

Benefits of tandem MS applied to elemental analysis Agilent 8900 ICP-MS/MS

Sebastien Sannac, Product Specialist Atomic Spectroscopy



#### Agilent ICP-MS – Detection Limits (ng/L)

| н    |      |                |       | < à (                     | 0.1 n          | g/L          |      |       |         |     |      |     |         |                 |      |      |           |            |             |          |      |      | F  | le         |
|------|------|----------------|-------|---------------------------|----------------|--------------|------|-------|---------|-----|------|-----|---------|-----------------|------|------|-----------|------------|-------------|----------|------|------|----|------------|
|      |      |                |       | 0.10                      | à 1.0          | 0 ng/        | L    |       |         |     |      |     |         |                 |      |      |           |            |             |          |      |      |    |            |
| Li   | Be   |                |       | 1.0 à 10 ng/L B C N O F N |                |              |      |       |         |     |      |     |         |                 |      | le   |           |            |             |          |      |      |    |            |
| 0.19 | 0.08 |                |       | > à 10 ng/L 2.9           |                |              |      |       |         |     |      |     |         |                 |      |      |           |            |             |          |      |      |    |            |
| Na   | Mg   | Stan           | dard  | nebul                     | izer,          | Mode         | He   | ou N  | loGas   |     |      |     |         |                 |      | ΑΙ   |           | Si         | Ρ           |          | S    | СІ   | ŀ  | ٨r         |
| 3.3  | 0.27 | integ<br>* S a | ratio | n time<br>: LD            | e 3 se<br>en µ | ec/ma<br>g/L | sse, | n = 1 | 10 et 3 | sig | ma   |     |         |                 |      | 0.71 | 8         | 800        | 114         | 2        | 20*  | 4.6* |    |            |
| K    | Са   | Sc             | Ti    | 1                         | V              | Cr           | Μ    | In    | Fe      | С   | o    | Ni  | С       | u               | Zn   | Ga   |           | Ge         | As          | S        | Se   | Br   | k  | ٢r         |
| 1100 | 48   | 0.67           | 1.9   | 0                         | 14             | 0.99         | 0.   | 66    | 9.2     | 0.  | 14 1 | .57 | 0.4     | 41 <sup>·</sup> | 1.02 | 0.07 | 1         | .13        | 0.41        | 6        | 5.4  | 34.8 |    |            |
| Rb   | Sr   | Υ              | Zr    | N                         | lb             | Мо           | Т    | Ċ     | Ru      | R   | h F  | Pd  | Α       | g               | Cd   | In   | 5         | Sn         | Sb          | 1        | Ге   | T    | Х  | (e         |
| 0.12 | 0.04 | 0.01           | 0.04  | 0.                        | 04             | 0.12         | 0.   | 12    | 0.11    | 0.  | 04 0 | .11 | 0.0     | 08              | 0.08 | 0.03 | 0         | .24        | 0.08        | 1.       | .08  | 2.02 |    |            |
| Cs   | Ba   |                | Hf    | Т                         | a              | W            | R    | e     | Os      | 1   | r I  | Pt  | Α       | u               | Hg   | ТІ   | F         | <b>P</b> b | Bi          | P        | 0    | At   | R  | <b>n</b>   |
| 0.06 | 0.22 | LA             | 0.05  | <b>0</b> .                | 04             | 0.13         | 0.   | 04    | 0.29    | 0.  | 09 0 | .09 | 0.1     | 17              | 0.18 | 9.08 | 0         | .16        | 0.03        |          |      |      |    |            |
| Fr   | Rd   | • •            |       | 12                        | Co             |              | Dr   | N     |         |     | Sm   | E   |         | Gd              | т    |      | ער        | H          |             | Er       | Tm   |      | 'n | Lu         |
|      |      | AC             |       | La<br>0.01                | 0.02           | <b>2</b> 0,  | .01  | 0.0   | 5 F     |     | 0.06 | 0.0 | u<br>)2 | 0.05            | 0.0  |      | ע<br>0.07 | 0.0        | ) [<br>1 0. | _1<br>04 | 0.01 |      | 05 | Lu<br>0.02 |
|      |      |                |       | _                         |                |              |      |       |         |     |      |     |         | -               | -    |      |           |            |             | • •      | 0.0  |      |    | -          |
|      |      |                | 4     | Ac                        | Th             | ר F          | a    | U     | N       | p   | Pu   | Ar  | n       | Cm              | B    | k    | Cf        | E          | s F         | m        | Mc   | A R  | 0  | Lr         |
|      |      |                |       |                           | 0.0            | 3            |      | 0.0   | 2       |     |      |     |         |                 |      |      |           |            |             |          |      |      |    |            |



## Spectrocopy Interferences

<sup>45</sup>Sc

<sup>47</sup>Ті <sup>49</sup>Ті <sup>50</sup>Ті

<sup>51</sup>V <sup>52</sup>Cr

<sup>53</sup>Cr <sup>54</sup>Fe

<sup>55</sup>Mr

<sup>56</sup>Fe <sup>57</sup>Fe

<sup>58</sup>Ni <sup>59</sup>Co

<sup>60</sup>Ni

<sup>61</sup>Ni

<sup>63</sup>Cu

<sup>64</sup>Zn

<sup>65</sup>Cu <sup>66</sup>Zn <sup>67</sup>Zn

<sup>68</sup>Zn <sup>69</sup>Ga

<sup>70</sup>Zn

<sup>71</sup>Ga
 <sup>72</sup>Ge
 <sup>73</sup>Ge
 <sup>74</sup>Ge
 <sup>75</sup>As
 <sup>77</sup>Se
 <sup>78</sup>Se
 <sup>80</sup>Se

Spectroscopy interferences arise from two primary sources:

#### Elemental presence

- Isobaric overlap of more than one element sharing a single nominal mass.
- **Doubly-charged species** (less frequent and usually of negligible impact).

#### Molecular species detected

 Polyatomic (molecular) species from matrix and gases.

| ре | Principal Interfering Species (mixed matrix)                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|    | <sup>13</sup> C <sup>16</sup> O <sub>2</sub> , <sup>12</sup> C <sup>16</sup> O <sub>2</sub> H, <sup>44</sup> CaH, <sup>32</sup> S <sup>12</sup> CH, <sup>32</sup> S <sup>13</sup> C, <sup>33</sup> S <sup>12</sup> C |  |  |  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|    | <sup>31</sup> P <sup>16</sup> O, <sup>46</sup> CaH, <sup>35</sup> Cl <sup>12</sup> C, <sup>32</sup> S <sup>14</sup> NH, <sup>33</sup> S <sup>14</sup> N                                                              |  |  |  |  |  |  |  |  |  |  |
|    | <sup>31</sup> P <sup>18</sup> O, <sup>48</sup> CaH, <sup>35</sup> Cl <sup>14</sup> N, <sup>37</sup> Cl <sup>12</sup> C, <sup>32</sup> S <sup>16</sup> OH, <sup>33</sup> S <sup>16</sup> O                            |  |  |  |  |  |  |  |  |  |  |
|    | <sup>34</sup> S <sup>16</sup> O, <sup>32</sup> S <sup>18</sup> O, <sup>35</sup> Cl <sup>14</sup> NH, <sup>37</sup> Cl <sup>12</sup> CH                                                                               |  |  |  |  |  |  |  |  |  |  |
|    | <sup>35</sup> Cl <sup>16</sup> O, <sup>37</sup> Cl <sup>14</sup> N, <sup>34</sup> S <sup>16</sup> OH                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
|    | <sup>36</sup> Ar <sup>16</sup> O, <sup>40</sup> Ar <sup>12</sup> C, <sup>35</sup> Cl <sup>16</sup> OH, <sup>37</sup> Cl <sup>14</sup> NH, <sup>34</sup> S <sup>18</sup> O                                            |  |  |  |  |  |  |  |  |  |  |
|    | <sup>36</sup> Ar <sup>16</sup> OH, <sup>40</sup> Ar <sup>13</sup> C, <sup>37</sup> Cl <sup>16</sup> O, <sup>35</sup> Cl <sup>18</sup> O, <sup>40</sup> Ar <sup>12</sup> CH                                           |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sup>14</sup> N, <sup>40</sup> Ca <sup>14</sup> N, <sup>23</sup> Na <sup>31</sup> P                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
|    | <sup>3</sup> <sup>′</sup> Cl <sup>18</sup> O, <sup>23</sup> Na <sup>32</sup> S, <sup>23</sup> Na <sup>31</sup> PH                                                                                                    |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sup>16</sup> O, <sup>40</sup> Ca <sup>16</sup> O                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sup>16</sup> OH, <sup>40</sup> Ca <sup>16</sup> OH                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sup>18</sup> O, <sup>40</sup> Ca <sup>18</sup> O, <sup>23</sup> Na <sup>35</sup> Cl                                                                                                                |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sup>18</sup> OH, <sup>43</sup> Ca <sup>16</sup> O, <sup>23</sup> Na <sup>35</sup> ClH                                                                                                              |  |  |  |  |  |  |  |  |  |  |
|    | <sup>44</sup> Ca <sup>16</sup> O, <sup>23</sup> Na <sup>37</sup> Cl                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |
|    | <sup>44</sup> Ca <sup>16</sup> OH, <sup>38</sup> Ar <sup>23</sup> Na, <sup>23</sup> Na <sup>37</sup> ClH                                                                                                             |  |  |  |  |  |  |  |  |  |  |
|    | $^{40}\text{Ar}^{23}\text{Na}$ , $^{12}\text{C}^{10}\text{O}^{33}\text{Cl}$ , $^{12}\text{C}^{14}\text{N}^{37}\text{Cl}$ , $^{31}\text{P}^{32}\text{S}$ , $^{31}\text{P}^{10}\text{O}_2$                             |  |  |  |  |  |  |  |  |  |  |
|    | <sup>32</sup> S <sup>16</sup> O <sub>2</sub> , <sup>32</sup> S <sub>2</sub> , <sup>36</sup> Ar <sup>12</sup> C <sup>16</sup> O, <sup>38</sup> Ar <sup>12</sup> C <sup>14</sup> N, <sup>48</sup> Ca <sup>16</sup> O   |  |  |  |  |  |  |  |  |  |  |
|    | <sup>32</sup> S <sup>16</sup> O <sub>2</sub> H, <sup>32</sup> S <sub>2</sub> H, <sup>14</sup> N <sup>16</sup> O <sup>35</sup> CI, <sup>48</sup> Ca <sup>16</sup> OH                                                  |  |  |  |  |  |  |  |  |  |  |
|    | <sup>34</sup> S <sup>16</sup> O <sub>2</sub> , <sup>32</sup> S <sup>34</sup> S, <sup>33</sup> S <sub>2</sub> , <sup>48</sup> Ca <sup>18</sup> O                                                                      |  |  |  |  |  |  |  |  |  |  |
|    | <sup>32</sup> S <sup>34</sup> SH, <sup>33</sup> S <sub>2</sub> H, <sup>48</sup> Ca <sup>18</sup> OH, <sup>14</sup> N <sup>16</sup> O <sup>37</sup> Cl, <sup>16</sup> O <sub>2</sub> <sup>35</sup> Cl                 |  |  |  |  |  |  |  |  |  |  |
|    | <sup>32</sup> S <sup>18</sup> O <sub>2</sub> , <sup>34</sup> S <sub>2</sub>                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|    | <sup>32</sup> S <sup>18</sup> O <sub>2</sub> H, <sup>34</sup> S <sub>2</sub> H, <sup>16</sup> O <sub>2</sub> <sup>37</sup> Cl                                                                                        |  |  |  |  |  |  |  |  |  |  |
|    | <sup>34</sup> S <sup>18</sup> O <sub>2</sub> , <sup>35</sup> Cl <sub>2</sub>                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|    | <sup>34</sup> S <sup>18</sup> O <sub>2</sub> H, <sup>35</sup> Cl <sub>2</sub> H, <sup>40</sup> Ar <sup>31</sup> P                                                                                                    |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sup>32</sup> S, <sup>35</sup> Cl <sup>37</sup> Cl, <sup>40</sup> Ar <sup>16</sup> O <sub>2</sub>                                                                                                   |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sup>32</sup> SH, <sup>40</sup> Ar <sup>33</sup> S, <sup>35</sup> Cl <sup>37</sup> ClH, <sup>40</sup> Ar <sup>16</sup> O <sub>2</sub> H                                                             |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sup>34</sup> S, <sup>37</sup> Cl <sub>2</sub>                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sup>34</sup> SH, <sup>40</sup> Ar <sup>35</sup> Cl, <sup>40</sup> Ca <sup>35</sup> Cl, <sup>37</sup> Cl <sub>2</sub> H                                                                             |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sup>37</sup> Cl, <sup>40</sup> Ca <sup>37</sup> Cl                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sup>38</sup> Ar                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |
|    | <sup>40</sup> Ar <sub>2</sub> , <sup>40</sup> Ca <sub>2</sub> , <sup>40</sup> Ar <sup>40</sup> Ca, <sup>32</sup> S <sub>2</sub> <sup>16</sup> O, <sup>32</sup> S <sup>16</sup> O <sub>3</sub>                        |  |  |  |  |  |  |  |  |  |  |



### Collision and Reaction Cell (CRC) technology





## Principle of He Mode and KED\*





#### Blank Acid Matrices and IPA in No Gas Mode

Color of spectrum indicates which matrix gave each interfering peak



**No Gas Mode** 



#### Blank Acid Matrices and IPA in He Mode

#### Color of spectrum indicates which matrix gave each interfering peak





### Hydrogen Mode





#### Blank Acid Matrices and IPA in No Gas Mode

Color of spectrum indicates which matrix gave each interfering peak



**No Gas Mode** 



#### Blank Acid Matrices and IPA in H2 Mode



H<sub>2</sub> Mode



## Review of CRC ; Merit and Demerit of two Modes of Cell

|                | <b>Collision Mode</b>                     | <b>Current Reaction Mode</b>                    |  |  |  |  |  |
|----------------|-------------------------------------------|-------------------------------------------------|--|--|--|--|--|
| Gas            | Helium                                    | $H_2$ , $NH_3$ , $CH_4$ , $O_2$                 |  |  |  |  |  |
| Mechanism      | Difference in ion size<br>(Universal)     | Difference in chemical reaction (non Universal) |  |  |  |  |  |
| DL improvement | 1 - 5 orders                              | 1 - 6 orders                                    |  |  |  |  |  |
| Ease of use    | Easy – matrix independent                 | Difficult –matrix dependent                     |  |  |  |  |  |
| Application    | Widely used, multi-<br>elemental capacity | Limited, element dependent                      |  |  |  |  |  |



#### Limitations of Reaction Mode in ICP-QMS

- Limitations of reactive cell gases in quadrupole ICP-MS are welldocumented:
  - All ions enter the cell, affecting reaction processes and product ions formed. Gives variable results when sample type/matrix or co-existing analytes change
    - Product ions from matrix or other elements can create new overlaps on analytes
      - Analyte product ions can be overlapped by other analytes/matrix elements
- Can tandem MS configuration (ICP-MS/MS) address the variability caused by co-existing elements and changing matrix components?



## ICP-MS/MS: How Does it Work?



ICP (plasma) and Interface: Forms and extracts ions from the sample (just like ICP-QMS)



**Q1** – controls ions that enter the cell

 Consistent reactions even if sample composition changes ORS<sup>4</sup> – collision/ reaction gas added

101010-0

 lons react and are neutralized or moved

• Product ions are formed



Q2 – selects the target analyte mass
Interference-free analyte ions passed to EM

EM (detector): Measures the ions that pass through Q2 (just like ICP-QMS)





### ICP-MS/MS: How Does it Work?



ICP (plasma) and Interface: Forms and extracts ions from the sample (just I Inique as)



**Q1** – controls ions that enter the cell

 Consistent reactions even if sample composition changes Interface: ts ions from Unique aspect of 8900 is MS/MS Mode

- Q1 rejects ALL ions at masses other than target analyte precursor ion mass
  - All existing ions that could overlap an analyte product ion are removed
  - All existing ions that could form a product ion overlap at the analyte ion/product ion mass are removed
  - Only the analyte and on-mass interference(s) enter the cell

EM (detector): Measures the ions that pass through Q2 (just like ICP-QMS)





#### ICP-MS/MS 8900 : the Power of MS/MS









#### O<sub>2</sub> reaction gas













Q1 eliminates all off-mass species before they can enter the CRC This eliminates any reaction by-products before they form



#### 8900 ICP-MS/MS – Multi-elemental technic

#### App note: 5991-6943EN

#### Table 3. Method detection limits.

| Element | Scan Mode   | 01 | 02 | DL<br>(ppb) | Element | Scan Mode   | 01 | 02  | DL<br>(ppb) |
|---------|-------------|----|----|-------------|---------|-------------|----|-----|-------------|
| В       | Single Quad |    | 11 | 0.3653      | Se      | Single Quad |    | 78  | 0.3158      |
| Na      | Single Quad |    | 23 | 0.1945      | Se      | MS/MS       | 78 | 94  | 0.0506      |
| Mg      | Single Quad |    | 24 | 0.1235      | Rb      | Single Quad |    | 85  | 0.0115      |
| AI      | Single Quad |    | 27 | 0.1847      | Sr      | Single Quad |    | 88  | 0.0006      |
| Р       | MS/MS       | 31 | 47 | 0.0919      | Mo      | Single Quad |    | 95  | 0.0090      |
| s       | MS/MS       | 32 | 48 | 0.4367      | Ag      | Single Quad |    | 107 | 0.0063      |
| К       | Single Quad |    | 39 | 7.0656      | Cd      | Single Quad |    | 111 | 0.0018      |
| Са      | Single Quad |    | 44 | 8.7579      | Sn      | Single Quad |    | 118 | 0.0074      |
| V       | Single Quad |    | 51 | 0.0079      | Sb      | Single Quad |    | 121 | 0.0026      |
| Cr      | Single Quad |    | 52 | 0.0880      | Ba      | Single Quad |    | 138 | 0.0008      |
| Mn      | Single Quad |    | 55 | 0.0099      | Hg      | Single Quad |    | 202 | 0.0005      |
| Fe      | Single Quad |    | 56 | 0.1595      | ТІ      | Single Quad |    | 205 | 0.0104      |
| Co      | Single Quad |    | 59 | 0.0009      | РЬ      | Single Quad |    | 208 | 0.0016      |
| Ni      | Single Quad |    | 60 | 0.0484      | Th      | Single Quad |    | 232 | 0.0018      |
| Cu      | Single Quad |    | 63 | 0.0102      | U       | Single Quad |    | 238 | 0.0009      |
| Zn      | Single Quad |    | 66 | 0.0308      |         |             |    |     |             |
| As      | Single Quad |    | 75 | 0.0044      |         |             |    |     |             |
| As      | MS/MS       | 75 | 91 | 0.0040      |         |             |    |     |             |



#### Agilent 8900 ICP-QQQ for **SiO<sub>2</sub>** NPs Unprecedented detection – not possible with ICP-QMS



Fast TRA of SiO<sub>2</sub> NPs – by far the most important engineered NPs (ENPs) in environment

Low Si background, high sensitivity and <u>effective control of interferences with MS/MS</u> ensure that small (50 nm) SiO<sub>2</sub> NPs can be easily distinguished from background signal



5991-6596EN

Response (cps)

## SiO<sub>2</sub> Nanoparticle Reference Material Results



100 nm  $\int_{100}^{100} \int_{100}^{100} \int_{100}$ 

100

Particle Size (nm)

150

200

50

0.

 Pranocomposit
 Background equivalent diameter ~ size detection limit – most likely limited by dissolved Si.



## Which Applications benefit from ICP-QQQ?

Application data can demonstrate high value of Agilent 8900.

- Environmental: MoO/ZrOH overlap on Cd. REE<sup>++</sup> overlap As<sup>+</sup> & Se<sup>+</sup>.
- High purity chemical: Ti and Zn analysis in semiconductor grade  $H_2SO_4/H_3PO_4$ .
- Petro/organics S, Si (and Mg, Cr) in fuels; abundance sensitivity separates <sup>11</sup>B
- Material: P in Si matrix. SiH<sup>+</sup> and SiH<sub>2</sub><sup>+</sup> overlap on P<sup>+</sup>. Nanoparticles detection
- Metals: As in Co matrix. Fe and Ni in Ca matrix. MO<sup>+</sup>/MOH<sup>+</sup> interference on Cd.
- Geology: Rb/Sr analysis, REE analysis. BaO and REE-O ion overlap other REE.
- Food: Sulfur Isotope Ratio analysis.
- Clinical: Ti and Cr analysis in blood and serum. S, P and C matrix.
- Nuclear: <sup>129</sup>Iodine analysis. <sup>129</sup>Xe atomic isobar interference,Long live nuclide analysis. <sup>93</sup>Zr, <sup>99</sup>Tc, <sup>135</sup>Cs, Ra 226, Np237, Pu239/240
- Life Science: Trace Sulfur for protein/peptide quantification, P for phosphorylation studies.
- Agilent Handbook of Application: **5991-2802**











Agilent 7800 ICP-MS

Agilent 7900 ICP-MS

Agilent 8900 ICP-000

# QUESTIONS?

sebastien\_sannac@agilent.com

