Contents

- How to compute the DFT of a simple sinusoid signal using MATLAB
- Compute the single-side band (SSB) spectrum, normalize it with the signal length & plot it's Magnitude response
- How to deduce the Magnitude & Phase information of the DFT

How to compute the DFT of a simple sinusoid signal using MATLAB

```
% Remove all global variables from the current workspace
% Clear all input & output from the command window display
clc;
% DFT (Discrete Fourier Transform)
% FFT (Fast Fourier Transform) - fast algorithm that computes DFT
% For a sampling frequency (fs) of 100 and a length of a signal to analyze
\% is 1sec, the signal is 100 samples long or 100 bins
% fs/2 = 50Hz
% In this example 50 DFT bins corresponds to 50Hz so 4Hz corresponds to 4bins
fs = 100;
           % Sampling frequency = 100Hz
f1 = 4;
          % Sinusoidal Frequency = 4Hz
T = 1/fs; % Sampling interval
A = 0.8; % Amplitude = 0.8
P = 0.6; % Phase = 0.6
% For a duration of 1sec there are 4 cycles present
t = 0 : T : 1 - T;
                    % Time vector
x1 = A*cos(2*pi*f1*t + P); % Single sinusoid signal
%figure(1)
% Length of x1
L = length(x1);
                         % Length of signal, 100
plot(t*100,x1);
title('Original signal - Amplitude plot');
xlabel('Time');
ylabel('Amplitude');
```


Compute the single-side band (SSB) spectrum, normalize it with the signal length & plot it's Magnitude response

How to deduce the Magnitude & Phase information of the DFT

```
m = 40
a = 0.8000
p = 0.6000
```