Contents

= Adding 2 sinusoid clean signals & corrupt it with random noise

= Compute the FFT & PSD of the corrupted Noisylnput signal. Then Use the PSD to filter out noise
Adding 2 sinusoid clean signals & corrupt it with random noise

% Remove all global variables from the current workspace
clear;

% Clear all input & output from the command window display
clc;

% DFT (Discrete Fourier Transform)
% FFT (Fast Fourier Transform) - fast algorithm that computes DFT
% PSD (Power Spectrum Density)

% For a sampling frequency (fs) of 1000 and a length of a signal to analyze is 1sec, the signal is 1000 samples (or bins) long
fs = 1000; % Sampling frequency = 1000Hz
T =1/fs; % Sampling interval or dt=0.001

fl = 70; % Sinusoidal Frequency = 70Hz
Al = 0.8; % Amplitude = 0.8

f2 = 250; % Sinusoidal Frequency = 250Hz
A2 = 1.1; %6 Amplitude = 1.1

N

t=0:T:1-T; % Time vector of 1 sec

% Signal Input is a 2 tone signal containing a 70Hz sinusoid of amplitude 0.8 + a 250Hz sinusoid of amplitude 2.5
% It is assumed both sinusoidal signals have no phase

Sinewavel = Al*sin(2*pi*fl*t);

Sinewave2 = A2*sin(2*pi*f2*t);

% Adding these 2 sinusoid signals to generate a CleanInput signal
CleanInput = Sinewavel + Sinewave2;

% Corrupt the signal with random noise
Noise = 2.5*randn(size(t));

% Create a new signal NoisyInput, by injecting noise into the original signal CleanInput
NoisyInput = CleanInput + Noise;

%Length of t
N = length(t); % Length of t, 1000

subplot(2,2,1)

plot(t,CleanInput); grid;

title('Original Clean Amplitude signal');
xlabel('Time (s)');

ylabel('Amplitude');

subplot(2,2,2)
plot(t,NoisyInput); grid;
title('Noisy signal');
xlabel('Time (s)');
ylabel('Amplitude');

subplot(2,2,3)
plot(t,CleanInput,t,NoisyInput); grid;
title('Clean/Noisy signals');
legend('Clean-waveform', 'Noisy-waveform');
xlabel('Time (s)');

ylabel('Amplitude');

2l‘)riginal Clean Amplitude signal i Noisy signal

|
T [
@ @
= =2
= =
al a
E E
<L <€
-1
-2 -10
0 0.5 1 0 0.5 1
Time (s) Time (s)
it Clean/Noisy signals

Clean-waweform
Moisy-wavefomn

Amplitude

0 0.5 1
Time (s)

Compute the FFT & PSD of the corrupted Noisylnput signal. Then Use the PSD to filter out noise

R

There is N number of samples

This generates a vector of fourier coefficients

Each element of this vector is a complex number. It has a magnitude & a phase
= fft(NoisyInput, N);

< 3® ®

R

% What is of interest is the magnitude of the complex numbers for each frequency
% Magnitude squared yields power

xR

% PSD (Power Spectrum Density) :
%4 - Computes the power of each one of the fourier coefficient vector entries
- Tells us how much power is in each frequency in the NoisyInput data

N

freq = 1/(T*N)*(@:N); % Create the x-axis of fregs from © -> N in Hz

L = 1:floor(N/2); % Only plot the first half of fregs
PSD = abs(Y).”2/N; % Power spectrum (how much power is in each frequency)
subplot(2,2,1)

B

Plot the power spectral density vs those frequencies
It shows us which frequency in Hz has the most power
We can see clearly 2 large peaks and a bunch of noise
This gives us some idea how to filter out our data
plot(freq(L),PSD(L)); grid;

title('PSD noisy plot');

xlabel('Frequency (Hz)');

ylabel('Power');

R

N

B

xR

Use the PSD to filter out noise

Find all the indices of the frequencies where the power is greater than 100
1 where the power spectral is > 100
0 where the power spectral is < 100

indices = PSD > 100;

RS-

% Take the power spectum and multiply is with those indices

% Anything in the noise region gets multiplied by zero

% Only the values that had a power greater than 100 get multiplied by 1 so it only keeps the big peaks
PSDclean = PSD.*indices;

% Zero all entries with small fourier coefficients where the power spectral is < 100
Y = indices.*Y;

% Inverse fourier transform to get the Clean filtered signal in time
% We recover here the clean signal of the noisy data
ffilt = ifft(Y);

subplot(2,2,2);
plot(freq(L), PSDclean(L));
title('PSD clean plot');

xlabel('Frequency (Hz)');
ylabel('Power');

subplot(2,2,3);

plot(t, ffilt);

title('Original Clean Filtered Amplitude signal');
xlabel('Time (s)');

ylabel('Amplitude');

PSD noi lot PSD cle lot
i noisy plo i clean p
_ 200 200
& &
3 g
o o
100 100
o] 0
0 200 400 600 0 200 400 600
Frequency (Hz) Frequency (Hz)

Griginal Clean Filtered Amplitude signal

Ampltude

o] 0.5 1
Time (s)

Published with MATLAB® R2020b

