnet and in 

Nybyen pond. The carapaces of damaged animals had holes or cracks (Figure 9B 

& 9C). Damaged edges of the carapaces were darker than the healthy parts. Legs 
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were partly or almost completely missing from three L. arcticus in Adventdalen 

second pond and Solvatnet pond (Figure 9D). A piece of telson setae was missing 

from several L. arcticus. Living animals that were lacking a piece of the tip of 

telson setae had difficulties in disengaging themselves from the water surface 

tension. An interesting discovery was that L. arcticus telson setae have the ability 

to regenerate. Damaged parts of carapaces and telson setae were darker than the 

healthy parts and thus they were easy to observe (Figure 9A & 9B).  

 

 

Figure 9. Pictures from L. arcticus injuries and recovering organs. A= 

regeneration of telson setae. The dark areas (rings) are injuries and the light areas 

are regenerated tissues. B and C= cracks in the carapace, D= injuries in the telson 

and missing legs, and E= moulting of L. arcticus.  

 

Some of the collected L. arcticus were blind and had grey and blurry eyes (Table 

2). One L. arcticus from Solvatnet pond had injuries in the head and the animal 

was blind. Another animal in the same pond and one L. arcticus in Polheim pond 

were also blind, but these individuals had no visible injuries in the body. 
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Described injuries in different body parts were likely caused by birds or other L. 

arcticus. Birds evidently feed on L. arcticus in Solvatnet (arctic tern), 

Longyearbyen (purple sandpiper), Adventdalen 2 (arctic tern and purple 

sandpiper) and Adventdalen 3 pond (dunlin). Bird observations are presented in 

Appendix 1. Birds can be significant predators of L. arcticus and at the same time 

act as dispersal vectors, because the L. arcticus eggs turned out to be sticky. Some 

L. arcticus had ectoparasites in the head or in the genital area (Table 2). The 

parasites were flat, white worms having a size of 2 mm. Some individuals had 

small red eggs, probably from a parasite, attached to abdomen of the carapace. 

 

3.1.2. Male morphology 

 

L. arcticus males are generally very rare, considerably smaller than the female, 

and have no special prehensile organs (Sars 1896). The mean male/female ratio 

was 1:16 in the six ponds where males were present. L. arcticus males were 

remarkably large on Spitsbergen. The total length of the male rarely exceeded 18 

mm, but in few cases had reached a total length of 27.5 mm and a carapace length 

of 9.1 mm. In Brandallaguna the total length of L. arcticus did not significantly 

differ between males and females (Mann-Whitney: U = 51.5, n = 33, p = 0.364). 

Still, in mid- and late-summer males were on mean 8–30 % smaller than females 

in the study ponds. 

 

L. arcticus males were very rare on the Spitsbergen ponds and were not found 

from all ponds (Table 2). Males were only found from six ponds: from three 

ponds in Kapp Linné, from one pond in Longyearbyen, from Ny-Ålesund and 

from Reinsdyr flya. Males were found between 12th July and 23rd August, when 

the sampling period was between 7th July and 6rd September. On Spitsbergen the 

sex ratio in L. arcticus populations was exceptional. The male/female ratio was 

only 1:6–1:41 (mean 1:16) in six ponds where males were observed (Table 2). 

Males were not found from the other 13 L. arcticus ponds. However, males were 

found from almost all the studied areas, except from Pyramiden and Polheim 

Mosselhalvøya. 
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Table 2. Number of males and colour morphs and the occurrence of Red 

Carapace Disease (RCD) and parasites in the L. arcticus populations around the 

Spitsbergen. 

Place and date Number of 
specimens 
per 
sample 

Males 
♂ 

Number 
of 

colour 
morphs 

Number 
of 

animals 
suffering  

from 
RCD 

Other diseases, 
parasites, etc. 

Kapp Linné 
Pond 1, 13.7 
Pond 2, 12.7 
 
Pond 3, 13.7 
Pond 4, 11.7 

Pyramiden 
Pond 5, 18.7 

Longyearbyen 
Dammyra, 31.7 

The north coast 
Kilneset, 2-5.8 
Polheim, 2-5.8 

Ny-Ålesund 
Solvatnet, 6.8 
Tvillingvatnet,6.8 
Storvatnet, 8.8 
Kolhamna, 8.8 
Trehyrdingen 1,8.8 
Brandallaguna, 8.8 

Longyearbyen 
Adventdalen 2, 18.8 
Adventdalen 3, 23.8 
Longyearbyen 23.8 
Ny-Ålesund 
Solvatnet 31.8 
Storvatnet 31.8 
Tvillingvatnet 1.9 
Trehyrdingen 1, 1.9 
Trehyrdingen 2, 1.9 
Brandallaguna 1.9 

Longyearbyen 
Nybyen 6.9 
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12 
6 
2 
2 
- 
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3 

 
1 parasite 
1 parasite on the  
head 
- 
- 

 
- 

 
1 flat worm on  
genitals 

- 
1 blind, 1 sick 
abdomen 
1 parasite 

- 
- 
- 
- 
- 

 
- 
- 
- 

 
2 blind 
- 
- 
- 
- 
- 
 
- 

 

The structure of 11th pair of legs of L. arcticus males is the same as than the pairs 

immediately preceding and following it; while females of that size, the 

characteristic egg-capsule is already distinctly developed (Sars 1896). Males had 

very strong and robust legs (Figure 10 E) and the supra-anal plate was blunt and 

shovel-shaped (Figure 10 A). The main differences between L. arcticus males and 

females are presented in Figure 10. 
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Figure 10. The main differences between the L. arcticus males and females. (A) 

Males have a blunt and shovel-shaped and (B) females have a small and sharp 

supra-anal plate. (C) Males have no egg-capsule, while (D) = females have an 

egg-capsule in the 11th pair of legs. (E) Males have stronger and more robust legs 

than females (F). 

 

 

Males were observed in populations where females had not yet reached the sexual 

maturity (i.e. females had an egg-capsule in the 11th pair of legs but not yet eggs 

inside them). Males also occurred in the late summer (23rd August) when the 

females had reached the sexual maturity and were carrying eggs (Figure 11). 
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Figure 11. The number of L. arcticus males (solid squares; y-axis on the left) in 

six ponds and the mean number of eggs per mature female (open circles; y-axis on 

the right) in all study ponds during the summer. 

 

3.2.3. Ratio of CL/SP and morphological differences 

 

The ratio of carapace length to supra-anal plate ratio (CL/SP) is considered as a 

good way to identify L. arcticus species. On Spitsbergen the mean ratio of 

carapace/supra-anal plate of L. arcticus females was 14.97 %. The lowest CL/SP 

ratio (7.7 %) was found in Kapp Linné in early July and the highest ratio (27.6 %) 

was found in Solvatnet, Ny-Ålesund, in late August (Table 3). Males had a 

slightly higher carapace supra-anal plate ratio (mean 15.3 %) than females. The 

carapace supra-anal plate ratio was higher on Spitsbergen than has been observed 

anywhere else (Table 3).  
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Table 3. The ratio of supra-anal plate length to carapace length of L. arcticus in 

different northern regions. = mean ratio. 

Area Supra-anal plate length as 
% of carapace length 

 

Author 

Pond 1, Kapp Linné, Spitsbergen, 
Norway 
 

10.00-19.35  

=13.84  

Present data 

Pond 2, Kapp Linné, Spitsbergen, 
Norway 
 

7.69-22.22  

=13.42  

Present data 

Pond 3, Kapp Linné, Spitsbergen, 
Norway 
 

10.34-17.65  
=13.94  

Present data 

Pond 4, Kapp Linné, Spitsbergen, 
Norway 
 

10.53-21.21  
=14.78  

Present data 

Pyramiden, Pond 5, Spitsbergen, 
Norway 
 

8.77  Present data 

Kilneset, Reinsdyr flya, Spitsbergen, 
Norway 
 

11.11-18.52  
=14.38  

Present data 

Polheim, Mosselhalvøya, Spitsbergen, 
Norway 
 

12.50-17.78  
=15.09 

Present data 

Brandallaguna, Ny-Ålesund, 
Spitsbergen, Norway 
 

8.57-19.35  
=14.58 

Present data 

Solvatnet, Ny-Ålesund, Spitsbergen, 
Norway 
 

11.94-27.59  
=16.18  

Present data 

Kolhamna, Ny-Ålesund, Spitsbergen, 
Norway 
 

10.42-25.64  
=14.13  

Present data 

Trehyrdingen 1, Ny-Ålesund, 
Spitsbergen, Norway 
 

11.11-20.69  
=14.46  

Present data 

Trehyrdingen 2, Ny-Ålesund, 
Spitsbergen, Norway 
 

11.90-20.34  
=14.70  

Present data 

Tvillingvatnet, Ny-Ålesund, 
Spitsbergen, Norway 
 

10.34-24.32  
=15.97  

Present data 

Storvatnet, Ny-Ålesund, Spitsbergen, 
Norway 
 

9.68-23.33  
=14.17  

Present data 

Longyearbyen pond, Spitsbergen, 
Norway 
 

12.82-21.28  
15.53  

Present data 

Nybyen, Longyearbyen, Spitsbergen, 
Norway 
 

12.50-20.59  
15.54  

Present data 

Adventdalen pond 2, Longyearbyen, 
Spitsbergen, Norway 
 

13.64-20.00  
=16.94  

Present data 

Adventdalen pond 3, Longyearbyen, 
Spitsbergen, Norway 
 

13.79-20.00  
=16.58  

Present data 

Dammyra, Longyearbyen, Spitsbergen, 
Norway  
 

12.68-17.72  
16.15  

Present data 

Broughton Island, Cumberland 
Peninsula, Baffin Island, Canada 
 

9.86-14.63  
=11.84  

Bushnell & 
Byron 1979 

Iceland 
 

≈12  Longhurst 1955 

- 7-13  Linder 1952 
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A new disease called “Red Carapace Disease” (RCD) was found and it apparently 

affected the animal’s morphology. When L. arcticus were suffering from RCD, 

the carapace/supra-anal plate ratio changed due to the swollen and risen carapace. 

In sick animals, this ratio was often exceptionally high (up to 34.62 %). Due to the 

observed RCD and sexual dimorphism, the morphological parameters (especially 

the carapace supra-anal plate ratio) of L. arcticus populations on Spitsbergen 

should be considered with caution. 

 

Large morphological and size differences were observed between and within the 

L. arcticus populations. The range of key morphological characteristics of L. 

arcticus is provided in Table 4 and Figure 12. Strong positive correlations were 

observed between the carapace length and width, between the carapace length and 

supra-anal plate, between the carapace width and supra-anal plate size, between 

the length of telson setae and supra-anal plate, between the length of telson setae 

and carapace length, and between the length of telson setae and carapace width. In 

contrast, there was a wide scatter in carapace length and telson length and 

between the telson length and supra-anal plate. (Figure 12)  

 

 

Table 4. Pearson correlation matrix for major morphological criteria (pooled data, 

n = 775). Bold denotes significant at p < 0.05, no bold denotes not significant at p 

> 0.05. Abbreviations: length and width of carapace (CL and CW), length of 

telson (TL), supra-anal plate size (SP), length of telson setae (TS) and number of 

posterior segments not covered by the carapace (PS). 

 
 

CL 

 

CW 

 

TL 

 

SP 

 

TS 

CW 0.93     

TL 0.69 0.76    

SP 0.94 0.93 0.79   

TS 0.87 0.86 0.72 0.88  

PS 0.06 0.14 0.63 0.20 0.18 
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Figure 12. Regressions between major morphological criteria for the Spitsbergen 

L. arcticus (n=790). X-axis in the left represents the L. arcticus carapace length 

(mm) and x-axis in the right is the size of supra-anal palate (mm). Y-axis 

represents carapace width (mm; A and D), size of telson setae (mm; B), telson 

length (mm; C and F) and carapace length (mm; E). Black line is trend line. 
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3.1.4. Sexual maturity 

 

The date of sexual maturation of L. arcticus females varied greatly. Normally the 

animals did not start to reproduce before August, but in Dammyra females were 

mature already in the end of July (Figure 13 A). The sexual maturation of L. 

arcticus seemed to depend on the progress of the summer as well as on the 

salinity and temperature of water and sediment in the ponds. The end of L. 

arcticus juvenile stage (i.e. the size when the animal started carrying eggs) was at 

the carapace length of ≥ 4 mm (Figure 13 B). The long-term water temperature 

had a major impact on the hatching time, growth and sexual maturation of L. 

arcticus. The time of sexual maturation showed great differences between the 

regions, but also within the same area and even within the populations (Table 5).  
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Figure 13. The carapace length (mm) of mature (with eggs) and immature (no 

eggs) L. arcticus (n=751) collected from 19 populations in different seasons (12th 

July – 6th September). Five of the populations were studied twice. A = the 

exceptionally large-sized animals in the small and slightly saline Dammyra pond. 

B = the exceptionally small mature L. arcticus in Storvatnet. 
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Table 5. Mean carapace length of L. arcticus and the occurrence of eggs in the foot capsules. (*=The animals had dropped 16 eggs 

from the foot capsules into the ethanol.) 
Place and date Number of 

specimens per 
sample 

Mean 
carapace 

length (mm) 

SD Total of individuals 
carrying eggs 

Total number 
of eggs 

Egg distribution in 
brood pouches 

Mean number of 
eggs per egg-
bearing animal 

Percentage of sample 
carrying eggs 

Left Right 

Kapp Linné 
Pond 1, 13.7 
Pond 2, 12.7 
Pond 3, 13.7 
Pond 4, 11.7 

Pyramiden 
Pond 5, 18.7 

Longyearbyen 
Dammyra, 31.7 

The north coast  
Pond 10, 2-5.8 
Pond 11, 2-5.8 

Ny-Ålesund 
Solvatnet, 6.8 

Tvillingvatnet ,6.8 
Storvatnet, 8.8 
Kolhamna, 8.8 

Trehyrdingen 1, 8.8 
Brandallaguna, 8.8 

Longyearbyen 
Adventdalen 2, 18.8 
Adventdalen 3, 23.8 
Longyearbyen, 23.8 

Ny-Ålesund 
Solvatnet, 31.8 

Storvatnet, 31.8 
Tvillingvatnet, 1.9 

Trehyrdingen 1, 1.9 
Trehyrdingen 2, 1.9 
Brandallaguna, 1.9 

Longyearbyen 
Nybyen, 6.9 

 
42 
43 
34 
31 
 

1 
 

12 
 

39 
38 
 

33 
33 
35 
43 
32 
33 
 

33 
36 
39 
 

32 
42 
35 
28 
37 
29 
 

31 

 
4.9 
4.4 
4.5 
5.6 

 
4.8 

 
12.9 

 
5.3 
8.3 

 
10.7 
4.6 
7.0 
7.1 
7.1 
7.0 

 
6.3 
8.5 
8.8 

 
12.1 
6.8 
7.1 
8.5 
8.3 
8.5 

 
10.7 

 
1.12 
1.76 
1.34 
1.17 

 
 
 

1.00 
 

1.30 
1.23 

 
2.22 
1.01 
1.69 
1.72 
1.96 
1.75 

 
0.91 
0.58 
1.90 

 
1.27 
1.30 
1.30 
1.33 
1.41 
2.20 

 
0.97 

 
0 
0 
0 
0 
 

0 
 

12 
 

3 
5 
 

28 
0 
8 
19 
4 
10 
 

23 
29 
24 
 

22 
21 
18 
23 
16 
27 
 

29 

 
0 
0 
0 
0 
 

0 
 

73 
 

5 
8 
 

93 
0 
13 
36 
11 
22 
 

33 * 
53 
51 
 

124 
40 
34 
50 
32 
67 
 

80 

 
0 
0 
0 
0 
 
0 
 

41 
 
3 
2 
 

52 
0 
7 

18 
5 

12 
 

14 
30 
21 
 

65 
20 
16 
24 
14 
30 
 

45 

 
0 
0 
0 
0 
 
0 
 

32 
 
2 
6 
 

41 
0 
6 

18 
6 

10 
 

19 
23 
30 
 

59 
20 
18 
6 

18 
37 
 

35 

 
- 
- 
- 
- 
 
- 
 

6.1 
 

1.7 
1.6 

 
3.3 
- 

1.6 
1.9 
2.8 
2.2 

 
1.4 
1.8 
2.1 

 
5.6 
1.9 
1.9 
2.2 
2.0 
2.5 

 
2.8 

 
0 
0 
0 
0 
 
0 
 

100 
 

7.7 
13.2 

 
84.8 

0 
22.9 
44.2 
12.5 
30.3 

 
69.7 
80.6 
61.5 

 
68.8 
59,0 
54.3 
82.1 
43.2 
93.1 

 
93.5 
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The number of immature individuals was at its highest level in early summer and 

decreased towards late summer (Table 5 & Figure 14 & 15). Sexually mature 

individuals were more abundant than immature animals in the end of August and 

the same trend continued till September (Figure 14). Only in the Solvatnet L. 

arctius population the relative proportion (%) of mature animal was higher in 

early August than in the end of August (Figure 15). 
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Figure 14. Number of mature and immature individuals (n=760) in different 

seasons (12th July – 6th September). The data is collected from 19 populations, of 

which five were studied twice.  
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Figure 15. Shifts in the relative proportions (%) of mature and immature L. 

arcticus in five ponds in Ny-Ålesund. L. arcticus individuals (n=27–41) were 

collected twice from each study pond. 

 

3.1.5. Reproduction and eggs 

 

The female character (i.e. the carapace length when foot capsules appear on the 

11th appendages) is reached at an exceptionally small size on Spitsbergen (Table 

6). The foot capsules appear on 11th appendages in very small animals, at a 

carapace length of only 2.9 mm, in-mid July in Kapp Linné. Also maturity, 

defined by Sømme (1934) as the appearance of eggs in the foot capsules, seems to 

occur at a shorter carapace length and in later season on Spitsbergen than 

anywhere else. L. arcticus reached maturity already at 4.0 mm carapace length on 

Spitsbergen. The size of mature L. arcticus ranged from 4.0 mm to 9.1 mm. The 

size when L. arcticus reached sexual maturity depends on the period of the 

summer. It was interesting that the L. arcticus in Ny-Ålesund reached sexual 

maturity at larger size (5.9 mm) in the beginning of August than in late August 

(4.0 mm). The clearly smaller individuals (≤1.9 mm smaller carapace length) 

reached sexual maturity (i.e. carry eggs) in late autumn, than individuals in early 

autumn. 
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Table 6. Sizes at which the diagnostic female characters and the sexual maturity 

was reached in different L. arcticus populations. 

Locality Area Carapace 
length at 

which 
capsules 

appeared on 
11th 

appendages 
(mm) 

Carapace 
length at 

which eggs 
appeared in 

capsules 
(mm) 

Year Author 

 
Longyearbyen 
area 18-23.8 
 

 
Spitsbergen 

 
- 

 
5.3 to 7.2 

 
2010 

 
Present 

data 

Ny-Ålesund  
6-8.8.2010 
 

Spitsbergen - 5.9 to 9.3 2010 Present 
data 

Ny-Ålesund  
31.8-1.9 
 

Spitsbergen - 4.0 to 9.1 2010 Present 
data 

Kapp Linné 
11-13.7.2010 
 

Spitsbergen 2.9 to 8.0 - 2010 Present 
data 

Syd Kapp East 
Greenland 

4.0 to 5.0 5.0 1962 Arnold 
1966 

 
Loch Fyne Fjord East 

Greenland 
 

4.5 - 1930 Sømme 
1934 

Myggbukta East 
Greenland 
 

4.7 6.8 to 7.4 1927-
1930 

Sømme 
1934 

Billen Bay Spitsbergen 6 to 7 8.6 to 8.9 1896 Sømme 
1934 

 

On Spitsbergen, the total number of eggs varied between 0–12 (mean 2.6 eggs) in 

a single female (Table 7). Eggs were evenly distributed in the left and right foot 

capsules (Wilcoxon signed ranks test Z = -0.916, n = 322, p =0.360) (Table 5 & 

8). L. arcticus females reached the sexual maturity (i.e. carry eggs) at a small 

body size (≥4 mm carapage length) and the sexual dimorphism begun to appear in 

small animals (2.9 mm carapace length) on Spitsbergen.  
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Table 7. The length and the egg count of L. arcticus in different northern regions. 

Locality and time Area Total 
length in 

(mm) 
females 

Number 
of eggs 

Author 

 
Kapp Linné  
11-14.7.2010 
 
 

 
The west coast of 
Spitsbergen, 
Norway 

 
3.2-22.8 

 
0 

 
present data 

Dammyra, 
Longyearbyen 
31.7.2010  
 

Nordenskiöld land 
of Spitsbergen, 
Norway 

28.1-39.2 2-10 present data 

Polheim, Mossel-
halvøya, 
3.8.2010  
 

The north coast of 
Spitsbergen, 
Norway 

13.4-30.8 0-3 present data 

Kilneset, 
Reinsdyr-flya 
4.8.2010  
 

The north coast of 
Spitsbergen, 
Norway 

7.3-20.5 0-2 present data 

Ny-Ålesund 
6-8.8.2010 
 
 

The west coast of 
Spitsbergen, 
Norway 

7.5-35.6 0-6 present data 

Ny-Ålesund  
30.8-1.9.2010  
 
 

The west coast of 
Spitsbergen, 
Norway 

11.4-39.4 0-12 present data 

Longyearbyen  
18.8-6.9.2010  
 
 

Nordenskiöld land 
of Spitsbergen 
Norway 

11.7-38.9 0-6 present data 

Belushiya Bay 
1993 
 

Novaya Zemlya, 
Russia 

15.8-22.1 1-2 Vekhoff 1997 
 

Belushiya Bay 
1994 
 

Novaya Zemlya, 
Russia 

12.3-25.6 1-4 Vekhoff 1997 
 

Piritovyi 
Peninsula 
1994-1995 
 

Novaya Zemlya, 
Russia 

15.1-29.6 1-5 Vekhoff 1997 
 

Vaigatch Island 
1995 
 

Vaigatch Island, 
Russia 

15.1-32.3 1-4 Vekhoff 1997 
 

Matveev Island 
1995 

Near to Vaigatch 
Island, Russia 

14.6-26.1 2-4 Vekhoff 1997 
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Table 8. Distribution of eggs in the left and right foot capsules of L. arcticus. 

 
 

Place and date 

 
Total number of 

egg-bearing 
specimens 

Total number of 
eggs and 

distribution 

 
Mean number 

of eggs per 
animal 

 
 

Author 
Left 
foot 

Right 
foot 

 
Tuvetjern, 
Norway 
 

 
165 

 
183 

 
166 

 
2.1 

 
Sømme  

1934 
 

Syd Kapp, 
East Greenland 
3-25.8.1962 
 

 
213 

 
112 

 
110 

 
1.0 

 

Arnold 
1966 

Spitsbergen, 
Norway 
11.7-6.9.2010 
 

 
319 

 
419 

 
406 

 
2.6 

 
Present data 

 

The size of eggs where studied for 14 L. arcticus populations and five of these 

ponds where sampled twice Solvatnet, Sorvatnet, Tvillinvatnet, Trehyrdingen 1 

and Brandallaguuna (Table 5). There was a large variation in the size of L. 

arcticus eggs. Eggs were found in seven different size classes (0.2, 0.3, 0.5, 0.6, 

0.8, 0.9 and 1.1 mm) (Figure 15). The most common sizes of L. arcticus eggs 

were 0.8 mm and 0.6 mm. No large eggs (>0.8 mm) were observed in early 

spring. Small animals (carapace length 4.0–7.6 mm) were carrying only small 

(0.2–0.5 mm) and medium-sized (0.6–0.8 mm) eggs (Figure 15).  
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Figure 15. Contribution (%) of different egg sizes in the foot capsules of different 

L. arcticus size classes. The most common egg size was 0.8 mm. When the 

carapace length reached 7.7 mm (red line), animals began to have larger eggs >0.8 

mm. 

 

 

The number of eggs increased with increasing size of L. arcticus (Figure 16). 

When the L. arcticus reaches the carapace length of 4 mm they can reproduce 

(Figure 13). It should be noted that before reaching 8 mm in carapace length, the 

animals could only produce an mean of one egg. 
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Figure 16. Mean number of eggs against the carapace length of L. arcticus. (n = 

779). 

 

 

3.1.6. Abiotic factors and body size 

 

Water salinity seemed to have a large influence on the size of L. arcticus. Low 

water salinity seemed to speed up the growth and to enhance the development of 

eggs in L. arcticus. Females were exceptionally big in the slightly saline 

Dammyra pond in the end of July (Figure 13, A). The mean carapace length was 

12.9 mm, even though the sediment temperature was only -1.4 °C. All females 

were carrying eggs and the numbers of eggs were notably high (2–12 eggs per 

female). Another interesting observation was that in Dammyra all females carried 

eggs. Other L. arcticus populations consisted of both immature and mature 

animals in the middle and late summer (Table 5). The large size did not always 

mean that the animal carried a lot of eggs. Some big L. arcticus individuals (≥ 10 

mm carapace length) did not carry any eggs in late summer. These animals may 

have already laid their eggs or they were infertile. For example, as many as 16 

eggs were found outside of the egg-capsules in Adventdalen second pond sample 

(n = 33 animals) in the middle of August (Table 5). In one interesting pond, 

Kolhamna, salinity may affect the animals’ reproduction. Kolhamna was a 

temporal pond that dried up during the summer. In this pond the water salinity 
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was slightly increased (0.5 ‰) before the complete drying and the animals began 

to reproduce more efficiently than similar-sized animals in the other permanent 

ponds at the same time. In Kolhamna pond, 44 % of the females were carrying 

eggs, while at same time in the other permanent ponds in Ny-Ålesund, only 10–

31% of similar-sized animals were carrying eggs (Table 5). 

 

Water and sediment temperatures also have a major impact on the size of L. 

arcticus (Appendices 4–9). Sediment temperature seemed to be the most 

important factor (R2 = 0.41) which explain the L. arcticus size (Figure 17). At a 

particular time, L. arcticus were smaller in ponds located near the glacier than in 

ponds located close to the sea. L. arcticus were 41–57 % smaller in carapace 

length in ponds situated close to the glacier (700 m apart) than in ponds near to 

the sea (50 m apart). 

 

 

Figure 17. Regression between temperature (°C) and total length (mm). X-axis 

represents the L. arcticus total length and y-axis in the left represent the water 

surface temperature, in the middle sediment surface temperature and in the right 

sediment temperature. Black line is trend line. 
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3.2. Red Carapace Disease 

 

Several individuals displayed sing of abnormal behaviour and symptoms of 

disease during the laboratory tests. Sick animals found in the nature and it was 

possible to follow the progression of the disease from different states to end under 

laboratory conditions. Symptoms of this disease were following: the carapace 

swells and turns red (Figure 18 B), the gills and the “egg sac” swells, the animal 

becomes exceptionally active and finally the carapace rises up. The disease named 

for Red Carapace Disease due to the distinct red coloration of the carapace (Figure 

18). 

 

The disease seemed to progress more rapidly in warm water, finally leading to 

death of the animal. Sometimes the disease developed in healthy-looking animals 

in the laboratory at 8–11 °C. The rise of water temperature often triggered the 

symptoms of the disease. This finding was supported by observations from natural 

L. arcticus populations. More sick animals were found in late summer than in 

early summer when the water and sediment temperature in the ponds was 1–4.3 

°C higher than in the earlier seasons. Figure 19 shows the mean length of sick and 

healthy animals. No statistical differences or trend in size were found between 

sick and healthy animals. Red Carapace Disease was observed in eleven of the 

studied L. arcticus populations on Spitsbergen. In these populations, 2.7–37.5 % 

of the animals had the disease (Table 2). 

 

 
Figure 18. Photos of (A) ethanol-preserved and (B) live L. arcticus suffering from 

the Red Carapace Disease. 
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Figure 19. Box-plots showing the total length (mm) of sick and healthy animals at 

different times in different ponds. RCD = Red Carapace Disease. In the box-plots, 

lines indicate the median, boxes show the upper and lower quartiles and whiskers 

stand for the observed minimum and maximum lengths. Circles (о) indicate the 

exceptionally long or short animals. 

 

 

The L. arcticus parasite had many forms with greatly varying shape of tail and 

body (Figure 20, A–C). The parasite of L. arcticus was also found in a resting 

phase (Figure 20D). 
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Figure 20. A possible parasite causing the Red Carapace Disease in L. arcticus. 

The variation in the parasite tail and body shape (A–C) and the resting phase of 

the parasite (D). The photos are cropped from pictures taken with a light 

microscope (100 x magnifications). 

 

 

3.3. Colour morphs 

 

Individual L. arcticus on Spitsbergen populations showed remarkable variation in 

body colour and appearance. The plain individuals had softer carapaces than the 

marbled animals. When the L. arcticus shell moult was close, the carapace shaded 

into translucent and soft. After the shell change, the carapace remained soft for 

some time. However, the light or dark colour was not only due to different stages 

of moulting. The colour was a unique and permanent property of individuals. In 

general L. arcticus were not able to change carapace colour in laboratory 

conditions with the exception of one individual from Kapp Linné that turned 

green. The reason for this colour change was probably the placing of the animal 

into too acidic water. The pH was 7.9–8.5 in the pond where the animal was 

collected from and only 6.3–6.4 in the water in laboratory (taken from 

Longyearbyen pond). The eggs of fresh L. arcticus were pale pink or white, and in 

ethanol-preserved individuals they were orange or white. The populations on 

Spitsbergen consisted of two major colour morphs (i.e. monochrome and marbled) 

and a combined colour phenotype. Remarkable spatial variation was found in the 

colour phenotype composition and diversity between and within the L. arcticus 

populations (Figure 21, 23).  
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Figure 21. The existence of L. arcticus colour morphs in the six regions on 

Spitsbergen. Real colours from photographs of different colour morph are used for 

parts of the graphs’ colour codes.  
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The classified phenotypes of L. arcticus on the Spitsbergen populations according 

to chromatophore pattern. 

 

1.) Monochrome: orange, orange/grey, black, black/brown, grey, dark 

grey/black, grey/brown, light yellow/grey, grey/brown/yellow, light 

grey/brown/yellow, black/grey/brown, light/brown/yellow, brown, light 

brown, dark brown  

2.) Marbled: light-, mellow-, middle- and dark brown, orange, light grey, light 

grey/yellow, yellow/green, light grey/brown/yellow, grey/brown, dark 

grey/brown, black, black/brown, black/grey, black/grey/brown, dark 

black/grey/brown and light black/grey/brown. 

3.) Combination of monochrome and marbled 

 

 

First, the colour morphs specialities are present in each study ponds and then 

focused on the purpose of different colour morphs. 

 

Six colour morphs were observed in Tvillingvatnet in Ny-Ålesund (Figure 23). 

All colour morphs had black dots in the carapace in late summer (Figure 22, I). 

The marbled light brown individuals were exceptionally pale, almost white in the 

light parts of the carapace. Some individuals had an orange head. The orange 

colour covered 1/3 of the front side of the carapace on either side of the animal 

but in some individuals the orange colour was seen only on the dorsal side of the 

body. The preservation in 80 % ethanol changed the orange head colour into light 

or middle brown. The occurrence of RCD was examined carefully because this 

disease seemed to change the carapace colour into red. Four individuals for all 

studied animals in Tvillingvatnet were suffering from RCD and one of them had 

exceptionally small eyes. In this individual the disease had progressed into the 

final stage indicated by the swollen carapace that was raised to an upright 

position. 
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Figure 22. L. arcticus colour morphs. A= marbled orange, B= marbled brown, C= 

monochrome black, D= the red area around the eyes (red mask), E = two light 

spots on the supra-anal plate, F= marbled colourless, G= monochrome orange, H= 

grey/black, I= marbled brown/black/grey, two black spots at the lower part of the 

carapace. The photos A-E are taken from living L. arcticus while F-I are taken 

from animals preserved in 80 % ethanol. 



63 

 

Figure 23. Occurrence of L. arcticus colour morphs in three main study areas 

(Longyearbyen, Kapp Linné and Ny-Ålesund). 
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Two colour morphs were observed in the temporal pond Kolhamna in Ny-

Ålesund (Figure 23). Living individuals had red stripes on the both sides of the 

carapace. Some individuals had black spots in their carapace or light spots on their 

supra-anal plate (Figure 22 E & 22 I) or a protruded eye form (Figure 24 B). In 

this population many animals had a brownish area in their head (Figure 24 A). In 

the Kolhamna population, no RCD was observed but carapace injuries were very 

common (Figure 9 B). 

 

 

Figure 24. Individuals in temporal Kolhamna pond. A= brown head area and light 

spots on supra-anal plate. B= protruded eye form. The photos are taken from L. 

arcticus preserved in 80 % ethanol. 

 

 

Two colour morphs were found from Trehyrdingen 2 pond in Ny-Ålesund (Figure 

23). All marbled grey/black/brown individuals had light dots on the supra-anal 

plate, whereas the other colour morph had both dotted and dotless individuals. 

The living marbled grey/black/brown morph had a delicate green shade on their 

carapace. Some monochrome grey/black/brown individuals had light dots in 

middle part of the carapace (Figure 25). The monochrome had a soft and the 

marbled animals had a hard carapace. The orange area around the eyes and the 

black supra-anal plate was a unique feature of this population. One L. arcticus was 

suffering from RCD in this population. 
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Figure 25. Light dots on middle part of carapace were a unique feature of seven 

individuals in Trehyrdingen 2. 

 

 

Two colour morphs were found in Trehyrdingen 1 pond in Ny-Ålesund (Figure 

23). The contrast was very clear between dark and pale areas of carapace. This 

population differed from the one in the nearest pond Trehyrdingen 2 because the 

eye area of the animals was not orange or red. The eye area mask was a bit lighter 

than the area around it, but not orange (Figure 26). This population was also 

characterized by a protruded eye form. Two animals had paler eyes than the others 

and in some animals the posterior part of the carapace was grey. Major differences 

were found in the length and thickness of individuals’ telson setae (Figure 27). 

The telson setae were orange at marbled middle brown morph, which was also 

uncommon feature among Spitsbergen L. arcticus populations (Figure 26). RCD 

was not found in this population, but one individual had an injured carapace. 
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Figure 26. Marbled middle brown colour morph of L. arcticus in Trehyrdingen 1. 

Contrast between the pale and dark brown areas of the carapace are very strong, 

the supra-anal plate is black and has two light dots, the telson setae are orange, 

and the eye area is protruded, not red or orange. The photo is taken from a living 

L. arcticus. 

 

 

 

Figure 27. Similar-sized L. arcticus  individuals in the same population can be 

very different by their morphology. A= the robust telson setae. B= the long and 

thin telson setae. The photos are taken from ethanol-preserved L. arcticus samples 

from Trehyrdingen 1 population. 

 

 

Five colour morphs were found from Brandallaguna pond in Ny-Ålesund (Figure 

23). The main colour morphs were marbled middle brown and marbled dark 

brown (Figure 28). All morphs had a dark supra-anal plate. Some animals had 

light dots on their supra-anal plate. The red mask was typical for the middle 

brown morph. L. arcticus had an unusual eye structure. The dorsal surface of the 

head bears a pair of compound eyes, an ocellus and the dorsal organ. Immediately 
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in front of the compound eyes lies the ocellus which detects light. An unpaired 

and oval-shaped dorsal organ with unknown function located behind the 

compound eyes. The dorsal organ was exceptionally red and clearly visible at the 

head of middle brown morph (Figure 28 C). The red mask and dark supra-anal 

plate were also observed in L. arcticus population in Trehyrdingen 2. One animal 

suffered from RCD and three animals had broken telson setae. 

 

 

Figure 28. Two main colour morphs in pond Brandallaguna and the structure of 

the eyes and dorsal organ. A= marbled middle brown colour morph, B= marbled 

dark brown colour morphs, C= dorsal organ, D= pair of compound eyes and E= 

ocellus. Note the exceptionally visible dorsal organ and the red eye mask of the 

middle brown morph (A). Photos are taken from living L. arcticus. 

 

 

Four colour morphs were observed in Solvatnet pond in Ny-Ålesund (Figure 23, 

29). The most common morph was black. Carapace of black morph was soft and 

lumpy. Marbled brown morph had a small yellow ring around the dorsal organ. 

Animals of different colours and sizes were living in different parts of the pond. 

The L. arcticus dietary habits were observed on different habitat types (on soft 

sediment and among water moss) in the field. Dark animals were often living on 

soft sediment and preyed upon D. pulex at about 1 m depth. Animals with marbled 

colour were living among the water mosses and preyed upon Chironomidae larva. 

Animals in this population had many kinds of injuries including broken telson 
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setae, missing egg-capsule, head injuries and eye problems (blind animals). RCD 

was very common in this population (20 % animals were sick). 

 

 

Figure 29. Three colour morphs in Solvatnet in Ny-Ålesund. A= Black and 

marbled brown colour morphs. B= Marbled mellow brown colour morph. Photos 

are taken from living L. arcticus. 

 

 

Six colour morphs were found in Storvatnet pond in Ny-Ålesund (Figure 23). All 

morphs had a red mask but the mask was more visible in light than in the dark 

animals. Some individuals also had a dark supra-anal plate. Discovery of the 

orange morph in Ny-Ålesund pond was a big surprise (Figure 30 A), because this 

morph was typical only in the Kapp Linné area. Many animals had several injuries 

on their carapace and six animals were suffering from RCD.  

 

Only one L. arcticus was found from Pond 5 in Pyramiden (Figure 21). The 

marbled colour of the animal was a combination of yellow and green (Figure 30 

B).  
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Figure 30. Untypical L. arcticus colour morphs were found from Ny-Ålesund and 

Pyramiden. A= untypical marbled orange morph was found from Storvatnet in 

Ny-Ålesund. B= the L. arcticus colour in pond 5 in Pyramiden was an 

extraordinary combination of yellow and green. 

 

 

One colour morph was found from the pond Polheim (Mosselhalvøya) on the 

northern coast of Spitsbergen (Figure 21). Animals in this population had brown 

head areas and light brown mouth parts. Some animals had light dots on the 

supra-anal plate. RCD was not observed in this population. 

 

Four colour morphs were observed in pond Kilneset (Reinsdyrflya) on the 

northern coast of Spitsbergen (Figure 21, 31). All individuals were slightly 

orange. Some dark animals had light dots on the supra-anal plate. RCD was not 

observed in Kilneset population. Two individuals had broken telson setae. 
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Figure 31. Four colour morphs in Kilneset on the north coast of Spitsbergen: A= 

light brown, B= marbled light brown, C= marbled brown and D= marbled 

black/grey/brown. Photos are taken from ethanol-preserved L. arcticus. 

 

 

The presence of several colour morphs was a distinctive feature for all L. arcticus 

populations in Kapp Linné area. Also the abundant presence of orange morph was 

an unique feature in this area (Figure 32). 

 

Figure 32. Orange colour morphs were common in Kapp Linné area. A= the 

marbled orange colour morph (living individual), B= the monochrome orange 

colour morph (preserved in 80 % ethanol). 

 

 

Nine colour morphs were found from Pond 1 in Kapp Linné (Figure 23). The 

marbled light grey/yellow individuals were almost colourless. RCD was not 

observed in this population. Ten colour morphs were found from Pond 2 in Kapp 

Linné (Figure 23). Note that some differences in colours (dark and light) could be 

explained by different moulting times. Holes in carapaces and broken telson setae 
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were common in this population. Two animals were suffering from RCD. Ten 

colour morphs were found from Pond 3 in Kapp Linné (Figure 23). RCD was not 

observed in this population. Six colour morphs were observed in Pond 4 in Kapp 

Linnè (Figure 23). One L. arcticus had RCD. 

 

Two colour morphs were observed in Longyearbyen pond in Longyearbyen 

(Figure 23). Most individuals had light dots on the supra-anal plate. Two animals 

were suffering from RCD. 

 

One colour morph was found from Nybyen in Longyearbyen (Figure 23). Some 

individuals had a red mask, but the most interesting feature was the colour of 

telson. Both sides of the telson were lighter than the dorsal and ventral surfaces 

and the dorsal side of the telson was slightly orange (Figure 33). The dark supra-

anal plate had two light dots. Only one animal had injuries in the carapace. In 

Nybyen pond three animals were suffering from RCD. 

 

 

Figure 33. The marbled black/brown morph in small Nybyen pond. The colouring 

of telson was unique in this population. Photos are taken from living L. arcticus. 

 

 

Four colour morphs were found in Adventdalen second pond in Longyearbyen 

(Figure 23). Mouth area 1/3 of both side of carapace was red, but legs were 

brown. The red mask, the two black spots at the lower part of the carapace (Figure 

22 D & 22 I) and the red area on the distal part of the telson were typical features 

for L. arcticus in Adventdalen second pond. Physical injuries were observed for 

this population. Almost all legs were missing for two animals. Four colour morphs 

were found from nearby Adventdalen third pond in Longyearbyen (Figure 23). 
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One colour morph was observed in Dammyra in Longyearbyen (Figure 23). In 

this population the large females were characterized by a protruded eye form and 

by a light dot on the carapace that was not observed in any other population 

(Figure 34). One animal had RCD. 

 

 

Figure 34. A light dot on the lower part of the carapace was an unique feature for 

L. arcticus in the small saline Dammyra pond. 

 

 

The occurrence of the three main colour morphs (black, brown and orange) in 

different habitat types (sand/sludge, bryophytes and cyanobacteria) is presented in 

Table 9. The sand/sludge and bryophytes habitats were found in all L. arcticus 

ponds. The surface colour of sand/sludge sediment was often grey or light brown, 

while the bryophyte vegetation was green or brown. More detailed description of 

the sediment colour and quality is presented in Appendix 3. The orange 

cyanobacteria mat, which grew on the stones, was not so common habitat type 

(Table 9). This orange cyanobacteria habitat was found in half of the ponds where 

orange L. arcticus morph was present and also in the ponds where orange morph 

was not found. 
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Table 9. The occurrence of three main habitat types (sand/sludge, bryophytes and cyanobacteria) and three L. arcticus colour morphs 

(black, brown and orange) in the five regions on Spitsbergen. Here the colour morphs include all the variety of  black, brown and 

orange colouration. N/A = data is not available, N/L = L. arcticus is not present in the pond. 
Area Longyearbyen Kapp Linné Pyramiden Ny-Ålesund Northern coast 

of Spitsbergen 
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The orange or yellow colour morphs do not mimic any aposematic invertebrate or 

crustacean species living in the Arctic, but may instead mimic the shape and 

colour (orange and yellow) of polar willow (Salix polaris) autumn leaves (Figure 

35). S. polaris turns into autumn-colour early (Rønning 1996) and it is a common 

plant near the study ponds (Appendix 2). 

 

 

Figure 35. The orange and yellow morphs may mimic the colour of an autumn 

coloured polar willow (S. polaris) leaves. Note the similarity of shapes between L. 

arcticus carapace (right and left) and the S. polaris leaves. 

 

 

3.4. Olfaction 

 

Differences were observed between the treatments in the placement of the test 

animals in separate sectors of the test container (Figure 36). Squares 7, 8 and 9 

were among the most popular squares in all the treatments (Figure 36). In the 

treatment with crushed L. arcticus, the odour corner (square one) was the most 

popular square (Figure 36). Also in the treatment with algae, the odour corner was 

more popular than in the control treatment (Figure 36). In the treatments with 

algae and crushed L. arcticus, the animals did not at all attach to the corner three. 

Animals in the algae and crushed L. arcticus treatments most often attached 

themselves to the corner one, where the source of odour was located (Figure 36). 

Nine animals in crushed L. arcticus treatment, eight animals in algae treatment 

and four animals in control treatment were attached to the “odour” corner. 

Animals in the control treatment attached most often to the corner seven. 

 



75 

 

9            7        27              0                 22                      0 

1 2 3 
 

1 2 3 
 

1 2 3 

4 5 6 
 

4 5 6 
 

4 5 6 

7 8 9 
 

7 8 9 
 

7 8 9 
24        Control 5 6         Algae 2 2         Lepidurus 6 

 

                                          

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
Use of square % 

Figure 36. The figure shows how much time L. arcticus spent in different areas of 

the aquarium in the control, algae and crushed L. arcticus treatments in the 

olfaction experiment. The colours represent the relative proportion (%) of time the 

animals spent in each square. The numbers inside the grid are square numbers. 

The numbers outside the grid indicate how many times the animals caught the tip 

of the pipette in corner of the aquarium. Square one was the odour corner in the 

algae and crushed L. arcticus treatments. 

 

 

By examining the number of squares L. arcticus visited in different treatments, L. 

arcticus was found to be most active in the treatment with crushed L. arcticus. 

Numbers of visit in different squares (pc) were calculated. Mean number of visits 

in different squares were 285 (max 459 visits, min 95 visits) in crushed L. arcticus 

treatment, 117 (max 185 visits, min 9 visits) in algae treatment and 139 (max 369 

visits, min 24 visits) in control treatment. The animal activity differed 

significantly between the treatments (one-way ANOVA, F=15.393; p<0.001). 

Animals were more active in the crushed L. arcticus treatment than in the other 

treatments (Tukey p<0.001). This exceptionally active behaviour in the crushed L. 

arcticus treatment was seen as high numbers of visits in different squares and as 

avoidance of animals to stay in a single square for a long time (Figure 37 and 38). 

One L. arcticus in the control treatment was unusually active and visited different 

squares exceptionally frequently (Figure 37). 
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Figure 37. L. arcticus activity in the different olfaction treatments. Y-axis shows 

how many times animals visited in different squares during the 15 minute test. In 

the box-plots, lines indicate the median, boxes show the upper and lower quartiles 

and whiskers stand for the observed minimum and maximum values. The circle 

(ο) indicates the exceptionally active animal in the control treatment. 

 

 

Increased activity in the crushed L. arcticus treatment was also reflected to 

increase in L. arcticus swimming speed. The mean times (seconds, s) the animals 

spent in a single square were 3.1 s (range 1.9–5.0 s) in crushed L. arcticus 

treatment, 8.5 s (range 5.3–28 s) in algae treatment and 6.9 s (range 2.4–11.8 s) in 

control treatment (Figure 38). The L. arcticus swimming speed (activity) differed 

significantly between the treatments (Kruskal–Wallis -test: p<0.001). In the 

crushed L. arcticus treatment, animals spend less time in a square (i.e. swam 

faster) than in the other treatments (Mann-Whitney U-test: p<0.005) (Figure 38). 

One L. arcticus in the algae treatment was exceptionally calm and spend a mean 

of 28 s in each square. 
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Figure 38. Box-plot showing the even mean time (s) animals spent in one square. 

In the box-plots, lines indicate the median, boxes show the upper and lower 

quartiles and whiskers stand for the observed minimum and maximum values. 

Star (*) indicates the exceptionally behaved animal in algae treatment that spend 

an mean of 28 s per square.  

 

 

The time the animals spent in central square differed significantly between the 

treatments (Kruskal–Wallis -test: p = 0.009). The test animals in the algae 

treatment spent significantly more time in the middle of the container than 

animals in the control or in the crushed L. arcticus treatments (Mann-Whitney U-

test: algae vs. control p=0.012; algae vs. Lepidurus p=0.06; Figure 39). The 

animals in control and in crushed L. arcticus treatments spent on mean 32–35 % 

less time (i.e. on mean half a minute less) in the middle of the container than 

animals in algae treatment.  
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Figure 39. Time (s) spent in the central square in the olfaction test. In the box-

plots, lines indicate the median, boxes show the upper and lower quartiles and 

whiskers stand for the observed minimum and maximum values. Circles (ο) 

indicate two animals that spent unusually long time in the middle square. 

 

 

There were no significant differences between the treatments in the time the 

animals spent in the odour corner (Kruskal–Wallis -test: p = 0.515). However, 

three animals in crushed L. arcticus treatment spent a considerably longer time in 

the square one than any individuals in the other treatments (Figure 40). These 

three animals spent 52–53 % of the time in the odour corner, while the other 

animals in the same treatment spent only 14 % of the time in odour corner. 

 



79 

 

 

Figure 40. The use of square 1 (“the odour corner”) in the olfaction test. Olfaction 

experiment observed how much time (s) animals spend in the “odour corner” 

(square 1) with no odour, algae (i.e. crustacean food made of algae) or crushed L. 

arcticus added. In the box-plots, lines indicate the median, boxes show the upper 

and lower quartiles and whiskers stand for the observed minimum and maximum 

values. The lines (–) indicate the animals that spent unusually long time in the 

square one. The circle (ο) indicates the animal in control treatment that did not 

visited the square one at all. 

 

 

3.5. Water chemistry in the High Arctic ponds 

 

L. arcticus was present in 20 ponds, but 19 ponds were included to this water 

chemistry summary because Advendalen first pond was excluded. The mean 

oxygen concentration in these ponds was 51 %. The mean surface temperature of 

water and sediment was 3.4 °C, and the mean sediment temperature was 2.5 °C. 

The water pH varied between 6.3 and 8.5. The mean water conductivity was 412 

µS/cm and the mean salinity was 0.2 ‰. The physical and chemical 

characteristics of the 23 study ponds are summarized in Table 10. More detailed 
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description of the water chemistry data can be found in the Appendix 4 

(Longyearbyen), Appendix 5 (Kapp Linné), Appendix 6 (Pyramiden), Appendix 7 

(the northern coast of Spitsbergen) and Appendices 8–9 (Ny–Ålesund). 

 

 

Table 10. Physical and chemical characteristics of the 23 study ponds, including 

ponds with and without L. arcticus. More details are given in Appendices 4–8. 

  
Area 

a 
 

 
Water 
T °C 

 
Salinity 

‰ 

 
pH 

 
Cond. 
µS cm-1 

 
Chl 

µg L-1 

 
TOC 
mg L-1 

 
DOC 
mg L-1 

 

tot N 
mg L-1 

 

tot P 
µg L-1 

Mean 
 

220 3.4 0.2 7.8 656 1.68 6.5 5.6 0.4 28.3 

Max. 
 

1380 5.4 2.8 8.5 5230 9.04 52.0 57.0 1.1 89.0 

Min. 
 



 

The high TOC and DOC concentrations indicated high runoff of allochthonous 

matter from the catchments. TOC ranged from 0.9 to 52.0 mg l-1 (mean 6.5 mg l-

1), while DOC ranged from 0.6 to 57.0 mg l-1 (mean 5.6 mg l-1). Three ponds in 

Ny-Ålesund (Storvatnet, Trehyrdingen 1 and Brandallaguna) were sampled twice 

to study seasonal variation in TOC and DOC concentrations. Exceptionally high 

TOC (52.0 mg l-1) and DOC (57.0 mg l-1) were measured from Brandallaguna in 

Ny-Ålesund (Figure 41), where the large glacial river Bayelva flows near the 

pond. 

 

The sediment organic matter (OM %) ranged from 2 to 54 % (mean 17 %). Low 

sediment organic carbon per cent was measured from Pond 4 (2 %) and Pond 1 (4 

%) in Kapp Linné, from Nybyen (4%) and Adventdalen second pond (9 %) in 

Longyearbyen, from Pond 5 (6 %) in Pyramiden, from Tvillingvatnet (4 %) and 

Brandallaguna (5 %) in Ny-Ålesund and from Polheim (2 %) in Mosselhalvøya. 

Very high OM % was measured from Pond 2 (54 %) in Kapp Linnè, from 

Dammyra (44 %) in Longyearbyen and from Solvatnet (31 %) in Ny-Ålesund. 
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Figure 41. Changes in the total organic carbon (TOC) and dissolved organic 

carbon (DOC) in three study ponds in Ny-Ålesund. A = Storvatnet, B = 

Trehyrdingen 1 and C = Brandallaguna. 

 

 

Relatively low concentrations of total nitrogen (totN) were observed in the study 

ponds on Spitsbergen. The totN ranged from 0.065 to 1.050 mg l-1 with a mean of 

0.367 mg l-1. Remarkably low totN was measured in Tvillingvatnet (0.065 mg l-1), 

which is the drinking water pond in Ny-Ålesund. The highest totN levels (1.050 

mg l-1) were measured only 1.2 km away from the Tvillingvatnet. Solvatnet was a 

nitrogen-rich pond located very close to the sea.  

 

Total phosphorus (totP) ranged from 3.6 to 89.0 μg l-1 (mean 28.3 μg l-1). Even 46 

% of the ponds showed a relatively high totP concentration (>25 mg l-1). The 

highest totP concentrations were measured from “Geese pond” (89 μg l-1) and 

Storvatnet (51 μg l-1) in Ny-Ålesund and from Dammyra (66 μg l-1) in 

Longyearbyen. No L. arcticus were found living in Geese pond. A lot of barnacle 

goose (7–48 pc) was seen near these phosphorus-rich ponds (Appendix 1). L. 

arcticus were exceptionally large in Dammyra and in Solvatnet. Exceptionally 

low totP low concentrations (4–11 μg l-1) were measured from five ponds: from 

pond 3 in Kapp Linné, from pond 6 in Pyramiden, from Tvillingvatnet and 

Kolhamna in Ny-Ålesund and from Adventdalen third pond in Longyearbyen. No 

barnacle geeses were observed near the phosphorus-poor ponds Kolhamna, Pond 
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3 and Pond 6 (Appendix 1). The total phosphorus/total nitrogen ratio (TN: TP) 

ranged from 4:1 to 39:1 with a mean of 17:1.  

 

Chlorophyll-a (Chl-a) concentrations were consistently low ranging from 0.13 to 

9.04 with a mean of 1.68 μg l-1. The highest Chl-a concentration was measured 

from Pond 4 in Kapp Linné. Chl-a concentrations were measured from two size 

fractions (normal ≥2.7 µm and small size 2.7–0.7 µm). Proportions of smaller size 

Chl-a were between 0.9 % to 12.6 % (mean 5.1 %) of the total Chl-a 

concentration. 

 

 

3.6. Sensitivity of L. arcticus to changes in water salinity 

 

The resistance of L. arcticus to osmotic shock due to increase in water salinity 

was studied in a LC50 experiment measuring the lethal concentration in which 50 

% of the animals die within 48 hours. All animals died within 48 hours when the 

water salinity was increased to 11 ‰ or 12 ‰ (Figure 42). However, all animals 

survived 48 hours in the control and in the 1 ‰, 2 ‰ and 6 ‰ treatments, 

whereas 93 % of the animals survived when the water salinity was increased to 3–

5 ‰ or to 7–8 ‰. Survival of L. arcticus was poor in 5–12 ‰ treatment, being 

less than 34 % after seven days. Low salt concentrations (0–2 ‰) were well 

tolerated. L. arcticus tolerated the 12 ‰ salinity for five hours, 11 ‰ for 12 hours, 

10 ‰ for 48 hours, 9 ‰ for two days, and 8 ‰ and 7 ‰ for a maximum of five 

days. The L. arcticus safe salinity (0.471 ‰) was defined to be equal to 96 h-LC50 

x 0.1. A salinity of 1.85 ‰ had no significant effect on the mortality of L. 

arcticus. Findings from the laboratory tests were supported by observations from 

natural L. arcticus populations. A good example of the L. arcticus salinity 

tolerance was the Dammyra population living in a pond with a water salinity of 

1.5 ‰. 

 

Mortality occurred in the control group in the three weeks salinity experiment; 

therefore, control mortality was reduced from other treatments. During the 



83 

 

experiment five animals died due to the Red Carapace Disease. One animal failed 

to change shell and died when the old shell was stuck around the telson. 
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Figure 42. Survival rate of L. arcticus in different salinity treatments. Y-axis 

indicates the percentage of survived animals and the x-axis shows the hours (left) 

and days (right) after the start of the experiment. Treatment mortality is adjusted 

by mortality from the control group.  

 

 

A low salinity had an effect on L. arcticus growth. In the beginning of the 

experiment no significant difference in the day of the first ecdysis was observed 

between the low-salinity treatments (Kruskal-Wallis -test: p=0.081; Figure 43). In 

the control group, the first ecdysis occurred on the eighth day after the start of the 

experiment (mean 8.1, SD ± 1.05 days). In the 1 ‰ salinity, the first ecdysis 

occurred on the sixth day (mean 6.5, SD ± 1.57 days). In the 2 ‰ salinity, the first 

ecdysis occurred on the eighth day (mean 8.2, SD ± 2.61 days). In the 3 ‰ 

salinity only one animal survived from the first ecdysis. The first and only ecdysis 

in the 3 ‰ salinity occurred on the sixth day after the start of the experiment. In 

the 4 ‰ salinity two L. arcticus survived from the first ecdysis. The first and only 

ecdysis in the 4 ‰ salinity occurred on the seventh day.  

 

There were significant differences in the start of second ecdysis between the 

treatments (Kruskal-Wallis -test: p=0.045). A low salt concentration (1 ‰) 

significantly speeded up the second ecdysis of L. arcticus during the LC50-salinity 

experiment (Figure 43). In the control (0.1 ‰), animals changed shell later than in 

1 ‰ salinity concentration (Mann-Whitney -test: p=0.008). The second ecdysis 
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occurred on the eight days after the first edysis, in the control group (mean 8.3, 

SD ± 1.49 days), on the sixth day of the 1 ‰ salt treatment (mean 6.7, SD ± 0.95 

days) and on the seventh day of 2 ‰ salt treatment (mean 7.0, SD ± 3.5 days). 

This mean that the L. arcticus exchange their shell every 7–11 days in fresh water, 

every 5–9 days in 1 ‰ salt water and every 2–10 days in 2 ‰ salt water. 

 

 
Figure 43. The day of the first ecdysis (white) and second ecdysis (grey) of L. 

arcticus in different salinity treatments in the LC50-salinity experiment. Star (*) 

indicates one individual in 1 ‰ salinity concentration that changed the shell 

exceptionally late. Salt concentration was 0.1 ‰ in the control treatment. In the 

box-plots, lines indicate the median, boxes show the upper and lower quartiles and 

whiskers stand for the observed minimum and maximum values. 
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3.7. Sensitivity of L. arcticus to changes in water pH 

 

The tolerance limit of L. arcticus was tested in different water pH levels (4.0, 4.5, 

8.0, 8.5 and control pH 7.6). L. arcticus tolerated a short-term (48 h) acidification 

of water up to pH ≥4.5. No mortality was observed in the control group 

suggesting that natural death of L. arcticus or other external factors not influenced 

the result of the experiment. Mature L. arcticus began to die when the animals 

were exposed to very low pH (pH 4) (Figure 44). In pH 4 the animals reached 50 

% mortality in 18 hours and all died by the end of the experiment. In mature 

females no-effect pH-time was pH 4.941–13.5 days. In the other treatments (pH 

8.49–4.5) none of the L. arcticus died during the experiment.  

 

 

Figure 44. Survival of L. arcticus in different pH treatments in the LC50-pH 

experiment. Y-axis represents the survival percentage and the x-axis is the time in 

hours.  

 

 

The natural pH in L. arcticus ponds varied between 6.25 and 8.84 (mean 7.76) 

(Appendices 4–9 & Table 11). The lowest pH values were measured from ponds 

in Longyearbyen (Appendix 4). The lowest pH value (6.25) was measured near a 

dog kennel in Adventdalen. The pH was also low (6.33–6.45) in the 
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Longyearbyen pond in early summer, when no L. arcticus were observed in the 

pond. In contrast, in late summer, higher pH values (7.6–7.9) were measured from 

Longyearbyen pond and at that time L. arcticus were also found abundantly. 

 

 

Table 11. The influence of water pH to the occurrence of L. arcticus in ponds on 

Spitsbergen and in other northern regions. 

 

Place 

 

L. arcticus does not occur  

pH and year 

 

L. arcticus occur  

pH and year 

 

     Author 

 
Longyearbyen, 
Svalbard, Norway 
 

 

– 

 
6.25–8.06 

(2010) 

 

Present data 

Pyramiden, 
Svalbard, Norway 
 

6.92–7.96 
(2010) 

6.58–7.31 
(2010) 

Present data 

Kapp Linné, 
Svalbard, Norway 
 

– 7.94–8.41 
(2010) 

Present data 

Ny-Ålesund, 
Svalbard, Norway 
 

8.28–8.75 
(2010) 

7.14–8.84 
(2010) 

Present data 

Mossel halvøya, 
Svalbard, Norway 
 

– 7.76–8.09 
(2010) 

Present data 

Reinsdy-flya, 
Svalbard, Norway 
 

– 7.95–8.12 
(2010) 

Present data 

L.Svartavastjørni 
outlet, Norway 
 

5.17–7.27 
(1993–2000) 

6.10–7.11 
(2001–2004) 

Fjellheim et al. 
2007 

L.Svartavatnet 
outlet, Norway 
 

5.18–6.70 
(1993–1998) 

6.26–6.89 
(1999-2004) 

Fjellheim et al. 
2007 

Jåttolako, 
Padjelanta national 
park, Sweden 

 7.7–7.8 
(1994) 

Blomkvist 
1995 

 

– 

 

 6.1–6.8 Borgstrøm et 
al. 1976 
 

Sweden  6.3–7.0 Borgstrøm & 
Larsson 1974 
 

Greenland  6.2–8.0 Röen 1962 
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3.8. The effect of increase in water temperature to the oxygen consumption of L. 

arcticus  

 

There were significant differences between the temperature treatments (one-way 

ANOVA, F=6.221, p = 0.001). However, only the oxygen consumption in 10 °C 

differed significantly from the other treatments (p=<0.05), except from the 16.5 

°C treatment. The final oxygen consumption values were corrected for control 

baselines. The respiration rate reached its peak at 10 °C and then declined sharply 

with increasing temperature (Figure 45). Three animals began to die rapidly when 

the water temperature was 30 °C. The concentration of dissolved oxygen 

decreased with increasing water temperature. In 30 °C the oxygen concentration 

was 235.9 µmol l-1 and this concentration was lethal for L. arcticus. L. arcticus 

seemed to have a temperature optimum at around 10 °C, but survived when the 

water temperature varied between 3.5 and 20 °C. All L. arcticus populations lived 

in a very cold water (0.2–5.5 °C) in ponds on Spitsbergen. 
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Figure 45. The oxygen consumption (nmol/h) of L. arcticus (n = 5 per treatment) 

in different temperatures. In the box-plots, lines indicate the median, boxes show 

the upper and lower quartiles and whiskers stand for the observed minimum and 

maximum values. 

 

 

The temperature coefficient Q10 is a convenient way to examine the temperature 

dependency of the oxygen consumption process. L. arcticus showed considerable 

sensitivity to temperature, responding to rising temperature with a rapidly 

descending Q10 values. Q10`s ranged from 0.45 to 3.15 (Figure 46). The Q10 was 

3.15 when the water temperature changed from 3.5 to 10 C°. Q10 on physiological 

reaction is usually between 1.5 and 2.5, sometimes even higher (Tirri et al. 2001). 

The sharp decline in the respiratory activity of L. arcticus at higher temperatures 

(16.5–30 °C) was reflected to a low Q10 value (< 0.53). The exceptionally low Q10 

values were measured when the temperature changed from 10 to 16.5 °C, from 

16.5 to 20 °C, from 20 to 25 °C and from 25 to 30 °C (Figure 46). 
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Figure 46. The temperature coefficient (Q10) values represent the factor by which 

the respiration rate (R nmol/h) increases when the temperature (T) is raised by 10 

°C. Note that T1 and T2 do not need to be exactly 10 °C apart in order to use the 

equation. The respiration rate increases with increasing temperatures only at low 

temperatures (3.5-10 °C). The (Q10) values were calculated using the equation 

Q10=(R2/R1)10/(T2-T1) (Tirri et al. 2001). 

 

 

The sensitivity of L. arcticus to selected environmental variables is summarized in 

Table 12. The values are threshold values for the L. arcticus long-term exposure 

to selected environmental stressors.  

 

 

Table 12. Tolerance limits of L. arcticus to different environmental stressors. 

 No change Reduced Extinct 

 
Temperature 

 
occurs 0.8–19 °C 

 
16.5–20 °C 

 
>20 °C 

 
pH 

 
>7 

 
7-6.1 

 
<6.1 

 
pH and TOC 

 
pH>7 & TOC ? 
 

 
pH<7 & TOC<1.5mg/l 

 
pH<6.1 & TOC<1.5mg/l 

Salinity 
 
O2 

 

0-1 ‰ 
 
>315 µmol/l 

1-2 ‰ 
 
>258 µmol/l 

>2 ‰ 
 
≤258 µmol/l 
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4. Discussion 

 

 

4.2. Colour morphs 

 

Different environmental variables such as UV-radiation and food availability may 

influence the colouration of L. arcticus on Spitsbergen. The selective advantages 

(e.g. the ability to avoid predation or harmful effects from UV) of different colour 

morphs likely depends on the depth and heterogeneity of the habitat and on the 

biotic diversity of the community. These elements are strongly affected by 

different abiotic factors. 

 

The L. arcticus populations on Spitsbergen showed a great diversity in colour 

patterns. The function of these diverse colour patterns may include protection 

against visual predators such as birds, fish or cannibalistic conspecific or/and 

against UV-radiation (Figure 47). The colour pattern may reflect fitness of an 

individual and help L. arcticus to find a mating partner. The newly hatched larvae 

of Lepidurus species may be densely coloured with carotenoid pigments 

(Longhurst 1955). For example, the colour of Triops cancriformis larvae is very 

variable and probably depends on the feeding and nutrition of the parents: well-

fed females can have pink eggs with carotenoids while starving females usually 

have white eggs (Fox 1949). Note that the L. arcticus eggs are pink or white but 

the ethanol preserved eggs are orange or white.  

 

The variability of colour patterns among L. arcticus provides an exceptional 

example of biological diversity in High Arctic region. Cryptic individuals, like 

marbled orange and marbled brown living on orange cyanobacteria mats or among 

water mosses, respectively, are not easily detected by predators. The black morph, 

which distinctly contrasts with their light grey habitat, may instead protect animal 

against UV-radiation (Figure 47).  
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Figure 47. Function of protective colouration. The occurrence of three L. arcticus 

colour pattern (black, marbled middle brown and marbled orange) in different 

habitats types (sand, moss and cyanobacteria) and the possible influence of colour 

pattern on reproduction success and survival of L. arcticus. 

 

 

Zooplankton have been shown to develop protective pigmentation against the 

harmful ultraviolet (UV) radiation in the clear and shallow high-latitude ponds, 
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where solar radiation can penetrate through the whole water column (Rautio et al. 

2009). High-latitude water bodies often have a low concentration of coloured 

dissolved organic matter (CDOM) and hence a deep penetration of ultraviolet 

(UV) radiation into water column (Schindler et al. 1996, Laurion et al. 1997, 

Molot et al. 2004). Most diverse colour morphs were found in Kapp Linné ponds 

where dissolved organic carbon (DOC) and total organic carbon (TOC) 

concentrations were low. Red, brown and black pigments are typical for high-

latitude zooplankton protecting against the UV radiation (Brehm 1938). In Kapp 

Linné, orange, yellow, brown and black pigments were typical for L. arcticus 

populations. Dark colour morphs absorb more heat than light colour morphs, and 

thus dark animals may have higher body temperature than the lighter individuals. 

The higher body temperature may be a crucial factor allowing faster metabolic 

rate in cold High Arctic ponds. The marbled light grey/yellow individuals were 

almost colourless, which may be a sign of leucism, because their eyes were black 

and not red like the eyes of albinos. 

 

The orange colour pattern may also be a warning colouration for visual predators. 

Ang and Newman (1998) demonstrated that orange flatworm (Phrikoceros 

baibaiye) possess a recognisable signal (i.e. colour pattern) that the visual fish 

predator (Thalassoma lunare) clearly avoided. The orange and yellow L. arcticus 

morphs may also mimic the colour and shape of an autumn coloured polar willow 

(S. polaris) leaves. Leaf insects (Phylliidae) and dead leaf butterfly (Kallima sp.) 

use camouflage to take the appearance of a leaf (Nijhout 2001 & Hennemann et 

al. 2009). Mimesis of leaves is well documented in other taxa (Eigenmann & 

Allen 1921, Hennemann et al. 2009), but the ability of L. arcticus to mimic a real 

leaf may be the first documented crustacean leaf mimesis in the aquatic 

environment. The mimicry in colour, shape and movements is very close to the 

polar willow leave, the photographs and drawings of the dead specimens scarcely 

doing it justice. A leaf mimicking fish (Monocirrhus polyacanthus) outline is 

similar to that of an asymmetrical leaf and when swimming it resembles a drifting 

leaf (Eigenmann & Allen 1921). The spinning swimming movement of  L. 

arcticus is also similar than a drifting leaf in the water column. 
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Rautio et al. (2009) showed that L. arcticus has five pigments. One of them is 

fucoxantinthin that originates from brown algae giving them a brown or olive-

green colour (Tirri et al. 2001). Zeaxanthin is another and one of the most 

common carotenoid pigments giving plant tissue a yellow colour (Tirri et al. 

2001). The third pigment canthaxanthin (also called Carrophyll Red and C.I. Food 

Orange 8) is used for colouring fish flesh orange and chickens skin yellow 

(European commission 2002). Canthaxanthin is also a carotenoid pigment that is 

widely distributed in nature and found e.g. from green algae (Czygan 1968), blue-

green algae (Hertzberg and Liaaen-Jensen 1966), bacteria (Saperstein and Starr 

1954) and mushrooms (Haxo 1950). A fourth pigment found from L. arcticus is 

astaxanthin, a dark-red pigment found e.g. from Hematococcus pluvialis green 

microalgae (Boussiba & Vonshak 1991). The primary carotenoid pigment in L. 

arcticus is cyanobacterial pigment called echinenone (Rautio et al. 2009). The 

existence of different colour morphs in L. arcticus populations on Spitsbergen 

may simply reflect variable food sources of individuals and populations. For 

example, orange animals may have eaten food containing more red and orange 

pigments (e.g. green algae Hematococcus sp., blue green algae, or bacteria) than 

the brown or black L. arcticus. Bacteria probably make a substantial contribution 

to the L. arcticus diet because the most abundant pigment comes from this source 

(Rautio et al. 2009). It is possible that the organism causing the RCD disease 

synthesizes the red pigment (canthaxanthin) because the sick animal’s carapace 

turns to red. L. arcticus may get the RCD from their food and spread the infection 

to cannibalistic conspecifics. 

 

Food type not only likely affects the colour but also the hardness of the L. arcticus 

carapace. The plain, dark individuals had soft shells and were observed to feed on 

Daphnia about 1 m depth. Daphnia were found between the legs of the black L. 

arcticus. Actively swimming L. arcticus can benefit from the soft, flexible 

carapace when hunting Daphnia in the water column. The marbled individuals 

had harder shells and were found preying on chironomids among water mosses in 

the shallow water. These individuals may benefit from the hard carapace when 

they are pushing through the water mosses. It is also possible that chitin from 
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chironomid head capsules affects the hardness of the L. arcticus carapace. Since 

L. arcticus can eat its own shell, eating the chironomid head capsules should not 

be a problem for the species. The hard carapace and a good protective colour is 

really useful for L. arcticus living among the water mosses in quite shallow water, 

where they are otherwise easily caught by birds including arctic tern and purple 

sandpiper.  

 

 

4.1. Red Carapace Disease 

 

The temperature active disease of L. arcticus on the Spitsbergen High Arctic 

region was an important result. Unfortunately, the cause of the disease has not yet 

been discovered, but it is likely a parasite. The parasite is not a parasitic worm of 

Acanthocephala, but could be a member of the Apicomplexa.We was looking for a 

parasitic worm in laboratory experiments, but no Acanthocephala was found in 

the tissues of sick animals. In other crustaceans, the parasitic Acanthocephala 

worm typically causes a red spot in the infected animal. The helminth larva of 

Polymorphus paradoxus is identifiable by colour, shape and size of the carapace 

of living amphipods, Gammarus lacustris (Bethel & Holmes 1973). The size and 

shape of the L. arcticus parasite suggests that it most likely to belong to the 

Apicomplexa. The symptoms of the RCD suggest that the parasite life cycle may 

include many host species and the parasite needs to change the host to complete 

the life cycle. A nematode (Skrjabinoclava morrisoni) can manipulate the 

behaviour of its intermediate host (the amphipod, Corophium volutator) to 

increase the likelihood of transmission to its final host (the semipalmated 

sandpiper, Calidris pusilla) (McCurdy et al. 1999). The amphipods parasitized by 

nematodes increase their surface activity during daytime, when sandpipers feed 

visually. The red colour of the L. arcticus carapace and the active behaviour 

suggests that the main host of the parasite could be a bird (e.g. arctic tern or 

purple sandpiper) or a fish (e.g. Arctic char). The swelling of egg sacs suggests 

that the parasite ensures that L. arcticus drops the eggs before disease kills the 

animals. It is also possible that the observed mortality in laboratory experiments 
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can partially be explained by the existence of RCD. No sick animals were 

observed in five populations where males occurred. Sick animals were observed 

in only one population in which males were present. The L. arcticus populations 

that reproduce sexually may show larger genetic variation making them less 

susceptible to RCD. 

 

Increase in temperature seemed to speed up the progression of the disease. 

Because this disease can thus create a significant threat to L. arcticus populations 

due to global warming, it should be investigated more intensively in the future. 

 

 

4.3. Injuries 

 

Some L. arcticus in the studied populations were missing legs or had broken 

telson setae or injuries to the carapace. Hessen et al. (2004) found darkened 

“rings” on the distal part of the telson setae in one L. arcticus population on 

Spitsbergen and similar dark areas were also observed in this study (Figure 9, A). 

The darkened rings were likely broken and regenerated telson setae rather than a 

distinctive feature of the population. Bushnell and Byron (1979) found variation 

in the number of legs on the right and left side of the L. arcticus body in the 

Cumberland Peninsula region, Broughton Island, Canada. Morphological 

examinations in the same study revealed that eight individuals showed a 

discrepancy between the number of legs on the right and left side of the body. 

Bushnell and Byron (1979) did not notice scar areas or other indication of broken 

or adrift legs. However, it is likely that the reported injuries in L. arcticus body 

are caused by predators. 

 

L. arcticus has three main predators in the fishless pond on Spitsbergen: arctic 

tern (S. paradisaea), purple sandpiper (C. maritima) and cannibalistic L. arcticus. 

According to Summerhayers & Elton (1923) the stomachs of two young purple 

sandpipers had remains of L. arcticus in Prince Charles Foreland, Svalbard. 

Hartley & Fisher (1936) also found L. arcticus in stomachs of arctic tern on West 
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Spitsbergen. Here, a new finding is that dunlin (C. alpina) can also eat L. arcticus. 

Waders can only eat L. arcticus in shallow water, while arctic terns are able to 

catch L. arcticus from the deeper central parts of ponds. Arctic terns were seen to 

fly above the ponds and to make quick plunges into the water. Waders were only 

looking for food from the soft bottoms and among the water mosses near the 

shoreline. Dead L. arcticus were observed in two ponds in Ny-Ålesund, Solvatnet 

and Brandallaguna. In Solvatnet pond, there were many arctic terns catching L. 

arcticus and thus it is likely that the dead animals had died due to a failed bird 

attack. The carapaces of dead animals were damaged but the soft body parts were 

undamaged. It was surprising that other L. arcticus had not eaten the dead 

conspecifics, because cannibalistic behaviour was very common in the laboratory. 

This would suggest high food availability for L. arcticus, because dead animals 

were found from these ponds and L. arcticus were larger than in other ponds in 

Ny-Ålesund at the same. It is also possible that predation by birds had decreased 

the population size of L. arcticus and thus more food resources had been available 

for the remaining animals, possibly explaining the large size of the animals. 

 

 

4.4. Olfaction 

 

This experiment clearly demonstrated that L. arcticus has an olfactory ability. 

Crustaceans are generally sensitive to gravity, pressure, sound, light, temperature, 

touch and chemicals (Thorp & Covich 2001). In this olfaction experiment, nine 

female L. arcticus were strongly attracted to crushed L. arcticus and three of the 

animals spent half of the test time in the “odour corner”, suggesting that the 

dissolved chemicals released from injured animals (e.g. haemolymph) may help L. 

arcticus to locate injured or dead animals. However, there were no statistical 

differences in the time animals spent in the odour square (Figure 40). Significantly 

increased activity and swimming speed in crushed L. arcticus treatment may 

explain why no statistical differences were observed. It is possible that animals 

were searching for food in the crushed L. arcticus treatment, which may explain 

why they were swimming so fast. The odour source was also placed near the 
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water surface and not on the bottom of the aquarium. In nature, dead animals were 

always found on sediment surface and not floating in the water column or at the 

surface. The odour of dead animal coming from an unusual direction (i.e. near the 

surface) may confuse the test animals and thus explain the active searching 

behaviour in the crushed L. arcticus treatment. 

 

Johansen (1911) and Arnold (1966) noted that L. arcticus specimens which died 

in the tanks were rapidly eaten by other conspecifics. It remains unclear whether 

all individuals are capable of cannibalism, but instead it is clear that this feeding 

behaviour is a common feature of the populations on Spitsbergen. It seems likely 

that only some adult individuals are specialized to prey on members of their own 

species. This idea is supported by observations in the field where smaller-sized L. 

arcticus were observed to attack larger conspecifics and start to eat them right 

away. Thus, cannibalism in L. arcticus is not size-dependent so that larger 

individuals would always consume smaller ones. The behaviour changes of L. 

arcticus individuals were observed when several animals were placed in the same 

bottle. Some of the animals (1–2 pcs.) usually floated at the surface and thereby 

avoided encounters with others when five animals were placed in a 200 ml bottle. 

The best physical fitness may solve who can be a cannibal and who cannot. The 

adult L. arcticus were also eating their own shells after moulting in laboratory 

conditions. The shell may actually contain essential nutrients for growth. Another 

factor supporting the idea of cannibalistic behaviour is the large number of empty 

shells of L. arcticus in ponds in the spring time. Poulsen (1940b) noted that L. 

arcticus do not hibernate and only one generation is present annually in East 

Greenland. Scholander et al. (1953) reported that L. arcticus are mechanically 

damaged and killed by freezing into ice. Johansen (1911, 1922) also saw dead 

adults as soon as the ice surface began to form on the lakes, but when the ice 

became thicker, more and more L. arcticus were frozen and died. It seems likely 

that the L. arcticus juveniles may eat the remains of L. arcticus from past year if 

they are available. If this behaviour is true, it could partly explain differences in 

the population sizes in early spring. It is also possible that only the shells of dead 
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animals have been preserved over the winter, and some other animals have eaten 

the soft tissues. 

Animals in the algae treatment spent significantly more time in the middle of the 

container than animals in the control or in the crushed L. arcticus treatment. This 

behaviour may indicate that algae odour may calm L. arcticus. Aquatic vegetation 

(Bryophyta) is an important habitat for L. arcticus on Spitsbergen (Appendix 3). 

L. arcticus may hide from visually hunting birds inside these bryopyte ferryes. 

Familiar odour may calm animals as was observed in algae treatment, or induce 

predation behaviour as was seen in crushed L. arcticus treatment. Daphnia has 

also been shown to have potential to distinguish between ecologically relevant 

odours (Van Gool & Ringelberg 1996). In the same study, two Daphnia species 

were attracted by the odour of edible algae but not by the odour of toxic algae. 

 

Similarities were observed between the treatments in the placement of the test 

animals in squares 7, 8 and 9 (Figure 36). These squares were among the most 

popular squares in all the treatments. The animals’ behaviour was observed 

behind these (7, 8, 9) squares. Observation may have influenced the L. arcticus 

behaviour and thus explain why these squares were so popular. The animals were 

most likely hiding behind of the aguarium front glass, even when the observations 

were made by wearing a white laboratory jacket (the walls around the aquarium 

were white) and avoiding unnecessary movement. However, the observer seemed 

to have an unwanted effect on the test animals’ behaviour. This issue should be 

taken into account when planning similar odour experiments. It is recommended 

that the test aquarium is placed inside of a glass box where the test animal cannot 

see outside but the obsever can see inside. 

 

Olfaction may play a very important ecological role in L. arcticus population 

dynamics, because it helps animals to find food or to localize injured or dead 

animals. Christoffersen (2001) demonstrated that L. arcticus are active and 

efficient predators of planktonic prey. Olfaction may be extremely important for 

young L. arcticus and for sexually mature females that carry eggs, because these 

animals have a high nutrient demand. The animal activity significantly increased 
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in crushed L. arcticus treatment. The increased activity can be explained by active 

searching for food or by an escape reaction for some animals. Failed bird attacks 

can injure or kill L. arcticus on the Spitsbergen ponds. Because of this predator–

prey relationship, L. arcticus can benefit from their capability to locate injured or 

dead conspecifics offering an easy and large-sized prey. Relatively large-sized 

catches and good nutritional value is important for short-lived but fast-growing 

Arctic crustacean. Some individual L. arcticus on Spitsbergen were blind or they 

had a “cataract”. These individuals probably used more olfactory and tactile 

senses in feeding than the healthy animals. The discoveries of the blind animals in 

natural populations suggest that L. arcticus uses a variety of senses in foraging. 

Miller (1980) reported that being a predator is the only way how L. arcticus can 

get enough food to maintain such a high growth rate. L. arcticus individuals are 

exceptionally large, and reach sexual maturity at small sizes on Spitsbergen. It 

seems likely that cannibalistic behaviour partly explains the unique characteristics 

of L. arcticus (large body size and high reproductive capacity) on Spitsbergen. 

 

The chemical signatures of different natural food sources of L. arcticus may be 

extremely complex, varying not only in composition but also in the concentration 

of specific components. These odour signatures undoubtedly experience both 

short- and long- term changes in response to the life cycle of L. arcticus prey 

organisms and the natural seasonal event. Different salmonid species and 

American eels (Anguilla rostrata) can use their olfaction to identify and return to 

their home stream or lake (Dittman & Quinn 1996, Barbin 1998). Minnow, which 

can predate on L. arcticus (Borgstrøm et al. 1985), respond fast to Schreckstoff, a 

chemical alarm signal located in their skin when wounded by a predator (Krause 

1993). In the experiment the minnows moved closer to each other and tended to 

be surrounded by the conspecifics. The hunting L. arcticus can apply their 

olfactory memory to discriminate odours from different food sources. The one 

injured L. arcticus and several healthy animals were placed in same container in 

the study of Arnold (1966). The healthy animals rapidly attacked towards the 

injured animal and after this the injured animal was eaten alive. Injured L. arcticus 

probably secreted some recognizable component which attracted other 
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conspecifics. In nature, the turbulence of water may impair the responses of L. 

arcticus to different odours. 

In summary, I suggest that L. arcticus can locate food using olfaction but in nature 

they usually find their food using visual and tactile senses in combination with 

olfaction. It can be concluded that L. arcticus has the potential to be an effective 

predator of injured L. arcticus due to olfaction. The presence of L. arcticus in 

Arctic ponds and lakes may play an important role in nutrient cycling because 

they can eat dead and injured animals. 

 

 

4.5. L. arcticus sensitivity to water salinity 

 

It can be concluded that L. arcticus can tolerate small changes in water salinity 

and a slightly increased salinity (1 ‰) may speed up the growth and ecdysis of the 

species. 

 

The salinity of freshwater ponds is normally 0 ‰, while the salinity is 34.7 ‰ in 

coastal areas of the Barents Sea. L. arcticus tolerated a salinity increase of 2 ‰, 

but many animals were able to tolerate up to 8 ‰ increase in salinity for at least 

48 hours. The available field data shows that L. arcticus can naturally live in 

ponds with 1.5 ‰ salinity. Climate change can affect the salinity and/or water 

temperature and therefore the composition of aquatic invertebrate communities 

(Verschuren et al. 2000). L. arcticus is probably adapted to small changes in water 

salinity. A large proportion of the large branchiopods live in fresh water. 

However, some species of Branchinella, Streptocephalus, and Thamnocephalus 

and all species of Parartemia and Artemia live in saline inland waters (Brendonck 

et al. 2008). The salinity tolerance of California clam shrimp (Cyzicus 

californicus) seems to be similar to that of L. arcticus, because 95 % of C. 

californicus survived in 1.8, 3.5 and 5.3 ‰ salinity for 48 hours (Eriksen & 

Brown 1980a), while 93 % of L. arcticus survived 48 hours in 3, 4, 5, 7 and 8 ‰ 

salinity. Along a salinity gradient, many cladocera exhibit a unimodal response in 

abundance owing to their limited ability to osmoregulation (Frey 1993). For some 
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metals such as cadmium (Cd), the sensitivity of Diporeia spp. amphipod increases 

with both increasing temperature and decreasing salinity (Gossiaux et al. 1992). 

Thus, the L. arcticus salinity tolerance may also be linked to metal toxicity or 

parasitism. In slightly saline water (1.2 ‰), ectoparasites (flat worms) were found 

from L. arcticus heads and genital areas. The saline water seemed to speed up the 

ecdysis and thereby improve the resilience of L. arcticus to ectoparasites as the 

parasite exposure time is shortened. 

 

The increased growth rate of L. arcticus in slightly saline water may be an 

adaptation to the life in temporary ponds. The catchments of the temporal ponds 

were typically small, the sources of water were mainly thawing snow and the 

water salinity increased as the ponds dried. Water salinity in closed basin typically 

increases by evaporation (Wetzel 2001). In slightly saline water, L. arcticus may 

need to produce new eggs as efficiently as possible before the pond dries up. This 

finding was supported by two observations: Firstly, the faster growth to a large 

size increased the reproductive efficiency on L. arcticus, because bigger L. 

arcticus can produce larger and more eggs than the smaller animals. A low salt 

concentration (1 ‰) significantly speeded up the second ecdysis of L. arcticus. 

Secondly, the smaller animals started to produce more eggs in slightly saline 

temporary ponds than in permanent ponds. 

 

 

4.6. Sensitivity of L. arcticus to changes in water pH 

 

The pH experiment was carried out because many L. arcticus populations in 

Norwegian mainland have become extinct due to acidification (Fellheim et al. 

2001). L. arcticus have not been found from waters with a pH below 6.1 (Röen 

1962, Borgström & Larsson 1974, Blomkvist 1995, Borgström et al. 1976, 

Fjellheim et al. 2007, Table 11). On Spitsbergen the lowest pH levels were 

measured in Longyearbyen (pH 6.3–8.0) and in L. arcticus ponds in Pyramiden 

(7.0–7.4). These areas are or used to be subjected to coal mining activity. Low pH 

did not always explain the absence of L. arcticus in a pond. For example, in pond 
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Gluudneset the pH 8.4 was optimal for L. arctius but the water salinity level of 2.8 

‰ was apparently too high. In areas where human disturbance was evident, the 

pH of pond water was often lower than in areas with little or no human activity. 

Low water pH due to human disturbance was observed in Longyearbyen, 

Pyramiden and in some areas of Ny-Ålesund with common coal mining areas. 

However, in some ponds on Spitsbergen, the pH was relatively high compared to 

other previously studied L. arcticus habitats (Table 11). The highest ever reported 

pH in a L. arcticus pond (pH 8.84) was measured from Solvatnet, Ny-Ålesund, in 

early August.  

 

Borgstrøm & Hendrey (1976) observed increased mortality and delayed moulting 

of the first larval stages of L. arcticus at pH <5.5. Experiments conducted in 

Canada revealed a significant increase in mortality below pH 4.5 (Havas & 

Hutchinson 1982) and the internal levels of Na and Cl decreased when L. arcticus 

were kept under acid stress (Havas & Hutchinson 1983). Similar results were 

obtained in the present LC50-pH experiment. Strong acid stress at pH 4 caused 

significant mortality of the mature L. arcticus. Other aquatic species have been 

observed to have similar problems in acid waters. For example, the circumpolar 

G. lacustris amphipod have been shown to be stressed in high temperature and the 

presence is restricted to lakes with pH ≥ 6.6 (Økland & Økland. 1986). Schindler 

& Turner (1982) and France (1983) reported reduced calcification of the 

exoskeleton of Orconectes virilis crayfish at pH 5.6 and increased parasite 

infections. Combined effects of acidification, parasites and increased temperature 

are and will be serious threats to L. arcticus populations in Arctic waters. 

However, it must be taken into account that L. arcticus can burrow in the 

sediment (≈1 cm) and therefore may benefit from the acid-neutralizing capacity of 

the sediment. Acid lakes often have a relatively higher proportion of species living 

in the sediment (in-fauna), where they are somewhat isolated from the pH 

conditions in water column as compared to species belonging to the epifauna 

(Økland & Økland 1986). L. arcticus can inhabit both benthic and pelagic habitats 

although the L. arcticus usually spend most time close to the sediment. L. arcticus 

may avoid too acid water by staying near or in the sediment or by occupying a 
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habitat near a source (e.g. spring) of acid-free water. The monitoring data of 

Fjellheim et al. (2001) from exceptionally acid Svartvatnet, South Norway, 

indicated that L. arcticus have probably survived in small refuges either near 

inflowing groundwater or in the littoral zone below the more acidic surface layer. 

 

The L. arcticus on Spitsbergen may be exposed to short-term drop of pH during 

the heavy run-off and snow melt in spring. It is possible that the dry and wet 

fallouts contain acidic compounds that are flushed into ponds and drop the water 

pH in spring. Small lakes are generally more sensitive to acid precipitation than 

the large lakes (Tammi et al. 2003). In Longyearbyen pond, the pH rose from 6.4 

in early season up to 7.8 in late summer. Acidification in fresh waters is 

particularly linked to atmospheric deposition, but may also have terrestrial origins 

and be related to effluents from mining industries (Økland & Økland 1986). 

Mining was clearly the dominant economic activity on Spitsbergen in the 20th 

century (Stange 2009). In Longyearbyen there have been seven coal mines and 

one of them (Gruve 7) is still operating. Coal mining in Ny-Ålesund stopped in 

1962 and all mining activities in Pyramiden were stopped in 1998. In areas that 

still have mining activities a particular attention should be paid to the water 

acidity. The coal mine drainages from 49 abandoned mines were studied in the 

Santa Catharina region, Brazil (Silva et al. 2011). The mean pH of these drainage 

waters were alarming low and varied between 2.44 and 3.88. Spread of coal dust 

from mines and coal trucks to the environment was clearly seen around the ponds 

in Longyearbyen and coal was even found from the pond sediments. Fine coal 

particles may remain in the air and be dispersed by winds. More attention should 

be paid on the coal dust spread by the wind on Spitsbergen. Coal trucks should be 

covered during transport to prevent the dust from spreading to the environment. 

 

Many metals become bioavailable within the range of pH 5.0–5.5 (Stumm & 

Morgan 1981). However, crustaceans are known to be fairly tolerant to copper, 

which is an essential element in their haemolymph (Maund et al. 1992, Gerhardt 

1995). In physiological respect, the acid water impedes the ecdysis of adult L. 

arcticus and therefore reduces the animal’s potential to produce eggs during the 
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short Arctic summer. Several ecdyses are needed before the L. arcticus reaches 

large enough body size to start producing eggs. L. arcticus is extremely sensitive 

to acid water (Fjellheim et al. 2001), but adults may survive in short-term acid 

stress. In the past decades, the distribution of L. arcticus has shrunk notably due to 

acid precipitation in Norway (Fjellheim et al. 2001). People have attempted to re-

introduce L. arcticus to their original and restored acidified habitats. In these 

cases, the acid lakes and their catchments have been treated with liming to 

improve water quality (Fjellheim et al. 2001). Different life stages of L. arcticus 

have different tolerances to pH and the local populations may also have different 

sensitivities to acid stress. Calcium regulation is especially important to 

crustaceans and there is clear evidence for a weakened calcium uptake at low pH 

(Økland & Økland 1986). As several studies have shown, acid water can have 

several unwanted effects on L. arcticus. The absence of L. arcticus can be used as 

early warning signals of acidification of some ponds and lakes in High Arctic. 

 

There are also other factors that may affect aquatic ecosystems on Spitsbergen. 

The dumping ground of Longyearbyen is located in the Adventdalen region and 

may affect the water chemistry in the ponds as well as in Lake Isdammen from 

which local people obtain their drinking water. Several habitats of Notostaca have 

been spoiled by refuse dumping in Austria (Löffler 1993). Moreover, the 

excessive use of Isdammen water may result in lower water level and 

consequently in the changes in water chemistry and/or desiccation of several 

shallow ponds and pools near to Isdammen. Another factor likely affecting the 

water chemistry is dog kennels located in Adventdalen. The dogs secrete acid urea 

that may have declined the water pH in Adventdalen ponds. The measured pH of 

6.3 is close to the lowest pH level of 6.1 tolerated by L. arcticus. Hence, the 

nutrient-rich and acid dog faeces should not be placed close to water bodies but 

instead so that the spring runoff and snow melt would not transport them into 

waterways. A slight drop (0.1–1.0) in pH can wipe out the local L. arcticus 

populations in Longyearbyen and Pyramiden ponds. Such local extinctions of L. 

arcticus populations may have unwanted effects on the upper trophic levels such 

as birds feeding on L. arcticus.  
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4.7. Oxygen consumption 

 

All large branchiopods can regulate their oxygen consumption and live at low 

oxygen concentrations (Thorp & Covich 2001). This study showed that relatively 

low oxygen concentration (235.9 µmol O2/l) and high temperature (30 °C) were 

together lethal to L. arcticus. Eriksen & Brown (1980b) demonstrated that L. 

lemmoni had a minimum oxygen tolerance and showed inability to regulate 

oxygen consumption at low oxygen concentrations. Q10 values for L. lemmoni 

varied from 2.1 to 5.1 (Eriksen & Brown 1980b), whereas in this study the Q10 

values for L. arcticus ranged from 0.45 to 3.15. Such low Q10 values are rarely 

measured from aquatic poikilotherms (Pattee 1965, Wolvekamp & Waterman 

1960). According to Thorp & Covich (2001), the Q10 values for metabolic rate are 

2–3 in the majority of ectotherms. Thus, the Q10 values outside of this range 

indicate active metabolic regulation: values <1.5 suggests active metabolic 

suppression and >3.5 active metabolic stimulation with temperature change. The 

present results indicate that the active metabolism of L. arcticus is outstandingly 

suppressed with increasing temperature. The results suggest that L. arcticus has 

adapted to live in cold water. 

 

The amount of oxygen reduces when the water temperature rises. L. arcticus lived 

in ponds where the oxygen concentration is 456.6– 398.9 µmol O2/l. The L. 

arcticus optimal temperature was 10 °C, when the water oxygen concentration 

was 352.6 µmol O2/l. L. arcticus therefore seems to tolerate well 11 % lower 

oxygen content than observed in their natural habitats. However, the 33 % 

decrease in oxygen concentration (from 352.6 µmol O2/l at 10 °C optimum to 

235.9 µmol O2/l at 30 °C) was lethal for L. arcticus.  

 

O2 consumption of L. arcticus declined rapidly with increasing temperature, 

suggesting that the species has adapted to live in cold water. L. lemmoni occur in 

warm water ponds (7.7–24.5 °C) in the western USA (Lynch 1966). The 
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metabolic rate of L. lemmoni reached the maximum at 27.8 °C (Eriksen & Brown 

1980b), while the maximum respiration rate for L. arcticus was seen at 10 °C. L. 

arcticus is clearly a species that requires a high oxygen concentration and cool 

water. L. arcticus showed poor tolerance to increased temperature, with a mean 

Q10 value of about 0.48 in the high temperature treatments. Another factor that 

supports the idea of the limited acclimation of L. arcticus to high temperatures 

was the high mortality rate while acclimating animals to 16.5, 20, 25 and 30 °C. L. 

arcticus has undoubtedly lived under stable environmental conditions for a very 

long time and thus the need for temperature acclimation has probably been 

limited. The water temperature in L. arcticus ponds on Spitsbergen ranged from 

0.5 to 5.5 °C, while the water temperature in lakes studied by Arnolt (1966) 

ranged from 3 to 19 °C in Greenland. In July L. arcticus were abundant despite 

the low sediment temperature (-0.5 – -1.9 °C) in some study ponds. It may be 

possible that the L. arcticus lay their eggs among aquatic vegetation rather than on 

sediment, since the temperature of the sediment is so low in early summer. It can 

be concluded that the L. arcticus are living below the physiological temperature 

optimum on Spitsbergen waters. L. arcticus is a species that is capable of living 

only within a narrow temperature range. Among Notostraca, L. arcticus should be 

considered stenothermal. 

 

 

4.8. Differences in the external morphology of L. arcticus – an important tool for 

identification of the species? 

 

The size of L. arcticus has dramatically increased over the last 114 years. The 

mean size of males has increased since by 50 % and female size has increased by 

15 % compared to Sars studies in 1896. The largest female was 64 % larger (in 

total length) than any of those studied 114 years ago. Organisms can generally 

reach larger final body sizes when the development time increases (Roff 1992). 

However, global warming has been demonstrated to reduce the body size of some 

aquatic organisms (Daufresne et al. 2009). Nevertheless, the L. arcticus size has 

increased notably. Observed changes in the size of L. arcticus may be caused by 



107 

 

global warming (e.g. a longer growing season), or simply by the fact that the 

animals were collected at different times of the year. L. arcticus lives below its 

temperature optimum on Spitsbergen and thus may benefit from higher summer 

temperatures and longer growing season in the present climate conditions. Some 

previous studies do not present the time when the animals were collected, 

although this is a particularly important parameter when studying the size and 

growth rate of High Arctic animals. Nevertheless, the morphology (size and 

reproduction) of L. arcticus is very unique on Spitsbergen. 

 

Sars (1896) defines L. arcticus as a species with the number of posterior segments 

not covered by the carapace varying between 12–18. In this study the number of 

these segments varied between 2–21. Sars (1896) also states that L. arcticus males 

rarely exceed 12 mm in total length. Mean total length of L. arcticus male was 18 

mm on Spitsbergen. Males were considerably smaller than females, but were able 

to reach up 27.5 mm in total length. In the studies conducted by Sars (1896), the 

biggest male was only 13 mm long. The same phenomenon was also seen in the 

size of females. The largest female observed by Sars (1896) was 24 mm, while in 

this study the largest female was 39.4 mm. The total length (23 mm) of L. arcticus 

must be considered as the mean size for fully-developed females. 

 

The size of the supra-anal plate and the CL/SP ratio are considered as good tools 

to identify L. arcticus species. The size of the supra-anal plate varies between 

Lepidurus species (Longhurst 1955). The L. arcticus supra-anal plate is very 

small, but the size of the supra-anal plate showed large variability. Hessen et al. 

(2004) showed that L. arcticus has two major haplotypes (A1 and B1) on Bear 

Island and one (A1) on Spitsbergen. The supra-anal plate of the haplotype A1 was 

significantly smaller than the haplotype B1´s supra-anal plate (Hessen et al. 2004). 

As significant differences in morphology can be observed within the same 

species, one should be rather careful in identifying this species by using only a 

single morphological variable. This study has shown a lot of new information 

about the morphological variables of the L. arcticus on Spitsbergen. The carapace 

supra-anal plate ratio (mean CL/SP = 15) was higher on Spitsbergen than has been 



108 

 

observed anywhere else (Table 3). This probably means that the majority of 

animals were of haplotype A1 on Spitsbergen. Haplotype A1 is also found in the 

mainland Norway and in the Bear Island (Hessen et al. 2004). Another interesting 

observation was the small size of the carapace (≤15 mm). The carapace should be 

20 mm long and CL/SP ratio should be then around 12 in adult animals 

(Longhurst 1955). Such large carapaces were not observed on Spitsbergen. A 

small carapace length and a high CL/SP ratio may mean that the L. arcticus 

allocate resources for soft tissues rather than for hard shells (carapace and supra-

anal plate) on Spitsbergen. It is important to note that L. arcticus individuals were 

also unusually large on Spitsbergen, the observed maximum total length being 

39.4 mm. 

 

In this respect, the identification key of L. arcticus should be revised. Large 

morphological differences were also observed between and within different L. 

arcticus populations. These distinctive features can be explained e.g. by 

reproductive isolation, niche differentiation, historical isolation due to different 

glacial refuges (Hessen et al. 2004) and differences in temperature and salinity. L. 

arcticus may be considered as a relict species over its southern range of 

distribution for example in mountains in Norway (Hessen et al. 2004, Sars 1896). 

Some of the observed morphological differences are due to gender and age. 

Sømme (1934) showed that the supra-anal plate of males is longer than in 

females, and the same observation was made in this study. The morphological 

measurements of juveniles and sick animals should be regarded with caution. 

Hessen et al. (2004) hypothesised that the L. arcticus juvenile stages from 

different geographical locations may show pronounced morphological variability. 

The hypothesis of Hessen et al. (2004) was correct, but there also seems to be a 

large variation in morphology of juvenile and adult L. arcticus within the  

populations. The morphological plasticity in L. arcticus makes this species 

challenging for identification. The most important thing would be to examine the 

animal supra-anal plate shape and size (Figure 10) as well as to calculate the 

number of body segments (26–28 pcs). By doing so the L. arcticus can be identify 

correctly. 
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L. arcticus remains have been found in lake sediments on Spitsbergen and in 

Greenland (Bennike & Hedenäs 1995, Jeppesen et al. 2001). By measuring the 

remains (e.g. supra-anal plate) and using the Figure 12 formulas it is possible to 

calculate the carapace size of the historical animals. By doing so, it could be 

possible to find out if the animals have reached sexual maturity (carapace size 

4.0–9.1 mm); if the carapace length is ≥8 mm, the animal has propably been large 

enough to produce at least one egg. Thus, future paleolimnological studies could 

use L. arcticus remains more to evaluate the historical ecology of the species. 

 

 

4.9. Seasonal variation in egg production of L. arcticus 

 

Number of eggs of the L. arcticus species is easy to calculate, because the eggs 

are large and orange in ethanol preserved samples and the animals carry only a 

few eggs (≤12 eggs). L. arcticus were able to carry more eggs than is ever before 

observed in any studies. The number of eggs produced by a female L. arcticus can 

depend on a variety of abiotic and biotic factors such as temperature, salinity, 

oxygen, food and population density. L. arcticus were carrying more eggs on 

Spitsbergen than has previously been observed in Novaya Zemlya Archipelago, 

Russia (Vekhoff 1997), in Syd Kapp, East Greenland (Arnold 1966), and in 

Tuvetjern, Norway (Sømme 1934) (Table 7 & 8). Animals were carrying an mean 

of 2.6 eggs on Spitsbergen, whereas in previous studies the mean numbers were 

1.0 in East Greenland (Arnold 1966) and 2.1 in Tuvetjern, Norway (Sømme 1934) 

(Table 8).  

 

The L. arcticus on Spitsbergen seem to be able to carry more eggs than has been 

observed in any previous studies. On Spitsbergen the total number of eggs varied 

between 0–12, while in the study of Vekhoff (1997), L. arcticus were found to 

carry only 1–5 eggs in Novaya Zemlya, 1–4 eggs in Vaigatch Island and 2–4 eggs 

in Matveev Island, Barents region of Russian Arctic (Table 7). The low number of 

eggs observed in other studies can be due to a combination of factors. The present 
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study provides evidence that at high temperatures female L. arcticus may become 

mature at a smaller size than at lower temperatures. There seemed to be a 

connection between the rate of reproduction and the water temperature in 

Storvatnet and in Kolhamna in Ny-Ålesund. The water temperature was 3.1 °C 

and 23 % of animals were carrying eggs in Storvatnet, while the water 

temperature was 4.2 °C and 44 % of similar-sized animals were carrying eggs in 

Kolhamna at the same time. This observed phenomenon may be associated with 

more rapid metabolism in warmer water. This assumption was supported by the 

respiration activity experiment. The respiration activity of the animals increased 

with increasing temperature from 3.5 to 10 °C. Increase in water salinity may also 

speed up animal’s growth. This assumption was confirmed by observations from 

both laboratory experiments and natural populations. The salinity issue is 

discussed more in chapter 4.5. 

 

The timing of open water period can also have an influence on the sexual 

maturation of L. arcticus. The start of ice free period in ponds and lakes on 

Spitsbergen depends greatly on the distance from the sea and glaciers. At a larger 

scale, the importance of altitude and latitude is highlighted when contemplating 

the species distribution at their southern limits. L. arcticus is a boreo-alpine relict 

in Scandinavia, existing at greater altitudes towards the south and close to the sea-

level in the Arctic (Sømme 1934). Temperature differences can be notable 

between ponds located only 1.2 km away from each other. The importance of 

pond’s distance from the sea and glaciers on the timing of L. arcticus sexual 

maturation can be clearly seen in lowland areas on Spitsbergen. The small body 

size of L. arcticus will naturally restrict the egg carrying capacity of the females. 

Therefore, the timing of sampling has a strong influence on the results. It is 

recommended to collect L. arcticus samples in August. Animals are usually 

mature and more easily detected because they are larger in August than earlier in 

the summer. Sampling date influences the result and therefore it is important to 

measure water and sediment temperature, pH and salinity at the same time. The 

date of the collection of samples should always be reported to be able to compare 

the result with other studies. Animals and other data which were collected at 
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different times, made the comparison of the present results complicated. It would 

be useful to collect samples from the same pond several times. 

 

Eggs were evenly distributed in the left and right foot capsules of L. arcticus 

(Table 8) as was also previously found by Arnold (1966) and Sømme (1934). In 

warmer water the time needed to reach maturity is short and the advantage of 

becoming mature earlier seems to be more important than the advantage of 

producing large numbers of eggs at least in temporary ponds. Effective 

reproductive capacity also seemed to reflect other features of the L. arcticus 

populations on Spitsbergen, where females seemed to reach sexual maturity and 

the sexual dimorphism appeared at exceptionally small body size (Table 6), 

potentially as a consequence of local adaptation to abiotic and biotic conditions. 

These differences can be explained by varying water and sediment temperatures 

and salinity conditions (Appendices 4–9). For example, the slight increase in 

salinity or temperature in temporal ponds seemed to speed up the growth of L. 

arcticus. The water and sediment temperatures were exceptionally low in ponds 

where the animals had not yet reached the maturity. The immature stage of L. 

arcticus lived in remarkably low water temperatures (0.5–4.9 °C) and in the 

freezing sediment (-1.9–0.8 °C) in Kapp Linné ponds in early season (11–12th 

July). The immature animals lived in cold water (0.8 °C) and among almost 

freezing sediment (0.1 °C) in Tvillingvatnet in early August. The season does not 

explain why no sexually mature L. arcticus were observed in this pond, because 

sexually mature females were found at the same time from five other ponds in the 

same area. The more likely reason for the absence of mature females in 

Tvillingvatnet was the low water temperature which had delayed the beginning of 

ice-free period and thus shortened the growing season in relation to other ponds in 

the same area. Hydrologic processes are both spatially and temporally highly 

variable in catchments surrounding High Arctic ponds, so that ponds location 

between sea and glaciers has a great influence on water and sediment 

temperatures. Ice and snow melts offer a cold water supply throughout spring and 

summer if glaciers or snow-capped mountains are near enough to the pond’s 

catchment. Tvillingvatnet was located near three glaciers: eastern Brøggerbreen 
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(0.7 km), western Brøggerbreen (1.5 km) and western Lovenbren (1.2 km). This 

partly explains the low water and sediment temperatures observed in late season. 

The cold winds from the glaciers can also explain the low temperatures. The 

length of ice free period and water and sediment temperatures is very important 

for L. arcticus growth, because the temperature is optimal for development of L. 

arcticus for such a short time. The timing of phytoplankton bloom can also be an 

important factor for the planktonic juvenile stages of L. arcticus. The sediment 

temperature can affect at least the timing of benthic algal bloom and probably also 

the phytoplankton bloom. Sediment can absorb a large amount of heat from the 

water during the warmer periods of the year and transmit heat to the water during 

the winter (Wetzel 2001). In shallow lowland lakes, the importance of temperature 

in algae bloom dynamics must be considered (James et al. 2009). Thus, it would 

be important to measure the sediment temperature and not only the water 

temperature in permafrost area, because the timing of algal bloom and the 

sediment temperature can be strongly linked in High Arctic ponds. 

 

The ponds on Spitsbergen freeze solid in winter and thus L. arcticus spend winters 

as resting eggs on the bottom of the pond. The hatching of L. arcticus eggs 

coincides with the spring snowmelt in Lake Svartvatnet located at 1213 m a.s.l. in 

South Norway (Fjellheim et al. 2001). L. arcticus hatch at a later stage of 

development than T. cancriformis and Lepidurus apus and the eggs of L. arcticus 

are much larger compared to those of other species in the family (Longhurst 

1955). In the present study, a new observation was that L. arcticus can produce 

eggs of different sizes and the size of eggs can also show seasonal variation. Small 

animals carried only small or medium-sized eggs in early season. When the 

animals reached up the carapace length of 7.7 mm, they began to carry big (>0.8 

mm) eggs. The large eggs of the species may play an important role in the success 

of hibernation in harsh condition. The observed congruent differences in the egg 

sizes and water temperatures may explain the occurrence of different-sized 

individuals in early spring. The small adults may be those which have been 

starving at the juvenile stage and thus can only produce small eggs. Nevertheless, 

it is good to produce large eggs but small eggs are better than none. The eggs of 



113 

 

Simocephalus vetulus (Cladocera) are much larger in Greenland than in England, 

even when the British specimens are reproducing at lower temperatures than the 

conspecifics at the summer temperatures in Greenland (Green 1966). It seems 

likely that the function of large eggs is to improve the survival of L. arcticus in 

areas where the sediments of lakes and ponds are frozen in winter. In cold water 

the large eggs ensure the maximum speed of maturation in the following spring. 

The deep-sea prawn (Pandalus borealis) produces bigger and heavier eggs at high 

latitudes on Spitsbergen than at lower latitudes in Bergen (Clarke et al. 1991). 

Young L. arcticus most likely have a better chance to survive through poor food 

conditions when they are well-nourished at the beginning of life. The observed 

great variation in egg sizes may ensure the maximum increase in the population 

size because different-sized animals can feed on various sizes of food.  

 

Fox (1949) reported that the eggs of L. arcticus were able to hatch after drying, 

indicating that in many cases the eggs of this genus must be resistant to drought 

(Longhurst 1955). The same assumption was supported by the present findings 

from two ponds that dried up during the summer but still had abundant 

populations of L. arcticus. L. arcticus in these ponds were often carrying more 

eggs than the similar-sized animals in permanent ponds at the same time. L. 

arcticus seemed to be remarkably flexible in terms of reproduction. A slight 

increase in water-ion concentration seemed to have a positive effect on growth 

and start of egg production in L. arcticus. It seems that salinity triggers L. arcticus 

maturation in drying ponds. L. arcticus need to lay eggs quickly before the water 

disappears from these ponds. Many previous studies have focused on the number 

of individuals and have not studied the reproduction of L. arcticus. Reproduction 

capacity of animals (number of mature animal and eggs, and the presence of 

males) reflects better to the condition and size of a L. arcticus population than the 

number of collected animals in population alone.  
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4.10. Dispersal agents in permanent and temporal ponds 

 

Arnold (1966) suggests three dispersal mechanisms for L. arcticus: (1) adhesion 

of the eggs to the feet of waders, (2) transmission via the faeces of birds, and (3) 

accidental dropping of living specimens by avian predators. L. arcticus have 

limited potential for active dispersal. The species is a poor swimmer (Arnold 

1966) and unable to fly to new areas. L. arcticus seemed to be unable to resist 

water currents in ponds. This was seen on windy days, when the undercurrent 

often carried L. arcticus near to the pond shore. Strong waves and undercurrent 

together sometimes pushed L. arcticus to dry land. Purple sandpipers fed on L. 

arcticus on the sediment near to the pond shore and adult L. arcticus were 

remarkably easy to pick up on the dry land in the windy days.  

 

Water currents and winds are probably important dispersal agents, resulting in 

passive movement of resting eggs and even adult animals. Water may be an 

important abiotic factor for the transport and movement of L. arcticus eggs in 

Arctic ponds. Spring runoff may transport L. arcticus eggs and autumn runoff can 

affect the local distribution of adult L. arcticus. L. arcticus occurred also in small 

shallow pools (≤1.5 m in diameter and ≤10 cm in depth) near the ponds but these 

pools were not connected to ponds. It seemed that the animals were either hatched 

in these pools or some abiotic or biotic vectors had carried them. L. arcticus 

individuals were not able to escape unfavourable conditions (UV, bird predators 

or lack of food) and seek out new locations in these shallow pools. In summer 

2010 precipitation was very low (40 mm) on Spitsbergen (Norwegian 

Meteorological Institute 2011) and thus prevented flooding near the ponds. It is 

possible that the melting snow and ice and the water masses from Glacier Rivers 

can transfer eggs, juveniles and even adult L. arcticus in local scale. Since the L. 

arcticus are evidently unable to swim upstream (Arnold 1966), the water can be 

an important vector for the short- and even long-distance dispersal. 
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Some ponds dry out temporarily on Spitsbergen. The bottom sediments of 

temporal ponds are exposed to winds during the dry season, which can actually be 

good for wildlife. Spitsbergen is a windy area, where the lack of trees allows the 

wind to act as an effective dispersal vector. The wind dispersal may play a part in 

the distribution of the dry eggs of Branchiopoda (Clark & Wootton 1972).  It is 

possible that the wind transports L. arcticus eggs from the sediments of temporal 

ponds to new areas. Because the eggs of Lepidurus sp. and Triops sp. are able to 

hatch after drying (Fox 1949, Longhurst 1955), the potential dehydration of eggs 

is unlikely a dispersal barrier to the species. Temporal ponds are an important and 

highly threatened habitat type on Spitsbergen. Temporal ponds are important for 

wildlife because the occasional droughts kill all the fish (i.e. one of the main 

predators of L. arcticus and invertebrates) and thus allow other species to thrive. 

Hence, it is important to remain these ponds in pristine state and not make them 

permanent-like, because they have a unique and specialised L. arcticus 

population. 

 

Ponds on Spitsbergen are closely linked to the surrounding terrestrial landscape. 

The ponds are important water sources for terrestrial animals (e.g. arctic fox and 

Svalbard reindeer), which can then act as dispersal agents for L. arcticus. L. 

arcticus eggs were found to be sticky and able to attach even to the parents own 

carapace. The sticky eggs may thus travel to new areas among the mammals’ fur 

or birds’ feathers.  

 

Waterfowl can be important predators of large branchiopods in shallow ponds 

(Dodson and Egger 1980), and this is also true in the High Arctic regions of 

Norway. The major predators of L. arcticus in shallow Arctic ponds on 

Spitsbergen are arctic tern and purple sandpiper. Dunlins were also occasionally 

seen to feed on L. arcticus in a shallow temporal pond in Longyearbyen. L. 

arcticus eggs have been found from the foot of ringed plover (Charadrius 

hiaticula) (Salomonsen & Johansen 1950). Ringed plover were nesting in the 

same areas where the L. arcticus were present in Kapp Linné and Longyearbyen. 

Birds can be significant predators of L. arcticus and at the same time act as 
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dispersal vectors. Wingstrand (1951) suggested that all L. arcticus individuals in 

an isolated Swedish pool were transported as eggs by water birds from Herschel 

Island, north coast of Canada. The same L. arcticus haplotype has also been found 

from Spitsbergen, Bear Island and Russia (Hessen et al. 2004). It is unknown 

whether the eggs are resistant to digestion of birds or fish, but at least they are 

able to withstand desiccation (Fox 1949) and low temperatures. These dormant 

eggs have likely facilitated the present broad distribution as well as the ability to 

future dispersal of L. arcticus. 

 

Migrating fish may also act as a dispersal vector of L. arcticus in ponds and lakes 

connected by rivers. The sticky eggs may adhere on the body of fish. Arnold 

(1966) highlighted that L. arcticus was almost certainly unable to swim upstream 

in rivers. For this reason, the fish may be important for short-distance up-stream 

dispersal in river systems. The eggs’ dormancy facilitates the long-distance 

dispersal of the species from one water body to another. It can be concluded that 

the three main dispersal vectors of L. arcticus are via water currents, wind and 

phoresy with fish, mammals and birds.  

 

 

4.11. Coexistence of L. arcticus and fish 

 

Fish predation can be important for the survival of L. arcticus (Sømme 1934, 

Borgstrøm et al. 1985, Jeppesen et al. 2001). However, this study did not focus on 

the coexistence of fish and L. arcticus. The role of fish predation must be taken 

into account when planning the conservation of L. arcticus. Therefore, the 

occurrence of fish and L. arcticus is described in more details in this section. 

 

L. arcticus is generally most abundant in shallow ponds and lakes that freeze solid 

during the winter and thus lack fish. However, this species can coexist with fish in 

some deep lakes (Borgstrøm et al. 1985) and in shallow cold lakes (Primicerio & 

Klemetsen 1999). L. arcticus lives in <14 °C epilimnetic temperature in shallow 

lake Strømsli-Lombola, northern Norway, with a maximum depth of 9.5 m 



117 

 

(Primicerio & Klemetsen 1999). The winter temperatures have been argued to 

restrict L. arcticus to cold climates, supposedly reflecting that winter eggs are 

unable to tolerate higher winter temperatures than those prevailing in Arctic lakes 

(Aass 1969). It seems likely that the presence of L. arcticus highly depends on the 

water temperature during the short growing season and not so much on the winter 

temperatures, because the adults die in winter. According to the respiratory 

experiment the optimum temperature for L. arcticus was 10 °C. All the present 

study ponds on Spitsbergen inhabited by L. arcticus were cold with water 

temperature never exceeding 5.6 °C during the study in summer 2010. The 

presence of L. arcticus in shallow ponds and temporary pools may be due to the 

prevailing environmental conditions on Spitsbergen. However, climate conditions 

are expected to change in the future (IPCC 2007). L. arcticus lives in stagnant 

permanent ponds or in temporal ponds which may freeze solid on Spitsbergen 

High Arctic. Lack of unfrozen water in the winter and the fact that some ponds 

probably dry out in summer prevents the formation of permanent fish stocks on 

Spitsbergen ponds. However, current global circulation models predict 2–2.4 ºC 

increase in summer temperatures in Svalbard (IPCC 2007). If air temperature 

increases fewer Arctic ponds and lakes will freeze to the bottom and the High 

Arctic waters will have an increased number of ice-free days. 

 

In a Norwegian reservoir L. arcticus has been found to virtually disappear from 

the diet of brown trout (Hesthagen & Sandlund 2010) probably due to strong 

predation of minnow (P. phoxinus) on the planktonic stages of L. arcticus 

(Borgstrøm et al. 1985). Non-native fish species or populations of foreign genetic 

origin have been widely stocked in Nordic countries (Tammi et al. 1999). It is 

important that minnows do not spread to the areas where L. arcticus are present, 

because they can eat all small L. arcticus before they start to reproduce. L. 

arcticus has a short adult life span and starts producing eggs in late summer. 

Minnows have not been found from the Faroe Islands, Iceland and Greenland 

(Hesthagen & Sandlund 2010) and thus it is unlikely they could spread to 

Svalbard. However, three-spined sticklebacks (Gasterosteus aculeatus) have been 

observed in some lakes in Svalbard due to stockings by human (Martin Svenning 
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and Steve Coulson personal communication). If human transfer Arctic char or 

other fish species to fishless lakes and ponds in Svalbard, the fish may totally 

wipe out the local L. arcticus populations. L. arcticus can survive in the 

challenging environment of Svalbard, but the fish predation could be disastrous 

for the species in High Arctic waters.  

 

L. arcticus has an interesting relationship with its fish predators. L. arcticus may 

not only be vulnerable to fish predation, but can also act as a controller of 

coexisting fish by consuming fish eggs (Sars 1896). Arctic char can form 

ecologically distinct morphs that may have different spawning times and habitats 

(Klemetsen et al. 2003). In Fjellfrøsvatn, northern Norway, the littoral and 

profundal char morphs are extraordinarily segregated by spawning time 

(September vs. February) and place (littoral vs. profundal) (Klemetsen et al. 1997, 

2002). Fjellfrøsvatn is connected to the shallow lake Strømsli-Lombola, where 

immature, planktonic stages of L. arcticus have been found (Primicerio & 

Klemetsen 1999). In this lake, Daphnia sp. dominates and brown trout is the most 

abundant fish species (Primicerio & Klemetsen 1999). Trout spawns on the stone 

and gravel bottoms, usually in running waters, although lake spawning 

populations also occur (Klemetsen 1967, Scott & Irvine 2000, Schneider 2000, 

Brabrand et al. 2002). Trout reproduces in autumn or winter, earlier at higher 

latitudes and altitudes (Klemetsen et al. 2003). The overlap of fish spawning time 

and the presence of L. arcticus may be important for both species. Fish eggs 

would be probably good food for the L. arcticus which may increase the L. 

arcticus own reproduction success. In lakes where Arctic char, brown trout or 

other fish species spawn in the shallow littoral zone and stagnant water in the 

autumn before the lake is covered with ice, it is possible that L. arcticus may feed 

on fish eggs. Thus, L. arcticus may affect the density of and predation pressure 

from their own predator, thereby possibly preventing the formation of a 

permanent fish stock in a lake or pond dominated by L. arcticus. 
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4.12. L. arcticus effects on the physico-chemical environment of the High Arctic ponds 

 

Adult L. arcticus stir up sediment as they move and search for food on the bottom. 

Sometimes the animal may bury itself completely or slowly progress forwards in 

the sediment, leaving behind a distinctive trail (Arnold 1966). Such trails were 

frequently observed to traverse in all directions in the undisturbed areas of the 

ponds on Spitsbergen as well as in ponds studied by Arnold (1966) in East 

Greenland. L. arcticus can thus likely cause sediment resuspension (i.e. return of 

bottom material back to water column). The sediment resuspension is likely 

beneficial for Daphnia that is an efficient macrofilter feeder strongly affecting 

other planktonic herbivores (Primicerio & Klemetsen 1999). The sediment 

resuspension causes the transition of nutrients from the sediment to water column 

where the nutrients are available for phytoplankton (e.g. primary production). 

Daphnia can drastically reduce and even eliminate rotifers and cladocerans and 

also negatively affect copepod nauplius (Bengtsson 1987, MacIsaac & Gilbert 

1989, Tessier 1986, Conde-Porcuna et al. 1994). Wind-induced sediment 

resuspension is common in shallow ponds on Spitsbergen. The sediment 

resuspension coupled with phytoplankton succession can led to liberation of 

phosphorus from resuspended particles, which in turn can result in high totP 

concentrations and low TN: TP ratio (Niemistö 2008). This phenomenon and 

bioturbation together probably explains the high phosphorous content (66 µg l-1), 

low TN:TP ratio (4:1) and high chlorophyll-a concentration (3.08 µg l-1) in a small 

L. arcticus pond Nybyen. Wind- and bioturbation-induced sediment resuspension 

may also explain the high phosphorus (23.3–69.5 µg L-1) and low TN:TP ratios 

(6:1–11:1) observed in six other L. arcticus ponds on Spitsbergen.  

 

The sediment resuspension during strong algae blooms (pH>9) can lead to aerobic 

release of phosphorus (Niemistö 2008). The pH is naturally high (mean 7.8) on 

Spitsbergen ponds. In one L. arcticus pond, Pond 4 in Kapp Linné, an 

exceptionally high concentrations of Chl-a (9.04 µg L-1) and totP (48 µg L-1), a low 
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TN:TP ratio (11:1) and a high pH 8.3 was measured in early July. In this pond, the 

sediment temperature was above freezing (0.8 °C) and the water temperature was 

0.5–1.1 °C, whereas in other ponds nearby the sediment temperatures were below 

zero (-0.5 – -1.9 °C) and the water temperatures were between 2.0 and 4.9 °C at 

the same time. I assume that in this pond, the measured high Chl-a concentration 

was due to a phytoplankton bloom. However, L. arcticus may also detach benthic 

algae from the sediment and thereby alter the Chl-a concentration in the water. 

The phytoplankton in High Arctic ponds may bloom when the sediment 

temperature is above zero, since phytoplankton is not able to always actively 

control its own place in the water column. In the clear-water Arctic ponds and 

lakes, the sediment temperature can be a more crucial controller of phytoplankton 

growth than the sunlight, partly because the frozen bottom prevents the release of 

sedimented nutrients. As there is enough light in the whole water column, the 

light does not inhibit the photosynthesis in transparent waters. Sediment 

temperature can be a one important factor affecting the timing of Arctic 

phytoplankton bloom. 

 

 

4.13. Water chemistry in High Arctic ponds 

 

L. arcticus is benthic for the most part of its adult stage. L. arcticus may serve as a 

food source for birds and fish, affect the decomposition rates of organic material 

and take part to the recycling of inorganic nutrients. L. arcticus may also have a 

strong influence on bioturbation in Arctic ponds. Changes in the occurrence of L. 

arcticus may have unwanted influence on the transfer of energy in ponds, lakes 

and even in the surrounding Arctic tundra.  

 

Water chemistry was exceptional in some L. arcticus ponds possibly indicating 

on-going changes in the freshwater ecosystems on Spitsbergen. The observed 

median concentrations of TOC (3.1 mg l-1) and DOC (2.5 mg l-1) were typical for 

oligotrophic lakes (2.2 mg l-1 and 2.0 mg l-1, respectively; Wetzel 2001). 
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Nevertheless the water carbon concentrations (TOC and DOC) indicate that not all 

Svalbard ponds are oligotrophic. Nine ponds were oligotrophic; eight ponds were 

mesotrophic and three ponds even shows signs of eutrophication (Brandalaguuna, 

Trehyrdingen 1 and Solvatnet in Ny-Ålesund). The TOC seems to have doubled 

in twelve years in three ponds in Ny-Ålesund. In 2010, the concentrations of TOC 

were 2.0–2.3 times higher in Storvatnet and Solvatnet and 1.6–13.0 times higher 

in Branddallaguna than was previously measured by Van Donk et al. (2001). The 

observed high TOC and DOC concentrations in Brandallaguna in August 2010 

may be caused by glacial runoff or goose faeces. Brandallaguna is situated in a 

wetland area where there are two shallow ponds and a glacier river called Bayelva 

(Figure 3). Wetlands are among the most abundant and biologically productive 

aquatic ecosystem in the Arctic (Mitsch & Gosselink 1993, Moore et al. 1981). 

The quality of melting waters may also have major influence on the concentration 

of cations, anions, nutrients and dissolved organic matter in the receiving water 

bodies, and even on the fate and behaviour of toxic pollutants (Prowse et al. 

2006). Another possible reason for high concentrations of DOC and TOC in 

Brandallaguna could be the abundant faeces from barnacle geese and reindeer 

seen on the pond shore. Over the past few decades a dramatic increase in the 

breeding populations of geese has been observed on Spitsbergen (Van Geest et al. 

2007). Barnacle goose may have a major effect on the water quality and 

vegetation near to the Arctic ponds. Increasing numbers of lesser snow geese 

(Chen caerulescens caerulescens) has led to loss of vegetation and partial erosion 

of sediment in the coastal marshes of Canada (Jefferies et al. 2006). The 

vegetation mosaic near the Arctic ponds may disappear, leading to fast shifts in 

vegetation states. Barnacle geese stay close to the ponds because they provide 

shelter against predators such as arctic fox. Geese seemed to drop faeces directly 

into the water and around the pond catchment where they were grazing and 

breeding. The occurrence of birds may partly explain the high amounts of organic 

matter in the sediments of some ponds. For example, the percentage of sediment 

organic matter was high (54 %) in the bird sanctuary area in Kapp Linné. 

Significantly lower contents of soil organic matter (5–25 %) are more typical for 

the bioclimate subzone B on Spitsbergen (Jónsdóttir 2005). 
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The incoming waters are usually warmer than water in the lakes and thus they 

tend to pass through the lake without significant mixing (Prowse et al. 2006). This 

was not the case in Longyearbyen pond where the incoming water was coming 

from a glacier and thus was colder than water in the pond. All study ponds were 

shallow and thus experienced frequent mixing during windy weather. Internal 

loading can be problematic in some ponds, if the number of geese or other 

possible external loadings will not decrease. Increase in nutrient concentrations 

will inevitably lead to change in the trophic state of the pond (from oligotrophic to 

mesotrophic), especially if the pond is situated near to the ocean where the 

sediment temperature may rise rapidly in early spring. In such case, the nutrient-

rich sediment would be unfrozen for a longer time period and thus the sediment 

could release nutrients in the water column throughout the summer. 

 

Small amounts of organic carbon in the sediment and the high TOC and DOM 

concentrations in the water created amazing features in Brandallaguna. A lot of 

gas, probably methane, was released from the pond bottom when L. arcticus 

samples were collected from 1–1.5 m depth. Smaller bubbles were rising 

constantly, whereas a large bubble of about 50 cm diameter rose to the surface 

when the samples were collected from the eastern side of the pond. The 

decomposition process of the soil is mainly dependent on the characteristics of the 

organic matter, the environment conditions and activity of microorganisms and 

soil fauna (Loureiro et al. 2006). I assume that the food web in Brandallaguna 

may get part of their energy from methanogenic bacteria. This assumption was 

supported by an exceptional presence of L. arcticus in the deep water and the gas 

leak from the bottom of the pond. Swarms of large Daphnia were not seen in deep 

area of the pond where the L. arcticus were found. In the study of Van Geest et al. 

(2007), the presence of L. arcticus was not related to Daphnia biomass or nutrient 

content of the ponds on Spitsbergen. 

 

Concentrations of TOC or aluminium may influence the distribution of 

invertebrates in relation to pH and calcium (Hämäläinen and Huttunen 1990, 

Sutcliffe et al. 1986, Hobaek and Raddum 1980). TOC concentrations are often 
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especially low (< 1.5 mg/l-1) in the sites inhabited by species with a low tolerance 

for acidic water (Lien et al. 1996). Reported pattern indicates that clear water sites 

having low concentrations of TOC must have higher pH and/or calcium 

concentrations in order to support a diverse fauna. TOC and pH values were low 

in Longyearbyen pond (0.94 mgC/l-1 and pH 6.4) and in Adventdalen second pond 

(0.86 mgC/l-1 and pH 6.3) in Longyearbyen, and in Pond 5 (1.4 mgC/l-1 and pH 

7.0) in Pyramiden. One should pay great attention to the development of water 

chemistry in these three ponds because the L. arcticus populations are in great 

danger of extinction. 

 

In the present study ponds the mean total phosphorus (totP) concentration was 

exceptional, i.e. higher than have been measured in other similar limnological 

surveys in High Arctic. In contrast, relatively low concentrations of total nitrogen 

(totN) (mean 0.367 mg l-1) were measured on Spitsbergen ponds. The TN: NP ratio 

suggested a P-limitation (≥17:1) at 58 % of the study sites and the rest of the sites 

the ratio suggested N-limitation. Mean total phosphorus concentration on 

Spitsbergen (28.3 μg l-1) was similar to the phosphorus concentration in New 

Zealand (29 μg l-1; Jeppesen et al. 2003). On Spitsbergen, the mean total 

phosphorus concentrations were higher than previously measured from lakes in 

northeast Greenland (10.2 μg l-1; Jeppesen et al. 2001), in Greenland (11 μg l-1; 

Jeppesen et al. 2003), and in Ellesmere Island (9.1 μg l-1) and in Prince Patric 

Island (16.5 μg l-1) in Canadian High Arctic (Antoniades et al. 2003). Similar low 

totP concentration (10 μg l-1) was measured in L. arcticus lake Strømsli-Lombola 

in mainland Norway (Primicerio & Klemetsen 1999). Sediment resuspension may 

explain the exceptionally high concentration of phosphorus on Spitsbergen. The 

sediment resuspension during algae blooms (pH >9) may lead to aerobic release 

of phosphorus (Niemistö 2008). L. arcticus live under exceptionally high totP 

concentrations on Spitsbergen waters compared to totP concentrations in other 

High Arctic regions. However, according to Wetzel´s (2001) classification scheme 

based on totP and totN concentrations, all study ponds were still ultra-oligotrophic. 
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Chl-a concentrations were low in all areas on Spitsbergen except in pond 4 in 

Kapp Linné. On Spitsbergen, the Chl-a concentrations varied between 0.13–9.04 

μg l-1 (mean 1.68 μg l-1) and resembled those measured from Greenland (range 

0.2–5.4 μg l-1, mean 1.26 μg l-1) by Jeppesen et al. (2003). Antoniades et al. 

(2003) measured Chl-a concentrations from two locations in Canadian High 

Arctic region. In their study the Chl-a concentrations were between 0.1–2.6 μg l-1 

(mean 1.1 μg l-1) in Ellesmere Island and between 0.1–6.9 μg l-1 (mean 0.8 μg l-1) 

in Prince Patrick Island. Thus, the Chl-a concentrations on Spitsbergen seem to 

correspond more to those measured from Greenland than from freshwaters in 

Canadian High Arctic. According to Wetzel´s (2001) classification scheme based 

on Chl-a concentrations, 95 % of the study ponds on Spitsbergen were classified 

as oligotrophic, which is typical for High Arctic water bodies. An abnormally 

high Chl-a concentration (9.04 μg l-1) was measured from only one pond in Kapp 

Linné and this pond (Pond 4) was thus classified as mesotrophic. In general, the 

low Chl-a, totP and totN concentrations indicate that the pelagic primary production 

is low in all the study ponds. 

 

 

4.14. Climate change  

 

Temperature is one of the most important ecological parameters. The current 

global climate models predict warmer summer and winter temperatures and 

increasing precipitation on Spitsbergen which will lead to changes in annual 

runoff (IPCC 2007). It is probable that the runoff in many glacier- and snow-fed 

rivers increases and the spring peak discharge will happen earlier. Increased 

cloudiness may lead to lesser insolation and change the evaporation-precipitation 

dynamics and thereby affect water temperatures in aquatic systems during the 

short Arctic summer. Changes will occur in High Arctic aquatic systems in the 

future. These potential changes include: longer ice free season, enlargement and 

increased number of glacial lakes and changes in top predators of the food web 

(IPCC 2007). This study highlights the ongoing changes in the fitness (e.g. 
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increase body size and improve reproduction capacity) of a High Arctic top 

predator L. arcticus and discloses the alarming eutrophication of the Spitsbergen 

ponds. 

 

Mosses in tundra ecosystems may become the dominant vegetation in terms of 

total biomass and form a continuous cover over large areas of the Arctic landscape 

(Beringer et al. 2001). Mosses are particularly important in the discontinuous 

permafrost zone, where the mean annual temperature is near 0 °C (Nicholas & 

Hinkel 1996). Mosses often dominate vegetation in areas near to the High Arctic 

ponds and annual air temperature is below zero on Spitsbergen. If mosses and the 

underlying peat layer are removed by fire or mechanical disturbance, the depth of 

active layer increases because more heat is conducted into permafrost (Nicholas & 

Hinkel 1996, Mackay 1995, Dyrness et al. 1986). Two of the study ponds 

(Adventdalen second pond and Tvillingvatnet) were heavily tilled by excavators 

and the vegetation was completely destroyed near the Adventdalen second pond. 

Ultimately, thawing of permafrost may lead to thermokarst (i.e. collapse of the 

ground surface) and inundation of lower soil layers with water, which may have 

large ecological and economic consequences (Nisbit 1989). However, permafrost 

melting is not expected to happen in Svalbard in the immediate future.  

 

Vegetation, especially mosses, has an important role in shorelines of Arctic ponds. 

Moss acts as an insulate layer producing cooler summer temperatures (6.9 °C 

lower at depth of 0.5 m) and warmer winter temperatures (2.3 °C higher at depth 

of 0.5 m) when compared with a homogenous loam soil column (Beringer et al. 

2001). It seems likely that vegetation, especially mosses, is a significant factor 

affecting thermal and hydrological properties of Arctic ponds. Higher soil 

temperatures resulting from the disturbance of the moss layer or high-latitude 

warming could increase decomposition rates, potentially changing these systems 

from being a sink to become a source of CO2 to the atmosphere (Serreze et al. 

2000, Cialis et al. 1995, Grulke et al. 1990) and creating a positive feedback to 

warming (Oechel et al. 1993, Billings et al. 1982). Furthermore, an increased 

depth of active layer may lower the water table, causing greater aeration and even 
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warmer temperatures that may further increase decomposition of soil carbon 

(Beringer et al. 2001). Lower water levels may lead to increased development of 

true macrophytes, filamentous algae and benthic microalgae because of improved 

light conditions at the lake bottom, thereby favouring benthic chydorids 

(Crustacea) at the expense of zooplankton (Jeppessen et al. 2001). Climate 

warming can lead to higher primary production and thereby increase the amount 

of food (e.g. chironomids) to L. arcticus, but at the same time also cause problems 

if the growing green algae mats capture and kill prowling L. arcticus. Evidence of 

the existence of this phenomenon was obtained when the pond Solvatnet was 

studied in Ny-Ålesund. L. arcticus individuals became entangled in the algae 

mats. However, combined neo- and paleoecological studies have shown that 

invertebrates respond to changes in substrate availability (e.g. macrophytes, mud 

and sand) or in lake chemistry (e.g. salinity and pH) rather than to changes in 

water level (Verschuren et al. 2000). It is important to note that climate warming 

affects aquatic ecosystems both through indirect effects, such as change in 

catchment processes (e.g. thicker active layer because of permafrost melting, 

decreased snow and ice cover) and direct temperature effects (e.g. water 

temperature increases). On Spitsbergen, the degree of human influence varies 

regionally, being less evident in uninhabited northern areas than in mining towns. 

All human activities that have an effect on the Arctic ponds (e.g. acidification, 

eutrophication, land use and plant cover) may also potentially affect the survival 

of L. arcticus. To protect the waters and L. arcticus in High Arctic, people should 

avoid damaging vegetation near the ponds and lakes and releasing nutrients or 

chemicals in waters (e.g. waste waters and pollutants from coal mines, landfills 

and dog yards). 

 

The described recent changes in L. arcticus size and reproduction capacity suggest 

that L. arcticus populations on Spitsbergen have already dramatically responded 

to elongation of growing and ice-free season and probably also to increased algal 

productivity due to climate warming. These ecological changes in Arctic regions 

may induce migrations of invertebrates from temperate and mid-latitude to high-

latitude regions. Recent changes in ecological conditions of natural habitats have 
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often been fatal to the branchiopods. For example, Löffer (1993) reported that 

eight of the sixteen known Austrian large branchiopod species are extinct, 

primarily due to agricultural activities and artificial changes in hydrologic 

conditions. Large branchiopods have been used for the assessment of the quality 

and function of temporary wetlands (Brendonck et al. 2008). In this study I 

identified water chemistry variables that could be used as indicators of the 

condition and responses of L. arcticus populations to changes in High Arctic 

ponds (Table 12). These general requirements for indicator species applying to L. 

arcticus include: 

 

(1) Sensitivity to the environmental factors, in this case pH, temperature and 

salinity 

(2) Common occurrence and distribution over the entire survey area 

(3) Easily visible and rapidly surveyed by non-expert workers 

(4) Species for which experimental data are available, and 

(5) Information on L. arcticus is available from the end 1800s to the present. 

 

L. arcticus is a good indicator species of the on-going habitat and climate change. 

It seems likely that the L. arcticus populations have been in a steady-state with the 

present water chemistry. However, some populations may survive for some years 

and then become extinct, which might be due to several reasons. For example, L. 

arcticus may disappear if the pH drops below 6.1, the salinity increases to >2 ‰, 

or if the pond dries up before the L. arcticus reach sexual maturity. Global 

warming is likely to exacerbate environmental conditions on Spitsbergen. L. 

arcticus will face many challenges, if the current change in climate and 

environment in the Arctic will continue.  

 

These studies add to the developing information base necessary to understand the 

relationship between the environmental stresses and the potential pollutant impact 

from anthropogenic contaminants. Rise in water temperature, salinity or 

acidification can lead to extinction of L. arcticus. Here, the studies of L. arcticus 

ponds on Spitsbergen increase our limited knowledge about the relationships 
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between different natural and anthropogenic stressors and the ecological condition 

of key aquatic organisms in High Arctic regions. 

 

 

5. Conclusions 

 

A list summarizing the the main conclusions of the thesis are given below. Each 

section is based on the initial four study hypotheses (H1–H4). 

 

H1: Acidification and increased water salinity and temperature induced by global 

warming can lead to higher mortality and potential extinction of L. arcticus in 

Arctic ponds.  

 

1.) The condition of L. arcticus was strongly related to the water pH, 

interaction between TOC and pH, temperature and water salinity. 

2.)  L. arcticus tolerated small changes in water salinity. A slight increase 

in salinity (1 ‰) seemed to speed up the ecdysis of L. arcticus. 

3.)  L. arcticus were not found in waters with pH below 6.1 and a strong 

acid stress at pH 4 caused rapid mortality of the mature females. 

4.) L. arcticus populations are in danger of disappearing due to 

acidification of two ponds in Longyearbyen and one pond in Pyramiden 

on Spitsbergen. A slight drop in pH (0.1–1.0 units) may wipe out these 

L. arcticus populations. Thus, water pH and TOC should be monitored 

in these ponds and the input of acidifying substances should be prevent. 

5.) A new disease (named as Red Carapace Disease) was discovered from 

L. arcticus on Spitsbergen. This disease is likely caused by an unknown 

parasite and seemed to activate with increasing temperature.  

 

H2: L. arcticus can be used as an indicator species of environmental change in 

Arctic regions. 

 

1.) L. arcticus can be used as an indicator species of climate change and 

acidification in the Arctic region (Table 12). 
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2.)  L. arcticus is clearly a species that reguires a high oxygen 

concentration and cool water. Among Notostraca, L. arcticus should be 

consider as stenothermal.  

 

H3: L. arcticus is cannibal and can use chemical cues to localize injured 

conspecifics. 

 

1.) L. arcticus may use olfaction to find food including injured 

conspecifics. 

2.) The main L. arcticus predators seemed to be arctic tern, purple 

sandpiper and other cannibalistic L. arcticus individuals. 

 

H4: Camouflage is an important characteristic for L. arcticus and this crustacean´s 

colouration varies within and between Arctic ponds. 

 

1.) The existence of different colour morphs monochrome and marbled in 

different colours (black, brown and yellow) was an unknown 

characteristic of this High Arctic crustacean species. 

2.) L. arcticus populations showed a great diversity in the composition and 

diversity of colour morphs between and within the Arctic ponds. 

 

Furthermore: 

 

1.) L. arcticus females reach sexual maturity at a smaller body size and 

sexual dimorphism begins to appear in smaller animals on Spitsbergen 

than anywhere else. 

2.) Males occur in some L. arcticus populations on Spitsbergen. Sexual 

reproduction in L. arcticus is likely more common than was previously 

believed. 



130 

 

6. Acknowledgements 

 

This work was funded by Arctic Field Grant, Jorma and Märtha Sihvola 

Foundation, Eeva Rantanen Foundation, Ympäristön ystävät Foundation and 

University of Helsinki. Thanks to my supervisors Associate professor Steve 

Coulson, Professor Kirsten Christoffersen and Doctor Olli-Pekka Penttinen. 

Special thanks belong to Steve Coulson, who helped me in the field and 

laboratory work and gave important comments on this study. I would like to thank 

my field assistants Anni-Mari Pulkkinen, Lorna Little, Hanne Eik Pilskog, Kalle 

Lappinen and Kristin Heggland for their important contribution to the work. I 

would also like to thank the lab assistants Kristiina Visakorpi, Kristin Heggland, 

Kalle Lappinen, Hanne Eik Pilskog, Anni-Mari Pulkkinen and Anna Sergeeva. I 

thank Marianne Lehtonen for laboratory assistance with the nitrogen and 

phosphorous analyses and Santeri Savolainen for laboratory assistance with the 

carbon analyses. The help of Captain and crew at Kvitbjørn are appreciated as 

well as the support from fellow cruise participants UNIS course AB: 201 2011. I 

thank Basecamp Isfjor Radio and Kings Bay AS for comfortable accommodation 

and good food. I want to thank the University of Helsinki for a scholarship and for 

laboratory analysis. University Centre of Svalbard (UNIS) get praise for allowing 

laboratory use, for borrowing field equipment and for providing logistic support in 

Pyramiden, Ny-Ålesund and on the north coast of Spitsbergen. I want to thank the 

University of Jyväskylä for allowing me to use the electron microscope and a 

preparation microscope. I thank Katja Pulkkinen, Anssi Karvonen, Varpu 

Marjomäki and Tuula Sinisalo for important advice in laboratory. I would also 

like to thank Antti Eloranta for important comments on earlier manuscript and for 

good discussions. Great thanks belong to my family for their patience and warm-

hearted encouragement. 



131 

 

7. References 

 

Aass, P. 1969: Crustacea, especially Lepidurus arcticus Pallas, as brown trout 

food in Norwegian mountain reservoirs. — Reports of the Institute of 

Freshwater Research, Drottningholm. 49:183–201. 

Ang, H,P. & Newman, L.J. 1998: Warning colouration in pseudocerotic 

flatworms (Platyhelminthes, Polycladida). A preliminary study. — 

Hydrobiologia 383: 29–33. 

Antoniades, D., Douglas, M.S.V. & Smol, J.P. 2003: Comparative physical and 

chemical limnology of tow Canadian High Arctic regions: Alert (Ellesmere 

Island, NU) and Moult Bay (Prince Patrick Island, NWT). — Polish 

Archives of Hydrobiology 158: 485–516. 

Arctic Climate Impact Assessment (2004) Impacts of a Warming Arctic: Arctic 

Climate Impact Assessment. — Cambridge University Press. Cambridge 

Journals, U.K. 140 p. 

Ahl, J.S.B., 1991: Factors affecting contributions of the tadpole shrimp, Lepidurus 

packardi, to its oversummering egg reserves. — Hydrobiologia 212: 137–

143. 

Arnold, G.P. 1966: Observations on Lepidurus arcticus (Pallas) (Crustacea, 

Notostraca) in east Greenland. — Annals and Magazine of Natural History 

9: 599–617. 

Barbin, G.P. 1998: The role of olfaction in homing estuarine behaviour of yellow-

phase American eels. — Canadian Journal of Fisheries and Aquatic 

Sciences 55: 564–575. 

Bengtsson, J., 1987: Competitive dominance among Cladocera: Are single-factor 

explanations enough?  — Hydrobiologia 145: 19–28. 

Bennike, O. & Hedenäs, L. 1995: Early Holocene land floras and faunas from 

Edgeøya, eastern Svalbard. — Polar Research 14: 205–214. 

Beringer, J., Lynch, A.H., Chapin, F.S., Marc, M. & Bonan, G.B 2001: The 

Representation of Arctic Soils in the Land Surface Model: The Importance 

of Mosses. — Journal of Climate 14: 3324–3335. 

Bethel, W.M. & Holmes, J.C. 1973: Altered evasive behaviour and responses to 

light in amphipods harbouring acanthocephalan cystacanths. — The journal 

of parasitology 59: 945–956. 

Billings, W.D., Luken, J.O., Mortensen, D.A. & Peterson, K.M. 1982: Arctic 

tundra: A source or sink for atmospheric carbon dioxide in a changing 

environment? — Oecologia 53: 7–11. 

Bishop, J.A. 1969: Changes in genetic constitution of a population of Sphaeroma 

rugicauda (Crustacea: Isopoda). — Evolution 23: 589–601. 

Blomkvist, D. 1995: Bladfotingar som försurningsindikatorer i fjällen. 

Länsstyrelsen i Norrbottens län. — Rapportserie nummer 3/1995. 

Borgstrøm, R., Brittain, J. & Lillehammer, A. 1976: Evertebrater og surt vann, 

oversikt over innsamlingslokaliteter. — SNSF-projektet, Oslo-Ås, Norway, 

IR 21/76, 1–33. 

Borgstrøm, R., Garnås, E. & Saltveit, S.J. 1985: Interactions between brown trout, 

Salmo trutta (L.) and minnow, Phoxinus phoxinus (L.) for they common 



132 

 

 prey, Lepidurus arcticus (PALLAS). — Verhandlungen des Internationalen 

Verein Limnologie 22: 2548–2552. 

Borgstrøm, R. & Hendrey, G.R. 1976: pH tolerance of the first larval stages of 

Lepidurus arcticus (Pallas) and adult Gammarus lacustris G.O. Sars. —

SNSF-project, Oslo-Ås, Norway, IR 22/76, 1–37.  

Borgstrøm, R. & Larsson, P. 1974: The first three instars of Lepidurus arcticus 

(Pallas), (Crustacea: Notostraca), — Norwegian Journal of Zoology 45–52. 

Boussiba, S. & Vonshak, A. 1991: Astaxanthin Accumulation in the Green Alga 

Haematococcus pluvialis. — Plant & Cell Physiology 32: 1077–1082. 

Brabrand, Å., Koestler, A.G. & Borgstrøm, R. 2002: Lake spawning of brown 

trout related to groundwater influx. — Journal of Fish Biology 60: 751–763. 

Brehm, V. 1938: Die Rötfärbung von Hochgebirgssee-Organismen. —Biological 

Reviews to the Cambridge Philosophical Society 13: 307–318.  

Brendonck, L., Rogers, D.C., Olesen, J., Weeks, S. & Hoeh, W.R. 2008: Global 

diversity of large branchiopods (Crustacea: Branchiopoda) in fresh water. — 

Hydrobiologia 595: 167–176. 

Bushnell, J.H. & Byron, E.R. 1979: Morphological Variability and Distribution of 

Aquatic Invertebrates (Principally Crustacea) from the Cumberland 

Peninsula and Frobisher Bay Region, Baffin Island, N.W.T., Canada. —

Arctic and Alpine Research, 11: 159–177. 

Christoffersen, K. 2001: Predation on Daphnia pulex by Lepidurus arcticus. —

Hydrobiologia 442: 223–229. 

Cialis, P., Tans, P.P., Trolier, W., White, J.W.C. & Francey, R.J. 1995: A large 

northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio 

atmospheric CO2. — Nature 269: 1098–1102. 

Clark, R.B. & Wootton, R.J. 1972. Essays in Hydrobiology presented to Leslie 

Harvey. — University of Exeter pp. 15–31. 

Clarke, A., Hopkins, C.C.E. and Nilssen, E.M. 1991: Egg size and reproductive 

output in the deep– water prawn Pandalus borealis Krøyer, 1838. —

Functional Ecology 5: 724–730. 

Conde-Porcuna, J.M., Morales-Boquero, R. & Cruz-Pizarro, L. 1994: Effects of 

Daphnia longispina on rotifer populations in a natural environment: 

Relative importance of food limitation and interference competition. — 

Journal of Plankton Research. 16: 691–706. 

Cronin, T.W. & Marshall, N.J. 1989: A retina with at least ten spectral types of 

photoreceptors in a mantis shrimp.— Nature 339: 137–140. 

Czygan F.C., 1968: Sekundär-Carotinoide in Grünalgen. I. Chemie, Vorkommen 

und Faktoren welche die Bildung dieser Polyene beeinflussen. — Acta 

Microbiologica 61: 81–102. 

Daufresne, M., Lengfellner, K. & Sommer, U. 2009. Global warming benefits the 

small in aquatic ecosystems. — Pnas 106: 12788–12793. 

De Wilde, J., Hille Ris Lambers-Suverkropp, K. & Van Tol, A. 1969: Responses 

to air flow and airborne plant odour in the Colorado beetle. — European 

Journal of Plant Pathology 75: 53–57. 

Dittman, A.H. & Quinn, T.P. 1996: Homing in pacific salmon: Mechanisms and 

ecological basis. — The Journal of Experimental Biology 199: 83–91. 

Dodson, S. I. & Egger, D.L. 1980: Selective feeding of red phalaropes on 

zooplankton of arctic ponds. — Ecology 61: 755–763. 



133 

 

Dyrness, C.T., Viereck, L.A. & Van Celve. 1986: Fire in of interior Alaska. Forest 

Ecosystems in Alaskan taiga. — Springer-Verlag pp.74–86. 

Edmunds, M. 1974: Defence in animals: a survey of anti-predator defences. — 

Longman, U.K. 357 p. 

Eigenmann, C.H. and Allen, R.W. 1921. A Leaf Mimicking Fish. — Biological 

Bulletin 5: 301–305. 

Einarsson, Á. 1979: Fáein orð um skötuorm (Lepidurus arcticus (Pallas)). — 

Náttúrufræðingurinn 49: 104–111. 

Eriksen, C.H. & Brown, R.J. 1980a: Comparative respiratory physiology and 

ecology of phyllopod crustacea. I. Conchostraca. — Crustaceana 39: 1–10. 

Eriksen, C.H. & Brown, R.J. 1980b: Comparative respiratory physiology and 

ecology of phyllopod crustacea. III. Notostraca. — Crustaceana 39: 22–32. 

European commission. 2002: Opinion of the Scientific Committee on Animal 

Nutrition on the use of canthaxanthin in feedingstuffs for salmon and trout, 

laying hens, and other poultry. — European commission, Helth & consumer 

protection directorate-general, Directorate C – Scientific Opinions 1–29 

Fjellheim, A., Tysse, Å. & Bjerknes, V. 2007: Fish Stomachs as a Biomonitoring 

Tool in Studies of Invertebrate Recovery. — Water Air and Soil Pollution 7: 

293–300. 

Fjellheim, A., Tysse, Å. & Bjerknes, V. 2001: Reappearance of highly acid-

sensitive invertebrates after liming of an alpine lake ecosystem. — Water, 

Air, and Soil Pollution 130: 1391–1396. 

Fox, H.M. 1949: On Apus: its rediscovery in Britain, nomenclature and habit. — 

Proceedings of the Zoological Society of London 119: 693–702. 

France, R.L. 1983: Response of the crayfish Orconectes virilis to experimental 

acidification of lake with special reference to the importance of calcium, in: 

Freshwater Crayfish — V. Papers from the Fifti Int. Symp. on Freshwater 

Crayfish, Davis, California, USA, 1981: — Ed. C.R. Goldman. — Avi 

Publishing Company, Inc., West Port. Connecticut. 98–111. 

Frey, D.G. 1993: The penetration of Cladocera into saline waters. — 

Hydrobiologia 267: 233–248. 

Førland, E.J., Benestad, R., Hanssen-Bauer, I.,Haugen, J.E. & Skaugen, T.E. 

2011: Temperature and precipitation development at Svalbard 1900–2010. 

— Advances in Meteorology 2011: 1–14. 

Gerhardt, A. 1995: Monitoring behavioural responses to and effects of metals in 

Gammarus pulex (Crustacea) with impedance conversion. — Environmental 

Science and Pollution Research 2: 15–23. 

Gossiaux, D.C., Landrum, P.F. & Tsymbal, V.N. 1992: Response of the amphipod 

Diporeia spp. to various stressors: cadmium, salinity, and temperature. — 

Journal of Great Lakes Research 18: 364–371. 

Green, J. 1966: Seasonal variation in Egg Production by Cladocera. — Journal of 

Animal Ecology 35: 77–104. 

Grulke, N.E., Riechers, G.H., Oechel, W.C, Hjelm, U. & Jaeger, C. 1990: Carbon 

balance in tussock tundra under ambient and elevated atmospheric CO2. — 

Oecologia 83: 485–494. 

Hartley, C.H. & Fisher, J. 1936: The marine food of birds in an inland fjord region 

in west Spitsbergen: Part 2. Birds. — Journal of Animal Ecology 5: 370–

389. 



134 

 

Havas, M., & Hutchinson, T.C. 1982: Aquatic invertebrates from the Smoking 

Hills, N.W.T. Effect of pH and metals on mortality. — Canadian Journal of 

Fisheries and Aquatic Sciences 39: 890–903. 

Havas, M., & Hutchinson, T.C. 1983: Effect of low pH on the chemical 

composition of aquatic invertebrates from tundra ponds at the Smoking 

Hills, N.W.T., Canada. — Zoology-revue Canadienne de Zoologie 61: 241–

249. 

Haxo F. 1950: Carotenoids in the mushroom Cantharellus cinnabarinus. — 

Botanical Gazette 112: 228–232. 

Heath, D.J. 1974: Seasonal change in frequency of the “yellow“ morph of the 

isopod Sphaeroma rugicauda. — Heredity 32: 299–307. 

Hennemann, F.H., Conle, O.V., Gottardo, M. & Bresseel, J. 2009. On certain 

species of the genus Phyllium Illiger, 1798, with proposals for an intra-

generic systematization and the descriptions of five new species from the 

Philippines and Palawan (Phasmatodea: Phylliidae: Phylliinae: Phylliini) — 

Zootaxa 2322: 1–83. 

Hertzberg S. & Liaaen-Jensen S. 1966: The carotenoids of blue-green algae - II. 

The carotenoids of Aphanizomenon Flos-Aquae. — Phytochemistry 5: 565–

570. 

Hessen, D.O. 1996: Competitive trade-off strategies in Arctic Daphnia linked to 

melanism and UV-B stress. — Polar Biology 16: 573–579. 

Hessen, D.O., Rueness, E.K. & Stabell. M. 2004: Circumpolar analysis of 

morphological and genetic diversity in the Notostraca Lepidurus arcticus. 

— Hydrobiologia 519: 73–84. 

Hesthagen, T. & Sandlund, O.T. 2010: NOBANIS – Invasive Alien Species Fact 

Sheet – Phoxinus phoxinus – From: Online database of the North European 

and Baltic Network on Invasive Alien Species — NOBANIS 

www.nobanis.org, Date of access 8/4/2011. 

Hobaek, A & Raddum, G.G. 1980: Zooplankton Communities in Acidified 

Regions of South Norway. — SNSF-prosjektet IR, 75/80, 132 p. 

Holm, T.M., Koinig, K.A., Andersen, T., Donali, E., Hormes, A., Klaveness, D. & 

Psenner, R. 2011: Rapid physicochemical changes in the high Arctic Lake 

Kongressvatn caused by recent climate change. — Aquatic sciences: 

Research Across Boundaries 1–11. 

Hämäläinen, H. & Huttunen, P. 1990: Estimation of acidity in streams by means 

of benthic invertebrates: evaluation of two methods. — In: P. Kauppi, P. 

Anttila & K. Kenttämies (Eds.), — Acidification in Finland, — Springer, 

Berlin, 1051–1070. 

Intergovernmental panel on Climate Change (2001) Climate Change 2001: 

Impacts, Adaptation, and Vulnerability, Contribution of Working Group II 

to the Third Assessment report of the Intergovernmental Panel on Climate 

Change. — Cambridge University Press, Cambridge Journals, U.K. 1032 p. 

Intergovernmental panel on Climate Change (2007) Climate Change 2007: 

Synthesis report. Contribution of Working Groups I, II and III to the Fourth 

Assessment report of the Intergovernmental Panel of Climate Change, — 

IPCC, Genève, Switzerland, 104 p. 

Jacobs, G.H. 1992: Ultraviolet vision in vertebrates. — American Zoologist 32: 

544–554. 



135 

 

James, R.T., Havens, K., Zhu, G. & Qin, B. 2009: Comparative analysis of 

nutrients, chlorophyll and transparency in two large shallow lakes (Lake 

Taihu, P.R. China and Lake Okeechobee, USA). — Hydrobiologia 627: 

211–231. 

Jefferies, R.L., Jano, A.P. & Abraham, K.F. 2006. A biotic agent promotes large-

scale catastrophic change in the coastal marshes of Hudson Bay. — Journal 

of Ecology 94: 234–242. 

Jeppesen, E., Christoffersen, K, Landkildehus, F., Lauridsen, T., Amsinck, S.L., 

Riget, F. & Søndergaad, M. 2001: Fish and crustaceans in northeast 

Greenland lakes with special emphasis on interactions between Arctic charr 

(Salvenus alpinus), Lepidurus arcticus and benthic chydorids. — 

Hydrologia 442: 329–337. 

Jeppesen, E., Jensen, J.P., Jensen, C., Faafeng, B., Hessen, D.O., Søndergaard, M, 

Lauridsen, T., Brettum, P. & Christoffersen, K. 2003: The Impact of 

Nutrient state and lake Depth on Top-down Control in the Pelagic Zone of 

Lakes: A Study of 466 Lakes from the temperate Zone to the Arctic. —

Ecosystems 6: 313–325. 

Johansen, F. 1911: Freshwater life in North-East Greenland. — Meddelelser om 

Grønland 45: 321–337. 

Johansen, F. 1922: Rep. Canadian Arctic Expedition 1913-18. — Vol.VII. 

Crustacea, Part G. Euphyllopoda. — Ottawa 1–34. 

Jónsdóttir, I.S. 2005: Terrestrial ecosystems on Svalbard: heterogeneity, 

complexity and fragility from an Arctic Island perspective. — Biology and 

Environment, 105 B: 155–165. 

Klemetsen, A. 1967: On the feeding habits of the population of brown trout 

(Salmo trutta L.) in Jølstervann, west Norway. — Nytt Magasin for Zoologi 

15: 50–67. 

Klemetsen, A., Amundsen, P.-A., Dempson, J.B., Jonsson, B., Jonsson, N., 

O’Connell, M.F. & Mortensen, E. 2003: Atlantic salmon Salmo salar (L.), 

brown trout Salmo trutta (L.) and Arctic charr Salvelinus alpinus (L.): a 

review of aspects of their life histories. — Ecology of Freshwater Fish 12: 

1–59. 

Klemetsen, A., Amundsen, P.-A., Knudsen, R. & Hermansen, B. 1997: A 

profundal, winter-spawning morph of Arctic charr Salvelinus alpinus (L.) in 

lake Fjellfrøsvatn, northern Norway. — Nordic Journal of Freshwater 

Research 73: 13–23. 

Klemetsen, A., Elliot, J.M., Knudsen, R. & Sørensen, P. 2002: Evidence for 

genetic differences in the offspring of two sympatric morphs of Arctic charr. 

— Journal of Fish Biology 60: 933–950. 

Koli, L. 1955: Beiträge zur Kenntnis der Euphyllopodenfauna Finnlands. — 

Archivum societatis zoologicae botanicae fennicae Vanamo. 11: 109–111. 

Korhola, A. & M. Rautio 2001: Cladocera and other branchiopod crustaceans. 

— In: J.P. Smol, H.J.B. Birks & W.M. Last (eds.), Tracking Environmental 

Change Using Lake Sediments Volume 4: Zoological Indicators. —  Kluwer 

Academic Publishers, Dordrecht. pp 5–41. 

Krause, J. 1993. The effect of “Schreckstoff” on the shoaling behaviour of the 

minnow: a test of Hamilton`s selfish herd theory. — Animal Behaviour 45: 

1019–1024. 



136 

 

Lien, L., Raddum, G.G. & Henriksen, A. 1996: A critical limit for acid 

neutralizing capacity in Norwegian surface waters, based on new analyses 

of fish and invertebrate responses. — The Science of the Total Environment 

177: 173–193. 

Longhurst, A.R., 1955: A review of the Notostraca. Bulleting of the British 

museum (Natural History) — Zoology 3: 1–57. 

Loureiro, S., Sampaio, A., Brandão, A., Nogueira, A.J.A. & Soares, A.M.V.M. 

2006: Feeding behavior of the terrestrial isopoda Porcellionides pruinosus 

Brandt, 1833 (Crustacea, Isopoda) in response to change in food quality and 

contamination. — Science of the Total Environment 369: 119–128. 

Lynch, J.E., 1966: Lepidurus lemmoni Holmes: A description with notes on 

variation and distribution. — Transactions of the American Microscopical 

Society 85: 181–192. 

Löffler, H. 1993: Anostraca, Notostraca, Laevicaudata and Spinicaudata of the 

Pannonian Region and in its Austrian area. — Hydrobiologia 264: 169–174. 

MacIsaac, H.J. & Gilbert, J.J. 1989: Competition between rotifers and cladocerans 

of different body sizes. — Oecologia 81: 295–301. 

Mackay, J.R. 1995: Active layer change (1968–1993) following the forest-tundra 

fire near Inuvik, N.W.T., Canada. — Arctic and Alpine Research 27: 323–

336. 

Mantovani. B., Cesari. M. & Scanabissi. F. 2004: Molecular taxonomy and 

phylogeny of the ’living fossil’ lineages Triops and Lepidurus 

(Branchiopoda: Notostraca). The Norwegian Academy of Science and 

Letters. — Zoologica Scripta 33: 367–374. 

Maund, S.J., Taylor, E.J. & Pascoe, D. 1992: Population responses of the 

freshwater amphipod crustacean Gammarus pulex (L.) to copper. — 

Freshwater Biology 28: 29–36. 

McCurdy, D.G., Forbes, J.M. & Boates, J.S. 1999: Evidence that the parasitic 

nematode manipulates host behavior to increase transmission to the 

sandpiper. — Behavioral Ecology 10: 351–357. 

Merilaita, S. 2003: Visual background complexity facilitates the evolution of 

camouflage. — Evolution 57: 1248–1254. 

Miller, M. C. 1980: Tadpole shrimp. In Hobbie, J.E (eds), Limnology of Tundra 

Ponds. Barrow, Alaska. — U.S./IBP Synthesis Series 13: 323–335. 

Mitsch, W.J. & Gosselink, J.G. 1993: Wetlands. Van Nostrand Reinhold, New 

York. 722 p. 

Molot, L.A., Keller, W., Leavitt, P.R., Robarts, R.D., Waiser, M.J., Arts, M.T., 

Clair, T.A., Pienitz, R., Yan, N.D., McNicol, D.K., Prairie, Y.T., Dillon, 

P.J., Macrae, M., Bello, R.,Nordin, R.N., Curtis, P.J., Smol, J.P., Douglas, 

M.S.V.Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R. & 

Douglas, M., 2004: Risk analysis of dissolved organic matter- mediated 

ultraviolet B exposure in Canadian inland waters. — Canadian Journal of 

Fisheries and Aquatic Sciences 53: 2511–2521. 

Montague, F.A. 1925: British birds. — 19: 138–44. 

Moore, J.J., Mires, Bliss. L.C., Heal, O.W. & Moore, J.J. 1981: Tundra 

Ecosystems: A Comparative Analysis. — Cambridge University Press, 

Cambridge, UK. pp. 35–37. 



137 

 

Nicholas, J.R.J. & Hinkel, K.M. 1996: Concurrent permafrost aggregation and 

degradation induced by forest clearing, Central Alaska, U.S.A. — Arctic 

and Alpine Research 28: 294–299. 

Niemistö, J. 2008: Sediment resuspension as a water quality regulator in lakes. — 

Department of Biological and Environmental Sciences, University of 

Helsinki, Finland. ISBN 978-952-10-4948-4 (PDF). 1–47. 

Nijhout, H.F. 2001. Elements of butterfly wing patterns. — Journal of 

Experimental Zoology 291: 213–225. 

Nisbit, E.G. 1989: Some northern sources of atmospheric methane: Production, 

history, and future implications. — Canadian Journal of Earth Sciences 

123: 2039–2046. 

Norwegian Meteorological Institute home page 15.11.2011. 
http://retro.met.no/observasjoner/svalbard/normaler_for_kommune_2111.html 

Nuorteva, P. 1963: Miten hyönteiset valitsevat ravintokasvinsa. — Feromonit – 

yksilöiden välisiä hormooneja. — Nuorteva, P. Hyönteismaailman ihmeitä. 

— Werner Söderström osakeyhtiön kirjapaino. pp. 126–155.  

Økland, J. & Økland, K.A. 1986: The effects of acid deposition on bethic animals 

in lakes and streams. Birkhäuser Verlag, CH-4010 Basel/Switzerland. — 

Experientia 42: 471–486. 

Oechel, W.C., Hasting, S.J., Vourlitis, G., Jenkins, M., Riechers, G. & Grulke, N. 

1993: Recent change of Arctic tundra ecosystems from a net carbon dioxide 

sink to a source. — Nature 361: 520–523. 

Overpeck, J., Hughen, K., Hardly, D., Bradley, R., Case, R., Douglas, M., Finney, 

B., Gajewski, K., Jacoby, G., Jennings, A., Lamoureux, S., Lasca, A., 

MacDonald, G., Moore, J., Retelle, M., Smith, S., Wolfe, A. & Zielinski, G. 

1997: ‘Arctic Environmental Change of Last Four Centuries’. — Science 

278: 1251–1256. 

Oxford, G.S. & Gillespie, R.G. 1998: Evolution and ecology of spider coloration. 

— Annual Review of Entomology 43: 619–643. 

Pattee, E., 1965: Sténothermie et eurythermie des invertébres d´eau douce at la 

variation journaliére de température. — Annales de Limnologie 1: 281–434. 

Pienitz, R.J., Walker, I.A., Zeeb, B.P., Smol, J.R. and Leavitt, P.R. 1992: 

Biomonitoring past salinity changes in an athalassic subarctic lake. — 

International Journal of Salt Lake Research 1(2):91–123. 

Poulsen, E.M., 1940a: Freshwater Entomostraca in East Greenland. — 

Meddelelser om Grønland 131: 1–50. 

Poulsen, E.M., 1940b: Biological remarks on Lepidurus arcticus Pallas, Daphnia 

pulex de Greer and Chydorus sphaericus O.F.M. in East Greenland. —

Meddelelser om Grønland 131: 1–50 

Primicerio, R. & Klemetsen, A. 1999: Zooplankton seasonal dynamics in the 

neighbouring lakes Takvatn and Lombola (Northern Norway). —

Hydrobiologia 411: 19–29. 

Prowse, T.D., Wrona, F.J., Reist, J.D., Hobbie, J.E., Lévesque, L.M.J., & Vincent, 

F., 2006: General features of Arctic relevant to climate change in freshwater 

ecosystem, Royal Swedidh Academy of Sciences, AMBIO: — A Journal of 

the Human Environment 35: 33–338. 

http://retro.met.no/observasjoner/svalbard/normaler_for_kommune_2111.html


138 

 

Raethke, N., MacDiarmic, A.B. & Montgomery, J.C. 2004: The role of olfaction 

during mating in the southern temperate spiny lobster Jasus edwardsii. — 

Hormones and Behavior 46: 311–318. 

Rautio, M., Bonilla, S. & Vincent, W.F. 2009: UV photoprotectants in arctic 

zooplankton. — Aquatic Biology 7: 93–105. 

Régnard, P. & Blanchard, R. 1883: Note sur la présence de hémoglobine dans le 

sang des crustacées branchiopodes. — Comptes Rendus des Seances de la 

Societa de Biologie et des ses Filiales (Paris), 5: 197. 

Roff, D.A. 1992. The Evolution of Life Histories: Theory and Analysis. — New 

York, Chapman & Hall. pp. 213–219. 

Röen, U.I. 1962: Studies on Freshwater Entomostraca in Greenland. II. localities, 

Ecology, and Geographical Distribution of the Species. (Reprint from 

Meddelelser om Grönland Bd.170, No2.) Köpenhamm. 

Rønning, O.I., 1996: The flora of Svalbard. — Norwegian Polar Institute. ISBN 

82-7666-100-9. pp. 21–22, 155–158. 

Salemaa, H. 1978: Geographical variability in the colour polymorphism of Idotea 

baltica (Isopoda) in the northern Baltica. — Herreditas 88:165–182. 

Salomonsen, F. & Johansen, G. 1950: Grønlands fugle. The birds of Greenland. 

— Munksgaard, Københaven 607 p. 

Saperstein, S. & Starr M.P. 1954: The ketonic carotenoid canthaxanthin isolated 

from a colour mutant of Corynebacterium michiganense. — Biochemical 

Journal 57: 273. 

Sars, G.O., 1896: Section II. Notostraca. — Fauna Norvegica pp. 66–83, Tab. XI, 

XII and XII. 

Sayenko, E.M. & Minakawa, N. 1999: Occurrence or two species of crustaceans, 

Branchinecta paludosa (O. F. Müller, 1788) (Anostraca) and Lepidurus 

arcticus (Pallas, 1793) (Notostraca), on the Kuril Archipelago. — 

Crustaceana 72: 710–712. 

Schindler, D.W. & Turner, M.A. 1982: Biological, chemical and physiological 

responses of lakes to experimental acidification. — Water Air Soil Pollution 

18: 259–271. 

Schindler, D.W., Curtis, P.J., Parker, B.R. & Stainton. 1996: Consequences of 

climate warming and lake acidification for UV-B penetration in North 

American boreal lakes. — Nature 379: 705–707. 

Scott, D. & Irvine, J.R. 2000: Competitive exclusion of brown trout Salmo trutta 

L., by rainbow trout Oncorhynchus mykiss Walbaum, in lake tributaries, 

New Zealand. — Fisheries Management and Ecology 7: 225–237. 

Schneider, B. 2000: Spawning microhabitat selection by brown trout in the 

Linthkanal, a mid-sized river. — Journal of Freshwater Ecology 15: 181–

187. 

Serreze, M. C., Walsh, J. E., Chaplin, F.S., Osterkamp, T., Dyurgerov, M., 

Romanovsky, V., Oechel, W.C., Morison, J., Zhang, T. & Barry, R.G. 2000: 

Observational Evidence of Recent Change in the Northern High-Latitude 

Environment, — Climate Change 46: 159–207. 

Scholander, P.F., Flagg, W., Hock, R.J. & Irving, L. 1953: Studies on the 

physiology of frozen plants and animals in the Arctic. — Journal of 

Cellular and Comprative Physiology 42: 1–56. 



139 

 

Silva, L.F.O., Wollenschlager, M. & Oliveira, M.L.S. 2011: A preliminary study 

of coal mining drainage and environmental health in the Santa Catharina 

region, Brazil. — Environmental Geochemistry and Health. 33: 55–65. 

Sprague, J.B. 1971: Measurement of pollutant toxicity to fish III. Sublethal effects 

and ‘safe’ concentrations. —  Water Research 5: 245–266. 

Stange, R. 2009: Spitsbergen– Svalbard. A complete guide around the arctic 

archipelago. — Druckerei Karl Keuer. pp. 286, 313–314. 

Summerhayes, V.S. & Elton, C.S. 1923: Contributions to the ecology of 

Spitsbergen and Bear Island. — Journal of Ecology 11: 214–286. 

Sutcliffe, D.W., Carrick, T.R., Charmier, A.C., Gladhill, T., Jones, J.G., Marker, 

A.F.H. & Willoughby, L.G. 1986: Effects of air pollution on aquatic 

ecosystems. — Proceedings of Workshop from Royal Norwegian Scientific 

Council, Sandefjord, Norway, pp. 37–77. 

Svenning. M-A. & Gullestad. N. 2002: Adaptations to stochastic environmental 

variations: the effects of seasonal temperatures on the migratory window of 

Svalbard Arctic charr. — Environmental Biology of Fishes 64: 165–174. 

Stumm, W. & Morgan, J.J. 1981: Aquatic chemistry. An introduction 

emphasizing chemical equilibria in natural waters. John Wiley & Sons, New 

York 780 p. 

Sømme, S. 1934: Contributions to the Biology of Norwegian fish food animals. I. 

Lepidurus arcticus. — Avhandl Norske Vidensk Akad 6: 1–36. 

Tammi, J., Appelberg, M., Beier, U., Hesthagen, T., Lappalainen, A. & Rask. M. 

2003: Fish status survey of nordic lakes: Effects of acidification, 

eutrophication and stocking activity on present fish species composition. — 

Royal Swedish Academy of Sciences  2: 98–105. 

Tammi, J., Lappalainen, A., Mannio, J., Rask, M., & Vuorenmaa, J. 1999: Effects 

of eutrophication on fish and fisheries in Finnish lakes – a survey based on 

random sampling. — Fisheries Management and Ecology 6: 1–14. 

Tessier, A.J., 1986: Comparative population regulation of two planktonic 

Cladocera (Holopedium gibberum and Daphnia catawba). — Ecology 67: 

285–302. 

Tietze, N.S. & Mulla. M.S. 1991: Biological control of Culex mosquitoes 

(Diptera: Culicidae) by the tadpole shrimp, Triops longicaudataus 

(Notostraca: Triopsidae). — Journal of Medical Entomology 28: 24–31. 

Thompson, E., Palocios, A. & Varela, F.J. 1992: Ways of coloring: comparative 

color vision as a case study for cognitive science. — Behavioral and Brain 

Sciences 15: 1–74. 

Thorp, J.H. & Covich, A.P. 2001: Ecology and classification of North American 

freshwater invertebrates. — Second edition. Academic Press, USA. pp. 

777–787, 891–904. 

Tirri. R., Lehtonen. J., Lemmetyinen. R., Pihakaski. S. & Portion. P. 2001: 

Biologian sanakirja. — Kustannusyhtiö Otava. ISBN 951-1-17618-8, pp. 

177, 588. 

Van Donk, E., Faafeng, B.A., de Lange, H.J. & Hessen, D.O. 2001: Differential 

sensitivity to natural ultraviolet radiation among phytoplankton species in 

Arctic lakes (Spitsbergen, Norway). — Plant Ecology 154: 249–259. 

Van Geest, G.J., Hessen, D.O., Spierenburg, P., Dahl-Hansen, G.A.P., 

Christensen, G., Faerovig, P.J., Brehm, M., Loonen, M.J.J.E. & Van Donk, 



140 

 

E. 2007: Goose-mediated nutrient enrichment and planktonic grazer control 

on arctic freshwater ponds. — Oecologia 153: 653–662. 

van Gool, E. & Ringelberg, J. 1996: Daphnids respond to algae-associated odours. 

— Journal of Plankton Research 18: 197–202. 

Vekhoff, N.V. 1997: Large branchiopod Crustacea (Anostraca, Notostraca, 

Spinicaudata) of the Barents Region of Russia. — Hydrologia 359: 69–74. 

Verschuren, D., Tibby, J., Sabbe, K. and Roberts, N. 2000. Effects of depth, 

salinity, and substrate on the invertebrate community of a fluctuating 

tropical lake. — Ecology 81: 164–182. 

Visser, J.H. and Nielsen, J.K. 1977: Specificity in the olfactory orientation of the 

colorado beetle, Leptinotarsa decemlineata. — Entomologia Experimentalis 

et Applicata 21: 14–22. 

Väre, H. & Partanen, R. 2009: Suomen Tunturikasvio. — Metsäkustannus oy, 

Hämeenlinna. ISBN 978-952-5694-40-6, pp. 51, 78–79. 

Wetzel, R.G. 2001: Limnology. Lake and River Ecosystems. 3nd edition. — 

Academic Press, Londonm, UK, pp. 89–90, 169, 283, 733. 

Wingstrand, K.G. 1951. The mountain fauna of the Virihaure area in Swedish 

Lapland. — Crustacea 46: 150–159. 

Wolvekamp, H.P. & Waterman, T. 1960: Respiration: In: T.Waterman, (ed), The 

physiology of Crustacea. — Academic Press, New York. 1: 35–100. 

Wojtasik, B. & Brylka-Wolk, M. 2010: Reproduction and genetic structure of a 

freshwater crustacean Lepidurus arcticus from Spitsbergen. — Polish Polar 

Research 31 (1): 33–44. 

 

 



141 

 

8. Appendices 
 

Appendix 1. Bird and mammal observations near the ponds in Longyearbyen, Kapp Linné , Pyramiden, Ny-Åledund and Northern coast of 

Spitsbergen. The bird and mammal observation were made near the ponds. **=  large numbers (>10) of birds, ***= large flock (>15) of 

birds, x= sound of geese was heard near the pond and – = vertebrate not seen near to the pond. 
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Birds            –            
Branta leucopsis, adult 9 ***   6  8 2     8 13 48  5  11 9  48 x 
Branta leucopsis, chick 4      5      3 10     10     

Sterna paradisaea    5 3  6 1 2 **   4       5 ***  1 
Calidris maritima 1     1  2        2  4 3 1    

Calidris alpina   1                     
Phalaropus fulicarius       1   1              

Stercorarius parasiticus    1   1        4  1 3 5   1  
Pagophila eburnea        1 1 1              

Rissa tridactyla        19  13   1           
Larus hyperboreus       1      7           

Northern fulmar             2           
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Plectrophenax nivalis 2 **      1   1     2        

Cepphur grylle        1                
Gavia stellata       2                 

Clangula hyemalis       2                 

Mammals                        

Alopex lagopus 1     1        1 1 1        
Rangifer tarandus platyrhynchus 1      3      2      3     

Ursus maritimus         1               
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Appendix 2. Vegetation type, moss cover, plants observations near the ponds in Longyearbyen, Kapp Linné , Pyramiden, Ny-Åledund and 

Northern coast of Spitsbergen. The vegetation observation were made 0–25 m from the pond shore. N/O=  not observation made, – = 

higher plant not seen near to the pond, H= high moss cover, M= medium moss cover, L= low moss cover. 
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N/o 

 

N/o 
  

Moss tundra community       x x x x x x x  x    x   x  
Mountain Sorrel community                       x 

Willow-field horsetail community x x    x        x    x      
Shore-meadow community     x                   

Poorly developed vegetation    x            x x       

Moss cover H H N/o L L M H M H H M M H L H L L L M N/o N/o H L 

Plants   N/o     –    – –  – –    N/o N/o –  

Oxyria digyna           x            x 
Saxifraga oppositifolia       x       x     x     

Saxifraga cespitosa       x  x x    x   x  x     
Saxifraga rivularis          x              
Saxifraga cernua      x                  

Saxifraga foliolosa                 x       

Salix polaris x x    x x       x    x      
Poa arctica      x                  

Deschampsia      x                  
Grass x x   x    x x             x 

Green algae    x                    
Lichen              x    x     x 
Fungi             x           

Cyanobacteria mat                x        



143 

 

Appendix 3. The bottom quality (range of 0–3; 0 = none, 1 = few, 2 = common, 3 = plenty), the sediment colour and the largest primary 

producerse in the ponds. x = predominat type, N/A = data is not available 
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Bottom quality    

N/A                   

N/A 
 

  

Blocks (>200 mm) 0 0  1 0 1 1 1 0 1 2 1 1 1 1 0 0 1 1 0  0 1 
Large stones (60–200 mm) 1 0  2 0 1 3 2 2 2 1 1 1 3 1 1 2 2 1 0  0 3 

Small stones (20–60 mm) 1 1  1 0 1 2 2 2 2 1 2 2 2 2 2 3 3 2 1  0 3 
Gravel (2–20 mm) 0 0  1 1 0 1 2 1 1 1 2 1 2 0 1 1 0 1 1  1 1 
Sand (0.02–2 mm) 1 0  1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1  1 1 

Clay/sludge 3 2  3 2 3 2 3 1 1 3 3 3 1 3 1 2 1 3 3  3 1 
Fine detritus 1 1  0 0 1 0 1 2 1 0 0 1 1 0 1 1 1 1 1  0 0 

Coarse detritus 0 2  0 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1  1 0 
Timber, (*plank, +bark) 

Coal 
+1 
1 

0 
0 

 0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

*2 
0 

0 
0 

0 
0 

0 
0 

1 
0 

0 
0 

0 
0 

0 
0 

 0 
0 

0 
0 

Sediment colour   N/A           N/A      N/A    
Black x x  x x  x x x x   x  x x x    x x  

Dark grey         x   x   x x x x      
Grey         x         x     x 

Dun           x             
Dark brown    x x    x               

Brown        x x x      x x x x     
Light brown 

Tan 
Reddish orange 

      x 
x 

         
 
x 

 
 
x 

x   x   
 
x 

Reddish brown            x            
Reddish                      x  

Green 
Aquatic “vegetation” e.g. 
photosynthetic mosses, bacteria 
and algae 

 
Bryophyta 

Cyanobacteria 
Green algae balls 
Green algae mats 
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Appendix 4. Logyearbyen water chemistry and sediment property. N/A = value not available, Longye. = Longyearbyen, Advent. 2 = 

Adventdalen second pond, Advent. 3 = Adventdalen third pond. 

Site Water  
surface 

T °C 

Sediment 
surface  

T °C 

Sediment  
 

T °C 

Salinity 
 

‰ 

Cond. 
 

µS cm-1 

pH O2 

 
% 

O2 

 
mg L-

1 

Distance 
from the 

sea 
(km) 

Distance 
from the 
glacier 
(km) 

Date Latitude 
 

(°N) 

Longitude 
 

(°W) 

Longye. 1.0 0.9 0.3 0.1 201.1 6.4 46.8 4.5 4.2 1.7 7.7.2010 78°12.147´ 015°34.457´ 

Dammyra 4.2 4.3 -1.4 1.2 2453.3 7.2 47.3 5.2 2.8 5.5 31.7.2010 78°12.171´ 015°45.877´ 

Advent. 2 4.1 4.1 4.3 0.1 277.7 6.3 52.1 6.5 0.3 5.0 18.8.2010 78°13.130´ 015°41.483´ 

Advent. 3 
Nybyen 

N/A 
4.2 

N/A 
4.3 

N/A 
3.7 

0.2 
0.1 

484.7 
288.7 

8.0 
7.2 

58.0 
55.1 

6.4 
7.1 

0.3 
3.5 

5.1 
1.7 

23.8.2010 
6.9.2010 

78°13.004´ 
78°11,824´ 

015°42.344´ 
015°34,993´ 

              

Mean 2.9 3.0 1.8 0.5 741.1 7.1 51.5 5.8 2.2 3.8    

Median 3.6 3.8 2.7 0.2 288.7 7.2 51.7 5.9 2.8 5.0    

Maximum 4.2 4.3 4.2 1.5 2453.3 8.0 58.0 7.1 4.2 5.5    

Minimum 0.2 0.2 -1.4 0.1 201.1 6.3 46.8 4.5 0.3 1.7    

 

Site tot N 
mg L -1 

tot P 
µg L -1 

TN:TP TOC 
mg L -1 

DOC 
mg L -1 

OM 
% 

Sediment 
moisture 

content % 

Chl 
> 2.7 
µm 

µg L-1 

Chl 
2.7–0,7 

µm 
µg L -1 

tot Chl  
 µg L-1 

Moss 
cover %  
 25 m 

Goose 
droppings 
25 m 

L. arcticus 
density 

m2 

Longyea. 0.155 23.3 7:1 0.9 1.0 15.8 42.3 N/A N/A N/A 61–100 medium 0 

Dammyra 0.555 16.0 35:1 8.7 6.6 43.8 89.2 N/A N/A N/A 31–60 high N/A 

Advent. 2 0.440 30.3 15:1 0.9 0.7 8.9 39.4 N/A N/A N/A 11–30 low 1 

Advent. 3 
Nybyen 

0.345 
0.285 

11.0 
66.0 

31:1 
4:1 

5.5 
3.8 

4.3 
2.8 

11.5 
4.4 

47.7 
39.6 

N/A 
3.08 

N/A 
0.17 

N/A 
3.24 

11–30 
31–60 

low 
low 

N/A 
0.5 

              

Mean 0.387 28.0 19:1 4.0 3.1 16.9 51.6       

Median 0.393 22.4 20:1 3.8 2.8 11.5 42.3       

Maximum 0.555 66.0 35:1 8.7 6.6 43.8 89.2       

Minimum 0.155 11.0 4:1 0.9 0.7 4.4 39.4       
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Appendix 5. Kapp Linné water chemistry and sediment property. 

Site Water  
surface 

T °C 

Sediment 
surface  

T °C 

Sediment  
 

T °C 

Salinity 

 
‰ 

Cond. 
 

µS cm-1 

pH O2 

 
% 

O2 

 
mg L-1 

Distance 
from the 

sea 
(km) 

Distance 
from the 
glacier 
(km) 

 

Date Latitude 
 

(°N) 

Longitude 
 

(°W) 

Pond 1 4.2 4.3 -0.5 0.1 271.7 8.2 42.4 4.6 0.3 4.5 12.7.2010 78°04.272´ 013°42.294´ 

Pond 2 4.9 4.7 -1.9 0.1 260.7 8.3 49.4 5.7 0.3 4.5 12.7.2010 78°04.375´ 013°42.423´ 

Pond 3 2.1 2.0 -0.5 0.1 265.7 8.2 45.5 4.7 0.4 4.3 12.7.2010 78°03.632´ 013°40.345´ 

Pond 4 0.5 1.1 0.8 0.1 321.7 8.3 46.0 5.0 0.1 5.2 11.7.2010 78°03.411´ 013°36.716´ 

              

Mean 2.9 3.0 -0.5 0.1 279.9 8.3 45.8 5.0 0.3 4.6    

Median 3.2 3.2 -0.5 0.1 268.7 8.3 45.7 4.9 0.3 4.5    

Maximum 4.9 4.7 0.8 0.1 321.7 8.3 49.4 5.7 0.4 5.2    

Minimum 0.5 1.1 -1.9 0.1 260.7 8.2 42.4 4.6 0.1 4.3    

 

 

Site tot N 

mg L -1 

tot P 

µg L -1 

TN:T
P 

TOC 

mg L -1 

DOC 

mg L -1 

OM 

% 

Sediment 
moisture 

content % 

Chl 

> 3 µm 

µg L -1 

Chl 

3–0.7 µm 

µg L -1 

tot Chl 

µg L -1 

Moss 
cover %  

 25 m 

Goose 
droppings 
25 m 

L. arcticus 
density 

m2 

Pond 1 0.130 25.5 5:1 1.9 1.3 28.5 66.9 2.01 0.19 2.20 61–100    medium 4-8 

Pond 2 0.290 36.5 8:1 2.9 2.1 1.7 66.3 0.90 0.04 0.94 31–60 low 2-14 

Pond 3 0.117 7.1 17:1 2.0 1.3 3.6 28.0 3.18 0.21 3.39 61–100 low 5-7 

Pond 4 0.515 48.0 11:1 2.5 1.7 54.2 84.5 7.92 1.11 9.04 61–100 medium 18 

              

Mean 0.263 29.3 10:1 2.3 1.6 22.0 61.4 3.50 0.39 3.89    

Median 0.210 31.0 9:1 2.3 1.5 16.0 66.6 2.59 0.20 2.79    

Maximum 0.515 48.0 17:1 2.9 2.1 54.2 84.5 7.92 1.11 9.04    

Minimum 0.117 7.1 5:1 2.9 1.3 1.7 28.0 0.90 0.04 0.94    
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Appendix 6. Pyramiden water chemistry and sediment property. N/A = value not available. 

Site Water  
surface 

T °C 

Sediment 
surface  

T °C 

Sediment  
 

T °C 

Salinity 
 

‰ 

Cond. 
 

µS cm-1 

pH O2 

 

% 

O2 

 

mg L-

1 

Distance 
from the 

sea 

(km) 

 

Distance 
from the 
glacier 
(km) 

Date Latitude 
 

(°N) 

Longitude 
 

(°W) 

Pond 5 3.1 3.0 2.1 0.1 140.5 7.0 51.6 5.7 3.6 2.8 16.7.2010 78°39.360´ 016°10.795´ 

Pond 6 2.4 2.4 1.2 0.1 200.2 7.4 52.2 5.9 3.3 2.5 16.7.2010 78°39.271´ 016°11.343´ 

 
 

Site tot N 

mg L -1 

tot P 

µg L -1 

TN:T
P 

TOC 

mg L -1 

DOC 

mg L -1 

OM 

% 

Sediment 
moisture 

content % 

Chl 

> 2.7 µm 

µg L -1 

 

Chl 

2.7–0.7 
µm 

µg L -1 

tot Chl    

µg L-1 

Moss 
cover %  

 25 m 

Goose 
droppings 
25 m 

L. arcticus 
density 

m2 

Pond 5. 0.195 15.5 13:1 1.4 1.0 6.2 26.2 0.34 0.01 0.34 31–60 high N/A 

Pond 6 0.190 11.3 17:1 N/A N/A 18.7 40.0 0.12 0.00 0.13 31–60 high none 
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Appendix 7. The northern coast of Spitsbergen, Kilneset and Polheim water chemistry and sediment property. N/A = value not available. 

Site Water  
surface 

T °C 

Sediment 
surface  

T °C 

Sediment  
 

T °C 

Salinity 
 

‰ 

Cond. 
 

µS cm-1 

pH O2 

 

% 

O2 

 

mg L-1 

Distance 
from the 

sea 
(km) 

 

Distance 
from the 
glacier 
(km) 

Date Latitude 
 

(°N) 

Longitude 
 

(°W) 

Kilneset 2.3 2.4 2.3 0.1 253.5 8.0 45.7 55.4 0.4 12.2 4.8.2010 79°42.176´ 013°22.594´ 

Polheim 5.1 5.2 3.3 0.0 84.4 7.9 46.9 5.1 0.1 6 3.8.2010 79°53.395´ 016°02.337´ 

 

 

Site tot N 

mg L -1 

tot P 

µg L -1 

TN:TP TOC 

mg L -1 

DOC 

mg L -1 

OM 

% 

Sediment 
moisture 
content 

% 

Chl 

> 2.7 
µm 

µg L -1 

Chl 

2.7–0.7 
µm 

µg L -1 

 

tot Chl 
µg L-1 

Moss 
cover %  

 25 m 

Goose 
droppings 
25 m 

L. arcticus 
density 

m2 

Kilneset 0.340 26.0 13:1 3.1 2.5 21.1 44.5 0.45 0.00 0.45 61–100 medium 4 

Polheim 0.310 13.5 23:1 3.0 2.0 1.6 18.3 2.11 0.03 2.14 11–30 low N/A 
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Appendix 8. Ny-Ålesund water chemistry and sediment property 6–9.8.2010. N/A = value not available, Tvillingv.=Tvillingvatnet, 

Storvat.=Storvatnet, Kolhamn.=Kolhamna, Trehyrd1.=Trehyrdingen 1, Brandall.=Brandallaguna, Geese p.=Geese pond and 

Gluudne.=Gluudneset 

Site Water  
surface 

T °C 

Sediment 
surface  

T °C 

Sedi-
ment 
T °C 

Salinity 

‰ 

Cond. 

µS cm-1 

pH O2 

% 

O2 

mg L-1 

Distance 
from the 

sea 

(km) 

Distance 
from the 
glacier 
(km) 

 

Date Latitude 

(°N) 

Longitude 

(°W) 

Solvatnet 1.8 1.8 1.6 0.2 499.3 8.5 79.3 10.1 0.05 2.1 6.8.2010 78°55.´34.22´ 011°56´21.0´ 

Tvillingv. 0.8 0.8 0.1 0.1 163.6 7.4 47.8 5.6 1.2 0.7 7.8.2010 78°55´00.6´ 011°52´25.9´ 

Storvat. 3.1 3.3 3.4 0.1 251.7 8.1 49.7 6.5 0.45 1.4 8.8.2010 78°55´25.9´ 011°52.54.1´ 

Kolhamn. 4.2 4.3 4.3 0.5 973.3 8.0 51.5 6.5 0.1 2.1 9.8.2010 78°56´01.8´ 011°50´55.2´ 

Trehyrd1. N/A N/A N/A 0.5 978.3 8.2 49.9 6.3 0.9 1.7 8.8.2010 78°56.02´0´ 011°49.11´8´ 

Brandall. N/A N/A N/A 0.1 217.0 8.4 50.5 6.5 0.5 1.9 9.8.2010 78°56.27.4´ 011°49´22.6´ 

Geese p. 4.8 3.6 2.7 0.2 408.0 8.7 52.1 6.0 0.26 2.0 7.8.2010 78°55´31.4´ 011°55´21.8´ 

Gluudne. 3.9 4.0 2.2 2.8 5230.0 8.4 52.2 5.7 0.05 1.2 6.8.2010 78°914.6959´ 012°0633493´ 

              

Mean 3.1 3.0 2.4 0.6 1090.2 8.2 54.1 6.6 0.44 1.6    

Median 3.5 3.5 2.5 0.2 453.7 8.3 51.0 6.4 0.36 1.8    

Maximum 4.8 4.3 4.3 2.8 5230.0 8.7 79.3 10.1 1.20 2.1    

Minimum 0.8 0.8 0.1 0.1 163.6 7.4 47.8 5.6 0.05 0.7    
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Appendix 8 continues. Ny-Ålesund water chemistry and sediment property 6–9.8.2010. N/A = value not available. 

Site tot N 

mg L -1 

tot P 

µg L -1 

TN:TP TOC 

mg L 
-1 

DOC 

mg L -1 

OM 

% 

Sediment 
moisture 

content % 

Chl 

> 2.7 
µm 

µg L -1 

Chl 

2.7–0.7 
µm 

µg L -1 

 

tot Chl 
µg L-1 

Moss 
cover %  

 25 m 

Goose 
droppings 
25 m 

L.arcticus 
density 

m2 

Solvatnet 1.050 50.5 21:1 13.0 8.5 30.8 64.8 2.19 0.03 2.23 61–100 medium 0 

Tvillingv. 0.065 3.6 18:1 0.9 0.6 3.6 24.7 0.26 0.01 0.28 11–30 low 0 

Storvatnet 0.445 69.5 6:1 6.0 3.9 N/A N/A N/A N/A N/A 31–60 low 1.6 

Kolhamna 0.340 8.6 39:1 2.8 1.8 15.6 69.2 2.54 0.04 2.58 11–30 low 1.6-3.3 

Trehyrdingen1 0.410 18.5 22:1 4.9 3.7 N/A N/A N/A N/A N/A 11–30 none 2.2 

Brandallaguna 0.315 20.0 16:1 52.0 57.0 N/A N/A N/A N/A N/A 31–60 medium N/A 

Geese pond 0.315 89.0 4:1 4.1 3.0 N/A N/A N/A N/A N/A N/A N/A none 

Gluudneset 
 

0.540 30.5 18:1 N/A N/A N/A N/A N/A N/A N/A N/A N/A none 

Mean 0.435 36.3 18:1 12.0 11.2 16.7 52.9 1.66 0.03 1.70    

Median 0.375 25.3 18:1 4.9 3.7 15.6 64.8 2.19 0.03 2.23    

Maximum 1.050 89.0 39:1 52 57 30.8 69.2 2.54 0.04 2.58    

Minimum 0.065 3.6 4:1 0.9 0.6 3.6 24.7 0.26 0.01 2.23    
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Appendix 9. Ny-Ålesund water chemistry and sediment property 30.8–2.9.2010. N/A = value not available, Storvat.=Storvatnet, 

Tvillingv.=Tvillingvatnet, Trehyrd1.=Trehyrdingen 1, Treyrd2.=Trehyrdingen 2, Brandall.=Brandallaguna and Kolham.=Kolhamna. 

Site Water  
surface 

T °C 

Sediment 
surface  

T °C 

Sedi-
ment 
T °C 

Salinity 

‰ 

Cond. 

µS cm-1 

pH O2 

% 

O2 

mg L-1 

Distance 
from the 

sea 

(km) 

Distance 
from the 
glacier 
(km) 

Date Latitude 

 

(°N) 

Longitude 

 

(°W) 

Solvatnet 4.1 4.2 4.0 0.2 409.7 7.9 53.0 6.9 0.05 2.1 31.8.2010 78°55.´34.22´ 011°56´21.0´ 

Storvat. 4.5 4.4 4.4 0.1 270.0 7.8 51.9 7.7 0.45 1.4 1.9.2010 78°55´25.9´ 011°52.54.1´ 

Tvillingv. 4.5 4.4 4.4 0.1 223.2 7.4 51.9 7.1 1.2 0.7 2.9.2010 78°55´00.6´ 011°52´25.9´ 

Trehyrd1. 5.2 5.3 4.6 0.1 190.0 7.9 51.8 6.8 0.9 1.7 30.8.2010 78°56.02´0´ 011°49.11´8´ 

Trehyrd1. 3.3 3.4 3.7 N/A N/A N/A N/A N/A 0.9 1.7 1.9.2010 78°56.02´0´ 011°49.11´8´ 

Trehyrd2. 5.4 5.5 4.6 0.03 84.0 7.2 53:2 7.0 1.3 1.3 31.8.2010 78°56.54.5´ 011°48´51.4´ 

Trehyrd2. 3.7 3.7 3.5 N/A N/A N/A N/A N/A 1.3 1.3 1.9.2010 78°56.54.5´ 011°48´51.4´ 

Brandall. 4.5 4.4 4.7 0.13 309.0 8.1 52.2 7.5 0.5 1.9 31.8.2010 78°56.27.4´ 011°49´22.6´ 

Brandall. 3.1 3.2 3.4 N/A N/A N/A N/A N/A 0.5 1.9 1.9.2010 78°56.27.4´ 011°49´22.6´ 

Kolham. N/A N/A 4.9 N/A N/A N/A N/A N/A 0.1 2.1 30.8.2010 78°56´01.8´ 011°50´55.2´ 

              

Mean 4.3 4.3 4.2 0.1 247.6 7.7 52.4 7.2 0.72 1.6    

Median 4.5 4.4 4.4 0.1 246.6 7.8 52.1 7.1 0.7 1.7    

Maximum 5.4 5.5 4.9 0.2 409.7 8.1 53.2 7.7 1.3 2.1    

Minimum 3.1 3.2 3.4 0.03 84.0 7.2 51.8 6.8 0.05 0.7    
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Appendix 9 continues. Ny-Ålesund water chemistry and sediment property 30.8–2.9.2010. N/A = value not available. 

Site tot N 

mg L -1 

tot P 

µg L -1 

TN:TP TOC 

mg L -1 

DOC 

mg L -1 

OM 

% 

Sediment 
moisture 
content 

% 

Chl 

> 2.7 
µm 

µg L -1 

Chl 

2.7–0.7 
µm 

µg L -1 

tot Chl 
µg L-1 

Moss 
cover 
%  

 25 m 

Goose 
droppings 
25 m 

L.arcticus 
density 

m2 

Solvatnet N/A N/A N/A N/A N/A N/A N/A 0.61 0.07 0.69 61–100 medium N/A 

Storvatnet 0.365 14.0 26:1 5.1 3.3 16.3 61.3 0.62 0.06 0.68 31–60 medium 0 

Tvillingvatnet N/A N/A N/A N/A N/A N/A N/A 0.23 0.01 0.24 11–30 low N/A 

Trehyrdingen1 0.420 23.9 18:1 15.0 15.0 26.8 58.1 0.58 0.04 0.62 11–30 none N/A 

Trehyrdingen1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 11–30 none N/A 

Trehyrdingen2 0.235 27.5 9:1 1.9 1.3 13.4 51.0 0.75 0.04 0.79 11–30 low 0.6 

Trehyrdingen2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 11–30 medium N/A 

Brandallaguna 0.630 29.3 21:1 6.3 4.0 5.0 36.4 0.21 0.01 0.21 31–60 medium N/A 

Brandallaguna N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 31–60 medium N/A 

Kolhamna 
 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 11–30 low N/A 

Mean 0.435 36.3 18:1 12.0 11.2 16.7 52.9 0.50 0.04 0.54    

Median 0.375 25.3 18:1 4.9 3.7 15.6 64.8 0.60 0.04 0.65    

Maximum 1.050 89.0 39:1 52 57 30.8 69.2 0.75 0.07 0.79    

Minimum 0.065 3.6 4:1 0.9 0.6 3.6 24.7 0.21 0.01 0.21    
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